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Abstract 

Understanding the activity of the mammalian brain requires an integrative knowledge of circuits at 

distinct scales, ranging from ion channel time constants to synaptic connection probabilities. To 

understand how multiple parameters contribute synergistically to circuit behavior as a whole, 

neuronal computational models are regularly employed. However, traditional models containing 

anatomically and biophysically realistic neurons are computationally expensive when scaled to 

model local circuits. To overcome this limitation, we trained several artificial neural net (ANN) 

architectures to model the activity of realistic, multicompartmental neurons. We identified a single 

ANN that accurately predicted both subthreshold and action potential firing, and correctly 

generalized its responses to previously unobserved synaptic input. When scaled, processing times 

were orders of magnitude faster compared with traditional approaches, allowing for rapid parameter-

space mapping in a circuit model of Rett syndrome. Thus, our ANN approach allows for rapid, 

detailed network experiments using inexpensive, readily available computational resources. 

 

Introduction 

Understanding the behavior of complex neural circuits like the human brain is one of the 

fundamental challenges of this century. Predicting mammalian circuit behavior is difficult due to 

several different underlying mechanisms at distinct organizational levels, ranging from molecular-level 

interactions to large-scale connection motifs. Computational modeling has become a cornerstone 

technique for deriving and testing new hypotheses about brain organization and function1-4. In little 

more than 60 years, our mechanistic understanding of neural function has evolved from describing 

action potential (AP) related ion channel gating5 to constructing models that can simulate the activity 
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of whole brain regions6-10. Although tremendous advancements have been made in the development of 

computational resources, the lack of available or affordable hardware for neural simulations currently 

represents a significant barrier to entry for most neuroscientists and renders many questions intractable. 

This is particularly well illustrated by large-scale neural circuit simulations. In contrast to detailed 

single-cell models, which have been a regular occurrence in publications since the '90s11-18, parallel 

simulation of thousands, or even hundreds of thousands of detailed neurons have only become a 

possibility with the advent of supercomputers19-26.  As these resources are still not widely accessible, 

several attempts have been made to mitigate the immense computational load of large-scale neural 

simulations by judicious simplification19, 27-33, however, simplifications inevitably result in feature or 

information loss, such as sacrificing multicompartmental information for simulation speed19, 27, 28, 30. 

Thus, there is a critical need for large-scale neural simulations which incorporate arbitrary features of 

individual neuronal cells, such as dendritic information processing or specific ionic currents, that are 

also fast enough to be simulated on widely available computational resources. 

To counteract the increasing computational burden of ever-growing datasets on more 

traditional models, many different fields have recently adopted various machine learning algorithms34-

38. Specifically, artificial neural networks (ANNs) have been shown to be superior to traditional model 

systems both in terms of speed and accuracy when dealing with complex systems such as those 

governing global financial markets or weather patterns39, 40. Due to their accelerated processing speed, 

ANNs are ideal candidates for modeling large-scale biological systems. The idea that individual neural 

cells could be represented by ANNs was proposed almost two decades ago41, however conclusive 

evidence for the feasibility of such a model is lacking (but see42). Therefore, our aim was to develop 

an ANN which can (1) accurately replicate various features of biophysically detailed neuron models, 

(2) efficiently generalize for previously unobserved input conditions and (3) significantly accelerate 

large-scale network simulations. 

 Here we investigated several ANN architectures to understand which most accurately 

represented membrane potential dynamics, in both simplified point neurons as well as 

multicompartment neurons. Among the selected ANNs, we found that a convolutional recurrent 

architecture can simulate both subthreshold and suprathreshold voltage dynamics. Furthermore, this 

ANN could generalize to a wide range of input conditions and could reproduce neuronal features 

following different input patterns beyond membrane potential responses, such as ionic current 

waveforms. Next, we demonstrated that this ANN can also accurately predict multicompartmental 

information, by fitting this architecture to a biophysically detailed layer 5 pyramidal cell43 model. 

Importantly, we found that ANN representations could exponentially accelerate large network 
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simulations, as demonstrated by network parameter space mapping of a cortical layer 5 recurrent 

microcircuit model of Rett syndrome, a neurodegenerative disorder that is associated with cortical 

dysfunction and epilepsy44-47. Thus, we provide a detailed description of an ANN architecture suitable 

for large scale simulations of anatomically and biophysically detailed neurons, that has applicability to 

human disease modelling. Most importantly, our ANN simulations are accelerated to the point where 

detailed network experiments can now be carried out using inexpensive, readily available 

computational resources. 

 

Results 

To create a deep learning platform capable of accurately representing the full dynamic 

membrane potential range of neuronal cells, we focused on model systems proven to be suitable for 

multivariate time series forecasting (MTSF). MTSF models are potentially ideal for this purpose, as 

they can be designed to receive information about past synaptic inputs and membrane potentials in 

order to predict subsequent voltage responses. These ANNs have recently been demonstrated to be 

superior to other algorithms in handling multivariate temporal data such as audio signals48, natural 

language49 and various other types of fluctuating time series datasets50-52. Whether these models are 

capable of accurately predicting the full range of activity patterns in excitable cells is unclear.  

Although deep learning approaches are now well established in various disciplines, the need 

to incorporate ANNs in different elements of neuroscience research is evident 53. Due to the recent 

surge in the availability of various large datasets, the utility of ANN architecture customization for 

different purposes is increasingly appreciated54-57. To compare the ability of different ANNs to 

reproduce the activity of an excitable cell, we designed five distinct architectures (Figure 1A). The first 

two models were a simple linear model with one hidden layer (linear model, Figure 1A, blue) and a 

similar model equipped with nonlinear processing (nonlinear model, Figure 1A, cyan), as even 

relatively simple model architectures can explain the majority of subthreshold membrane potential 

variance58. The third and fourth models consist of recently constructed time-series forecasting 

architectures, including a recurrent ANN (CNN-LSTM, Figure 1A, magenta) consisting of 

convolutional layers49, long short-term memory (LSTM59, 60) layers, and fully connected layers, termed 

the CNN-LSTM network (Supplementary Figure 1,61) and a more recently developed architecture 
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relying on dilated temporal 

convolutions (convolutional 

net, Figure 1A, orange) 

(based on the WaveNet 

architecture42, 62), which is 

superior to the CNN-LSTM in 

several MTSF tasks. The 

CNN-LSTM has the distinct 

advantage of having almost 

two orders of magnitude more 

adjustable parameters 

compared to the 

aforementioned ANNs. 

Finally, we selected a fifth 

architecture (deep neural net, 

Figure 1A, green) with a 

comparable number of free 

parameters to the CNN-

LSTM, composed of ten 

hidden layers, and which 

operates solely on linear and nonlinear transformations. Before moving to neural cell data, each of the 

five selected architectures were evaluated using a well-curated weather time series dataset (see 

methods). Each model performed similarly (0.070/0.069, 0.059/0.06, 0.089/0.094, 0.07/0.069, 

0.092/0.095, mean absolute error on the validation/testing datasets for linear, nonlinear, convolutional 

net and CNN-LSTM, deep neural net architectures, respectively), demonstrating their suitability for 

MTSF problems.  

 

Prediction of point neuron membrane potential dynamics by ANNs  

To test the ability of the five ANNs to represent input-output transformations of a neural cell, 

we next fitted these architectures with data from passive responses of a single-compartmental point-

neuron model (NEURON simulation environment63) using the standard backpropagation learning 

algorithm for ANNs64. Each model was tasked with predicting a single membrane potential value based 

Supplementary Figure 1. CNN-LSTM architecture for time series forecasting. The input 
of the ANN consisted of a membrane potential vector (Vm) and the weights and onsets of 
synaptic inputs (a representative inhibitory synapse – inh in red, and an excitatory 
synapse – exc in green). The first layer of the ANN (Conv1D) creates a temporally alligned 
convolved representation (colored bars) of the input by sliding a colvolutional kernel 
(grey box) along the input. The second functional block (LSTM layers) processes the 
output of the convolutional layers through recurrent connections, to weigh information 
temporally. The last functional block consisting of fully connected layers provides 
additional nonlinear information processing power. The output of the network in this 
case is the first subsequent Vm value (tn+1). The number of layers belonging to specific 
functional blocks of the CNN-LSTM architecture may vary. 
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on 64 ms (a time window that yielded the best results both in terms of speed and accuracy) of preceding 

membrane potentials and synaptic inputs (single quantal inputs arriving stochastically with a fixed 

Figure 1. Single compartmental neuronal simulations using ANNs. A. Representative diagrams of the tested architectures, 
outlining the ordering of the specific functional blocks of the ANNs. B. Point-by-point fit of passive membrane potential by ANNs 
as a continous representative trace (left) and plotted agains ground truth data (middle, n = 45000). Mean squared error of ANN 
fits corresponds to the entire training dataset (n = 2.64*106 datapoints). C. Representative trace of a continous passive membrane 
potential prediction (left) created by relying on past model predictions. Explained variance (right) was calculated from 500 ms 
long continous predictions (n = 50). D. Representative active membrane potential prediction by ANNs (top, left). Explained 
variance (middle, box chart) and Pearson’s r (middle, circles) of model predictions and ground truth data for the five ANNs from 
50 continous predictions, 500 ms long each. Spike timing of the CNN-LSTM model calculated from the same dataset as middle 
panel. Color coding is the same as in panel A. 
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quantal size: 2.5 nS for excitatory, 8 nS for inhibitory inputs) sampled at 1 kHz. We found that both 

the linear and nonlinear models predicted subsequent membrane potential values with low error rates 

(Figure 1B) with similar behavior in both the CNN-LSTM and convolutional architectures (2.16*10-4 

± 1.18*10-3, 2.07*10-4 ± 1.11*10-3, 1.43*10-4 ± 9.31*10-4, 1.29*10-4 ± 9.42*10-4 mean error for linear, 

nonlinear, CNN-LSTM and convolutional models, respectively). However, the deep neural network 

performed considerably worse than all other tested models (3.94*10-4 ± 1.56*10-3 mean error), 

potentially due to the nonlinear correspondence of its predicted values to the ground truth data (Figure 

1B).  

Next, we tested ANNs in simulation conditions similar to the traditional models. To this end, 

we initialized ANNs with ground truth data followed by a continuous query period in which forecasted 

membrane potential values were fed back to the ANNs to observe continuous unconstrained 

predictions. As expected from the fit error rates of single membrane potential forecasting (Figure 1B), 

continuous predictions of the linear, convolutional, and CNN-LSTM models were able to explain the 

ground truth signal variance at high accuracy while the  deep neural net performed slightly worse 

(Figure 1C, 0.97 ± 0.01%, 0.99 ± 0.01%, 0.97 ± 0.02%, 0.84 ± 0.03% variance explained for linear, 

convolutional, CNN-LSTM, and deep neural net architectures respectively, n = 50). Surprisingly, the 

nonlinear model produced the worst prediction for passive membrane potential traces (0.82 ± 0.03% 

variance explained, n = 50) despite performing the best on the benchmark dataset. These results 

indicate that even simple linear ANNs are able to capture subthreshold membrane potential behavior 

accurately58. 

Although subthreshold events were accurately predicted by several different ANN 

architectures, our aim was to test how these models perform on the full dynamic range of neural cells, 

which due to AP firing (which can also be viewed as highly relevant outlier datapoints) constitutes a 

non-normally distributed and thus demanding dataset for ANNs. To investigate how the ANNs 

performed with suprathreshold events included, we fitted the weights and biases of the five previously 

investigated ANNs on active membrane potential traces. Interestingly, we found that only the CNN-

LSTM architecture could precisely reproduce both subthreshold membrane potential dynamics and 

spiking activity, while all other tested ANNs converged to the mean of the training dataset values 

(Figure 1D, -0.027 ± 0.073%, -0.025 ± 0.068%, -0.018 ± 0.054%, 0.456 ± 0.304%, -0.025 ± 0.067 % 

variance explained for linear, nonlinear, convolutional net and CNN-LSTM, deep neural net 

architectures respectively, n = 50). We found that although the CNN-LSTM model explained 

substantially less variance for the active membrane potential traces (Figure 1D) than for subthreshold 

voltages alone (Figure 1C) due to the overall larger variance of active signals, the predictions showed 
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high linear correlation with  the ground truth signals (Pearson's r = 0.76793 ± 0.10003, n = 50). For the 

four remaining ANN architectures it is unlikely that convergence to the mean is caused by settling in 

local minima on the fitting error surface, as ANNs have a large number of free parameters (2.07*104, 

2.07*104, 2.47*106, 3.64*105, 1.95*106 free parameters for linear, nonlinear, deep, convolutional 

ANNs and CNN-LSTM respectively), therefore the chance of having a zero derivate for each parameter 

at the same point is extremely low65 suggesting that erroneous fitting is the consequence of the 

limitations of these ANN architectures. Consequently, of the tested ANN architectures the CNN-LSTM 

is the only model that could depict the full dynamic range of a biophysical neural model.  

Closer inspection of the timing of the predicted APs revealed that the CNN-LSTM models 

correctly learned thresholding, as the occurrence of the APs matched the timing of the testing dataset 

(Figure 1D; 83.94 ± 16.89% precision and 90.94 ± 12.13 % recall, 0.24 ± 0.79 ms temporal shift for 

true positive spikes compared to ground truth, n = 283). Taken together, we developed an ANN 

architecture that is ideally suited for predicting both subthreshold membrane potential fluctuations and 

the precise timing of APs on a millisecond timescale.  

 

Generalization of the CNN-LSTM architecture 

In order to test the applicability of the CNN-LSTM for predicting physiological cellular 

behavior, we assessed the generalization capability of the architecture built for active behavior 

prediction (Figure 1D). Generalization is the ability of an ANN to accurately respond to novel data66, 

67. This capability of neural nets is largely constrained by the amount of training received, as both 

under- or over-training can result in poor generalization. So far, we have only tested ANNs using input 

patterns which were similar to the training dataset, namely, single stochastically arriving quantal inputs 

with invariable quantal sizes. However, if the CNN-LSTM correctly learned the mechanistic operations 

of a neural cell, then the architecture should behave appropriately when tasked with responding to 

novel quantal input patterns or amplitudes.  

We first challenged the CNN-LSTM by administration of excitatory inputs with variable 

quantal sizes (0.1-3.5 nS, 0.1 nS increment). Similar to the NEURON model control, the CNN-LSTM 

responded linearly in subthreshold voltage regimes (Figure 2A, Pearson's r = 0.99, n=35) and elicited 

an AP after reaching threshold. Independent evaluation of the NEURON model control revealed a 
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surprisingly similar I/V relationship for the same quantal inputs (intercept, -0.003 ± 8.53 and -0.003 ± 

0.001; slope for subthreshold linear I/V, 22.2 ± 0.41 and 23.31 ± 0.62; CNN-LSTM and NEURON 

model, respectively) and similar AP threshold (-58.03 mV and -56.64 mV for CNN-LSTM and 

NEURON model, respectively). Next, we tested temporal summation of excitatory inputs (Figure 2B). 

To this end, five consecutive excitatory inputs were delivered to the same synapse with different inter-

event intervals (2-10 ms, 1 ms increments). We found that the independently simulated NEURON 

model displayed similar temporal summation patterns to the CNN-LSTM both for sub- and 

suprathreshold events (Figure 2B). Finally, we combined the previous two tests and delivered unique 

temporal patterns of synaptic inputs with variable synaptic conductances randomly chosen from a 

normal distribution (mean: 2.5 nS, variance: 0.001 nS, Figure 2C). Again, the predictions of the CNN-

LSTM architecture closely matched traces obtained from the NEURON model (Pearson's r = 0.81, n 

= 5000 ms) and the timing of the majority of the APs agreed with the ground truth data (91.02 ± 16.03 

% recall and 69.38 ± 22.43 % precision, n = 50).  

Figure 2. Ideal generalization of the CNN-LSTM trained on single input weight. A. CNN-LSTM models predict similar subthreshold 
event amplitudes and action potential threshold (break in y-axis) for increasing input weight, compared to NEURON models. B. 
CNN-LSTM models correctly represent temporal summation of synaptic events. Representative traces for different inter-event 
intervals (range: 2-10 ms) on the left, comparison of individual events in a stimulus train, relative to the amplitude of unitary 
events on the right. C. Single simulated active membrane potential trace in CNN-LSTM (purple) and NEURON (black) with variable 
synaptic input weights (left). The inset shows the distribution of synaptic weights used for testing generalization, with the original 
trained synaptic weight in purple. CNN-LSTM predicted membrane potential values plotted against NEURON model ground truth 
(right). Plotted values correspond to continously predicted CNN-LSTM traces.  
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NEURON models are able to calculate and display several features of neuronal behavior in 

addition to membrane potential, including ionic current flux. To test how our CNN-LSTMs perform in 

predicting ionic current changes, we supplemented ANN inputs with sodium (INa) and potassium 

currents (IK) and tasked the models to predict these values as well. The accuracy of the CNN-LSTM 

prediction for these ionic currents was similar to membrane potential predictions (Supplementary Fig 

2, Pearson’s r = 0.999 and 0.99 for fitting, n = 5000,  variance explained: 0.64 ± 0.21 and 0.55 ± 0.23, 

prediction correlation coefficient: 0.85 ± 0.08 and 0.81 ± 0.1, n = 5, for IK and INa, respectively) while 

the other ANNs again regressed to the mean. Together, these results demonstrate that the CNN-LSTM 

correctly learned several highly specialized aspects of neuronal behavior.  

 

 

Supplementary Figure 2. CNN-LSTM prediction of neuronal mechanisms beyond somatic membrane potential. A. 
Representative membrane potential (Vm, top) and ionic current (IK – potassium current, Ina – sodium current, bottom) dynamics 
prediction upon arriving excitatory (green, middle) and inhibitory (red, middle) events. Enlarged trace shows subthreshold 
voltage and current predictions. Color coding is same as for Figure 1. (black – NEURON model traces, magenta – CNN-LSMT, blue 
– linear model, teal – nonlinear model, green – deep neural net, orange – convolutional net). Notice the smooth vertical line 
corresponding to predictions by ANNs, with the exception of CNN-LSTM. B. CNN-LSTM models accurately predict ionic current 
dynamics. Normalized ANN predictions are plotted agains normalized neuron signals for sodium (dark grey, left) and potassium 
currents (light grey). Variance of suprathreshold traces is largely explained by CNN-LSTM predictions (right, color coding is same 
as in panel B left). Correlation coefficients are superinposed in black.  
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Predicting the activity of morphologically realistic neurons using ANNs 

Neurons multiply their adaptive properties by segregating different conductances into separate 

subcellular compartments68-75. Thus, in addition to simplified input integrating point neurons, a 

substantial portion of neuronal models developed in recent decades intended to address subcellular 

signal processing via detailed multicompartmental biophysical cellular representations15, 43, 74, 76-78. 

Therefore, our next aim was to examine how well ANNs describe multicompartmental information. 

To this end, a training dataset of synaptic inputs and corresponding somatic voltage responses was 

generated in NEURON from a morphologically and biophysically detailed in-vivo labeled neocortical 

layer 5 (L5) pyramidal cell (PC)43. The simulated cell received 150 excitatory inputs (100 inputs on 

apical, oblique and tuft dendrites and 50 inputs on the basal dendrite, randomly distributed) and 50 

inhibitory inputs (30 inputs on apical, oblique and tuft dendrites and 20 inputs on the basal dendrite, 

randomly distributed; Figure 3A). We found that this pyramidal cell-trained CNN-LSTM performed 

in near-perfect accordance with the NEURON simulation (Figure 3A, Pearson's r = 0.999, n = 45000 

ms). The continuous self-reliant prediction yielded lower yet adequate AP fidelity (Figure 3G, 68.28 ± 

18.97 % and 66.52 ± 25.37 % precision and recall, 0.439 ± 4.181 ms temporal shift for true positive 

spikes compared to ground truth, n = 205) compared to the point neuron, and the accuracy of 

subthreshold membrane potential fluctuations remained high (Pearson's r = 0.83, n = 37).  

Establishing a proper multicompartmental representation of a neural system by relying solely 

on the somatic membrane potential is a nontrivial task due to complex signal processing mechanisms 

taking place in distal subcellular compartments79-83. This is especially true with respect to signals 

arising from more distal synapses84-86. To examine whether the CNN-LSTM took distal inputs into 

consideration or neglected these inputs in favor of more robust proximal ones, we inspected the weights 

of the first layer of the neural net architecture (Figure 3B). This convolutional layer consists of 512 

filters, which directly processes the input matrix (64 ms of 201 input vectors corresponding to the 

somatic membrane potential and vectorized timing information of 200 synapses). Despite the random 

initialization of these filters from  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 23, 2021. ; https://doi.org/10.1101/2021.02.22.432356doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.22.432356
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 
 

a uniform distribution87, only a small fraction of optimized filter weights were selected for robust 

Figure 3. Multicompartmental simulation representation by CNN-LSTM. A. CNN-LSTM can accurately predict membrane potential of a 
multicompartmental neuron upon distributed synaptic stimulation. Representative figure depicts the placement of synaptic inputs onto 
apical and basal dendrites of a reconstructed L5 PC (left). Point-by-point forecasting of L5 PC membrane potential by a CNN-LSTM 
superimposed on biophysically detailed NEURON simulation (left). CNN-LSTM prediction accuracy of multicompartmental membrane 
dynamics is comparable to single compartmental simulations (right, L5 PC in black, single compartmental simulation of Figure 1 D in grey, 
n = 45000 and 50000 respectively). B. Convolutional filter information was gathered from the first convolutional layer (middle, color scale 
depicts the different weights of the filter), which directly processes the input (membrane potential in magenta, excitatory and inhibitory 
synapse onsets in green and red respectively), provind convolved inputs to upper layers (grey bars, showing the transformed 1D outputs). 
C. Distribution of filter weights from 512 convolutional units (n = 102400) with double Gaussian fit (red). E. Filter weight is independent 
of the somatic amplitude of the input (circles are averages from 512 filters, n = 200, linear fit in red). D. Each synapse has a dedicated 
convolutional unit, shown by plotting the filter weights of the 200 most specific units against 200 synapses. Notice the dark diagonal 
illustrating high filter weights. F. Excitatory and inhibitory snypase information is convolved by fitlers with opposing weights (n = 51200, 
25600, 15360 and 10240 for apical excitatory, basal excitatory, apical inhibitory and basal inhibitory synapses respectively). G. 
Representative continous prediction of L5 PC membrane dynamics by CNN-LSTM (magenta) compared to NEURON simulation (black) 
upon synaptic stimulation (left, excitatory input in green, inhibitory input in red). Spike timing is measured on subthreshold traces (right, 
n = 50 for variance explained, precision and recall).   
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information representation (13.83% of all weights were larger than 0.85), while the majority of them 

were closer to zero (Figure 3C) suggesting relevant feature selection. In order to demonstrate that this 

feature selection was not biased against distal inputs, the 512 convolutional filters were ranked by their 

selectivity for distinct synapses. We found that each synaptic input was assigned an independent 

selectivity filter (Figure 3D). Next, we compared the mean weights of each synapse with the somatic 

amplitude of the elicited voltage response (Figure 3E). This comparison revealed a flat linear 

correspondence (Pearson's r = 0.06), which combined with the filter specificity (Figure 3D) confirmed 

that distal and proximal synaptic inputs carry equally relevant information for the CNN-LSTM.  

Interestingly, when we compared the weights of excitatory and inhibitory inputs, we found that 

even at the first layer, the CNN-LSTM is able to determine that these inputs have opposing effects on  

subsequent membrane potential (5.91*10-6, 2.66*10-5, -6.22*10-6 and -1.34*10-5 mean weights for 

apical excitatory, basal excitatory, apical inhibitory and basal inhibitory synapses respectively, n = 

51200, 25600, 15360 and 10240) even though these vectors only contain synaptic conductance 

information (comparable positive values for both excitatory and inhibitory synapses, Figure 3F). Taken 

together, the feature selectivity and prediction accuracy confirm that the CNN-LSTM architecture is 

well suited for representing multicompartmental information. 

 

Ultra-rapid single neuron and network simulations using CNN-LSTM 

Although our results demonstrate that ANNs are able to replicate major features of neuronal 

behavior such as subthreshold and spiking dynamics (Figure 1), adequately generalize (Figure 2), and 

accurately represent multicompartmental information (Figure 3), one of the main reasons why we 

chose a machine learning approach as a substitute for traditional modeling environments is the potential 

for markedly reduced simulation runtimes. Simulation environments such as NEURON rely on 

compartment specific mathematical abstractions of active and passive biophysical mechanisms63, 

which results in high computational load in increasingly complex neuronal models. Furthermore, the 

number of equations to be solved linearly increases with the number of simulated cells in a circuit. 

Although several attempts have been made to reduce the demanding computational load of neuronal 

simulations32, 33, 88-92, the most widely used approach is parallelization, both at the level of single cells93 

and network models94, 95. In case of moderately sized96-100 and full-scale networks19-21, 101 this hinders 

the possibility of running these models on widely available computational resources, instead users and 

developers are forced to employ supercomputers. However, ANNs offer a possible solution to this 

problem. Contrary to traditional modeling environments, the graph-based ANNs created by the 

machine learning platform we choose are specifically designed for parallel information processing. 
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This means that ANN 

simulation run times do not 

increase linearly by the 

inclusion of additional cells 

into the simulated circuit 

(Figure 4A), resulting in 

better scaling for large 

networks where an immense 

number of cells of the same 

cell type are simulated.  

To verify the 

efficiency of our CNN-

LSTM, we compared single 

cells and moderate- to large-

scale network simulation 

runtimes against NEURON models used in Figure 1 and Figure 3. NEURON simulations were 

performed on a single central processing unit (CPU), as this is the preferred and most widely used 

method (although see102, while neural nets were run on both CPU and graphical processing unit (GPU) 

because these calculations are optimized for GPUs, in which much larger number of processing units 

are available. We found that in case of point neurons, when the optional initialization step was omitted, 

single cell simulations ran significantly faster in NEURON than their CNN-LSTM counterparts (Figure 

4B, 3.68 ± 0.24 s, 0.65 ± 0.03 s, 2.19 ± 0.69 ms and 0.72 ± 0.04 s, 100 ms cellular activity by NEURON 

with initialization, NEURON without initialization, CNN-LSTM on CPU and CNN-LSTM on GPU 

Figure 4. Orders of magnitude faster 
simulation times with CNN-LSTM. A. 
An illustration demonstrating that 
CNN-LSTMs (top, magenta) handle 
both single cell (left) and network 
(right) simulations with a single 
graph, while the set of equations to 
solve increases linearly for NEURON 
simulations (bottom, black). B. 100 
ms simulation runtimes of a one, 50 
and 5000 point neurons on four 
different resources. Bar graphs 
represent the average of five 
sumilations. C. Same as in panel B, 
but for L5 PC simulations. Teal 
borders represent interpolated 
datapoints. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 23, 2021. ; https://doi.org/10.1101/2021.02.22.432356doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.22.432356
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 
 

respectively, n = 5). However, with increased network size, the predicted optimal scaling of CNN-

LSTM models resulted in faster runtimes compared to NEURON models for a 50-cell network (24.23 

± 1.12 s, 7.45 ± 0.37 s, 4.42 ± 0.77 s and 0.71 ± 0.05 s for simulating 100 ms network activity by 

NEURON with initialization, NEURON without initialization, CNN-LSTM on CPU and CNN-LSTM 

on GPU respectively, n = 5). These results show that while in NEURON the runtimes increased by 

approximately 6.6-times, CNN-LSTM runtimes on a GPU did not increase.  

In order to demonstrate the practicality of ANNs for typical large-scale network simulations, 

we repeated these experiments with 5000 cells (representing the number of cells in a large-scale 

network belonging to the same cell type21). In these conditions, the NEURON simulation was ~148 

times slower than a single cell simulation. Importantly, the large-scale CNN-LSTM simulation only 

slowed by a factor of 4 with respect to a single cell (Figure 4B, 546.85 ± 4.61 ms, 407.2 ± 9 ms, 

222.15458 ± 19.02 ms and 2.97 ± 0.02 ms for simulating 100 ms network activity by NEURON with 

initialization, NEURON without initialization, CNN-LSTM on CPU and CNN-LSTM on GPU 

respectively, n = 5).  

We next compared runtime disparities for NEURON and CNN-LSTM simulations of detailed 

biophysical models. Interestingly, we found that the single cell simulation of the L5 PC model ran 

significantly slower than the CNN-LSTM abstraction (2.08*103 ± 84.66 s, 185.5 ± 3.7 s, 4.73 ± 0.13 s 

and 1.02 ± 0.05 s for simulating 100 ms network activity by NEURON with initialization, NEURON 

without initialization, CNN-LSTM on CPU and CNN-LSTM on GPU respectively, n = 5). The runtime 

disparity was markedly amplified in network simulations (50 cell network: 6.3*104 s, 5.8*103 s, 14.3 

± 0.24 s and 1.19 ± 0.08 s, 5000 cell network: 6.53*106 s, 6.28*105 s, 901.15 s and 11.99 s for 

simulating 100 ms network activity by NEURON with initialization, NEURON without initialization, 

CNN-LSTM on CPU and CNN-LSTM on GPU respectively, n = 5), resulting in a four to five orders 

of magnitude faster runtime (depending on initialization) for the CNN-LSTM in case of large-scale 

network simulations. These results demonstrate that our machine learning approach yields far superior 

runtimes compared to traditional simulating environments. Furthermore, the introduced speed-up is 

comparable to the number of parallel CPU cores used for several network simulations19-21 introducing 

the possibility of running large or full-scale network simulations on what are now widely available 

computational resources. 

Parameter space optimization using ANNs 

Many important advancements have recently been made in the development of detailed, large-

scale network simulations, however, the bottleneck continues to be slow simulation runtimes. 

Consequently, network simulations can be carried out only a few times (but see103), hindering 
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imperative network construction steps, such as parameter space optimization. To establish whether this 

bottleneck could be remedied by the drastic runtime acceleration with ANNs, we explored the influence 

of several network parameters on circuit behavior in a model of Rett syndrome. This 

neurodevelopmental disorder is caused by loss-of-function mutations in the X-linked methyl-CpG 

binding protein (MeCP2)45. Rett syndrome occurs in ~1:10,000 births worldwide, resulting in 

intellectual disability, dysmorphisms, declining cortical and motor function, stereotypies, and frequent 

myoclonic seizures mostly in girls104-110. Although the underlying cellular and network mechanisms 

are largely unknown, changes in synaptic transmission111-113, morphological alterations in neurons107, 

114 and altered network connectivity115 have been reported in Rett.  

We aimed to investigate the contribution of  distinct alterations on cortical circuit activity in 

Rett using a recurrent L5 PC network98 composed entirely of CNN-LSTM-L5-PCs (Figure 5A). 

Simulations were run uninterrupted for 100 ms, when a brief (1 ms) perisomatic excitation was 

delivered to mimic thalamocortical input onto thick tufted pyramidal cells116-118. In control conditions, 

cells fired well-timed APs rapidly after the initial stimuli (Figure 5B). Following this immediate 

response, extended AP firing can occur as a consequence of the circuit recurrent connectivity. (Figure 

5B,119, 120). In network conditions corresponding to Rett syndrome (reduced recurrent connectivity 

between L5 PCs, reduced excitatory and inhibitory drive onto L5 PCs), we observed the emergence of 

circuit-wide oscillations (Figure 5C). Cortical networks endowed with frequent recurrent connections 

between excitatory principal cell are prone to exhibit oscillatory behavior, which is often the 

mechanistic basis of pathophysiological network activities121. Therefore, we quantified oscillatory 

activity122-124 and the immediate response to thalamocortical stimuli independently (Figure 5C). By 

systematically changing inhibitory quantal size125 and the ratio of recurrent L5 PC innervation115, we 

found that recurrent connectivity is the major determinant of network instability, as connectivity below 

9% never resulted in oscillatory activity (Supplementary Figure 3, 9.14 ± 2.21 vs 320.78 ± 237.66 APs, 

n = 1740 vs 760 for below 9% connectivity and connectivity between 9-15 % respectively, p = 2.2*10-

219, two sample t-test). Interestingly, we found no measurable relationship between the inhibitory 

quantal size and the network response to thalamocortical stimuli either (133.62 ± 29.32 vs 131.72 ± 

32.32 APs upon thalamocortical stimulus for inhibitory input scaling of 1 and 0.5, respectively, n = 50 
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each, p = 0.76, t(98) = 0.31, Two Sample t-Test), which suggests that these metrics are robust for 

perturbations of the inhibitory circuitry in baseline conditions. Therefore, our next aim was to 

investigate the effect of different levels of excitation on the network. Contrary to disruption of the 

inhibitory system, we found that both changes in the excitatory drive and recurrent connectivity had 

considerable influence over network instability (Figure 5D, excitatory drive: 17.85 ± 61.61 vs 388.92 

± 170.03 pre-stimulus APs for excitatory drive scaled by 0.75 and 1.25, respectively, n = 100 each,  p 

= 6.73*10-51, t(198) = -20.52, Two Sample t-Test; recurrent connectivity: 321.96 ± 200.42 vs 157.66 ± 

192.5 pre-stimulus APs for 10% and 5.2% recurrent connectivity, similar to reported values for adult 
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wild type and Mecp2-null mutant mice115, n = 50 each, p = 6.33*10-5, t(98) = -4.18, Two Sample t-

Test) and response to stimuli (excitatory drive: 147.58 ± 17.2 vs 119.23 ± 18.1 APs upon stimulus for 

excitatory drive scaled by 0.75 and 1.25, respectively, n = 100 each,  p = 2.3*10-22, t(198) = 11.03, 

Two Sample t-Test; recurrent connectivity: 134.76 ± 21.37 vs 112.74 ± 34.99 APs upon stimulus for 

10% and 5.2% recurrent connectivity, n = 50 each, p = 2.54*10-4, t(98) = 3.8, Two Sample t-Test). 

Next, we quantified the ability of the recurrent network to amplify thalamocortical inputs. In stable 

network conditions, recurrent connectivity and the level of excitation had similar effects on the strength 

(Figure 5E, excitatory drive: 436.74 ± 72.38 vs 160.64 ± 16.31, n = 98 and 14 post-stimulus APs for 

excitatory drive scaled by 0.75 and 1.25, respectively, p = 1.46*10-26, t(110) = 14.17, Two Sample t-

Test; recurrent connectivity: 441.14 ± 32.7 vs 392.73 ± 26.81, n = 30 and 14 pre-stimulus APs for 10% 

and 5.2% recurrent connectivity, respectively, p = 5.55*10-6, t(42) = -5.2, Two Sample t-Test) and 

duration of network responses (excitatory drive: 16.75 ± 4.95 vs 39.05 ± 5.52, n = 98 and 14 network 

response duration for excitatory drive scaled by 0.75 and 1.25, respectively, p = 1.51*10-29, t(110) = 

15.56, Two Sample t-Test; recurrent connectivity: 16.13 ± 2.23 vs 13.44 ± 1.82, n = 30 and 14 pre-

stimulus APs for 10% and 5.2% recurrent connectivity, respectively, p = 2.01*10-4, t(42) = -4.07, Two 

Sample t-Test-). These results suggest that lowered recurrent connectivity reduces network instability. 

Specifically, recurrent connectivity observed in young Mecp2-null mice (7.8 %115) yielded more stable 

microcircuits (54 % of networks were stable, n = 100), than wild-type conditions (34 % of networks 

were stable, n = 50). Recurrent connection probability of older animals (5.3%) further stabilized this 

network (64 % of networks were stable). Taken together, our model suggests that reduced recurrent 

connectivity between L5 PCs is not causal to seizure generation and abnormal network activity110, 122, 

which are crucial symptoms of Rett syndrome at young age, instead it actively suppresses structured 

pyramidal cell activation. 

Figure 5. Efficient parameter-space mapping with CNN-LSTMs reveals a joint effect of reccurrent connectivity and E/I balance 
on network stability and efficacy in Rett syndrome. A. 150 CNN-LSTM models of L5 PCs were simulated in a recurrent 
microcircuit . B. The experimental setup consisted of a stable baseline condition for 100 ms, a thalamocortical input at t = 100 
ms, and network recponse, monitored for 150 ms. Example trace from the first simulated CNN-LSTM L5 PC on top, raster plot 
of 150 L5 PCs in the middle, number of firing cells with 5 ms binning for the same raster plot in the bottom. Time is alligned to 
the stimulus onset (t = 0, black arrowhead). C. Four parameters were quantified; network instability (number of cells firing 
before the stimulus), immediate response (number of cells firing within 10 ms of the stimulus onset), reponse duration (SD of 
the spikes following the stimulus) and response amplification (number of cells firing after stimulus onset). The example 
simulation depicts highly unstable network conditions. D. Netwrok instability (left) and immediate response (right) as a function 
of altered L5 PC connectivity and excitatory drive. *B and *C indicated network parameters used for generating panel B and 
panel C, respectively. E. Response amplification (left) and reponse duration (right) as a function of L5 PC recurrent connectivity 
and excitatory drive. Only stable network conditions were quantified as instability contaminates these measurements. F. 
Simulation runtime for single simulation (left, network of 150 cells simulated for 250 ms) and parameter space mapping (right, 
150 cells simulated for 250 ms, 2500 times, for generating panel D and F).    
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 Finally, we compared the run time of the simulated layer 5 microcircuit of NEURON and CNN-

LSTM models. We found that for a single simulation, CNN-LSTM models were more than 9300-times 

faster compared to NEURON models (Figure 5 f, 21.153 ± 0.26 s vs 54.69 h for CNN-LSTM and 

NEURON models respectively). This unparalleled acceleration for multicompartmental neuronal 

information processing demonstrates that parameter space optimization is not only attainable by CNN-

LSTM models on commercially available computational resources, but it is almost 4-times faster than 

completing a single NEURON simulation.  

 

DISCUSSION 

 

In this study, we present an ANN architecture (CNN-LSTM) capable of accurately capturing 

neuronal membrane dynamics. Most of the investigated ANN architectures predicted subthreshold 

voltage fluctuations of point-neurons, however only the CNN-LSTM was able to generate action 

potentials. This model was able to generalize well to novel input and could also predict various 

other features of neuronal cells, such as voltage-dependent ionic current dynamics. Furthermore, 

the CNN-LSTM accounted for the majority of the variance of subthreshold voltage fluctuations of 

biophysically realistic L5 PC models with excitatory and inhibitory synapses distributed along the 

entirety of the dendritic tree. The timing of the predicted action potentials closely matched the 

ground truth data. Importantly, we found that although single cell simulation runtimes are 

comparable, the CNN-LSTM have superior scaling for large network simulations. Specifically, in 

case of mid-sized biophysically detailed networks (50 cells), ANNs were more than three orders 

Supplementary Figure 3. Microcircuit stability and efficacy is robust to changes in inhibitory drive. Network parameters were 
quantified as shown in Figure 5 panel C. For reponse amplification and response duration only stable network conditions are 
shown (right). 
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of magnitude faster, while for large-scale networks (5000 cells) ANNs are predicted to be five 

orders of magnitude faster than traditional modeling systems. These accelerated simulation 

runtimes allowed us to easily investigate a L5 PC network in distinct conditions, for example, to 

uncover network effects of altered connectivity and synaptic signaling observed in Rett syndrome. 

In our Rett cortical circuit model, recurrent connectivity and excitatory drive jointly shape network 

stability and responses to sensory stimuli, showing the power of this approach in generating 

testable hypotheses for further empirical work. Together, the described model architecture 

provides a suitable alternative to traditional modeling environments with superior simulation speed 

for biophysically detailed cellular network simulations. 

 

ANNs can accurately predict the full range of neuronal membrane potential dynamics 

As our familiarity with neuronal circuits grows, so does the complexity of models tasked with 

describing their activity. Consequently, supercomputers are a regular occurrence in research 

articles which describe large-scale network dynamics built upon morphologically and 

biophysically detailed neuronal models19-21. Here we developed an alternative to these traditional 

models, which can accurately represent the full dynamic range of neuronal membrane voltages in 

multicompartmental cells, but with substantially accelerated simulation runtimes.   

 ANNs are ideal substitutes to traditional model systems for several reasons. First, ANNs 

do not require hard-coding of the governing rules for neuronal signal processing. When an ANN 

is created, it serves as a blank canvas which can derive the main principles of input-output 

processing and neglect otherwise unimpactful processes126-128. The degree of simplification 

depends only on the ANN itself, not the developer, thereby reducing human-errors. However, 

architecture construction and training dataset availability represent limiting steps in ANN 

development54. Fortunately, the latter issue is void as virtually infinite neuronal activity training 

datasets are now available for deep learning. On the other hand, as we have demonstrated, the 

former concern can significantly impede ANN construction. Although we have shown that 

subthreshold signal processing can be accurately depicted by markedly divergent ANN 

architectures, we found only one that was suitable for both subthreshold active membrane potential 

prediction. This does not mean that the presented architecture is the only possible ANN model for 

neural simulations, as the machine learning is a rapidly progressing field that frequently generates 

highly divergent ANN constructs129. The importance of the network architecture is further 
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emphasized by our findings demonstrating that ANNs with comparable or even greater numbers 

of freely adjustable parameters were unable to handle suprathreshold information.  

The prevailing CNN-LSTM architecture was proven to be suitable for depicting membrane 

potential and ionic current dynamics of both simplified and biophysically detailed neuronal models 

and generalized well for previously unobserved simulation conditions. These results therefore 

prove that ANNs are ideal substitutes for traditional model systems for representing various 

features of neuronal information processing in a significantly accelerated simulations. Future 

architecture alterations should focus on continued improvement of action potential timing and 

prediction.  

 

ANN simulations drastically reduce the run time for large-scale network simulations 

Accelerated simulation runtimes are particularly advantageous for large-scale biological network 

simulations, which have seen an unprecedented surge in recent years. These network simulations 

not only provide support for experimentally gathered information, but also as testing benchmarks 

in the future for several network related queries such as pharmaceutical target testing and for 

systemic interrogation of cellular level abnormalities in pathophysiological conditions130-136. 

However, widespread adaptation of large-scale network simulations is hindered by the 

computational demand of these models that can only be satisfied by the employment of 

supercomputer clusters19-21. Because these resources are expensive, they do not constitute a 

justifiable option for general practice. Importantly, we have shown that ANNs can not only provide 

a suitable alternative to traditional modeling systems, but that their simulation runtimes are 

superior to them as well, due to the structure of the machine learning platform, in this case 

Tensorflow.  

Traditional model systems linearly increase the number of equations to be solved for 

parallelly simulated cells, while ANNs can handle cells belonging to the same cell type on the 

same ANN graph137. In our network models (150 cells; Figure 5), NEURON simulations yield 

150-times higher number of linear equations every time step, while ANNs used the same graph for 

all simulated cells. This property of ANNs in particular suits biological networks consisting of 

many cells of the same type, such as the ones being developed in recent years. For example, the 

Allen Institute recently published a computational model of the mouse V1 cortical area21, 

consisting of 17 different cell types (with the number of cells corresponding to these cell types 
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range from hundreds to more than ten thousands), which means that a complete cortical area can 

be simulated using only 17 ANNs.  We have demonstrated that even for small networks consisting 

of only 150 cells of the same type, ANNs are more than four orders of magnitude faster compared 

to model environments used in the aforementioned V1 simulations. As large-scale network 

simulations are typically run using several thousand CPU cores in parallel, the provided run time 

acceleration suggests that network simulations relying on ANNs could negate the need for 

supercomputers. Instead, these models can be run on commercially available computational 

resources such as personal computers with reasonable timeframes.  

Another advantage of our approach is the utilization of GPU processing, which provides 

substantially larger number of processing cores138, 139. The runtime difference that can be attributed 

to the employed computational resource can be seen by comparing CNN-LSTM simulations on 

CPU and GPU (Figure 4 b, c), which yields below an order of magnitude faster simulations on 

GPU in the case of moderate size networks (50 cells) and approximately two orders of magnitude 

difference for large networks. However, our results demonstrated that cortical pyramidal cell 

networks simulations are at least four orders of magnitude faster than traditional modeling 

environments, which confirms that the disparity in the number of cores can only partially account 

for the observed runtime acceleration. Furthermore, the NEURON simulation environment does 

not benefit as much from GPU processing as ANN simulations102, 140. These results confirm that 

the drastic runtime acceleration is the direct consequence of the parallelized graph-based ANN 

approach. 

 

ANNs can efficiently predict changes in network function in complex brain disorders 

To demonstrate the superiority of ANNs in a biologically relevant network simulation, we mapped 

the effects of variable network parameters observed in Rett syndrome. Rett syndrome is a 

neurodevelopmental disorder leading to a loss of cognitive and motor functions, impaired social 

interactions, and seizures in young females due to loss of function mutations in the X-linked 

MeCP2 gene45). Like many brain diseases, these behavioral alterations are likely due to changes 

in several different synaptic and circuit parameters. MeCP2-deficient mice exhibit multiple 

changes in synaptic communication, affecting both excitatory and inhibitory neurotransmission 

and circuit-level connectivity as well. Excitatory transmission is bidirectionally modulated by 

MeCP2 knock-out141, 142 and overexpression143, and long term synaptic plasticity is also impaired 
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in MeCP2-deficient mice144, 145. Inhibitory signaling is also altered in several different brain 

areas111, 112. Importantly, synaptic transmission is not only affected at the level of quantal 

parameters, but at the number of synaptic connections, because MeCP2 directly regulates the 

number of glutamatergic synapses142. This regulation amounts to a 39% reduction of putative 

excitatory synapses in the hippocampus142, and a 50% reduction in recurrent excitatory 

connections between layer 5 pyramidal cells115. Here we investigated how these diverse underlying 

mechanisms contribute to overall circuit pathology using our ANN network model approach.  

We found that the ability of the network to respond to external stimuli is affected by both 

alterations in synaptic excitation and changes in the recurrent connectivity of layer 5 pyramidal 

cells. Our results suggest that disruption of inhibitory transmission is not necessary to elicit 

network instability in Rett, as changes in synaptic excitation and recurrent connectivity alone were 

sufficient in destabilizing the network. These results are supported by previous findings showing 

that both constitutive146 and excitatory cell targeted147 MeCP2 mutation leads to network seizure 

generation, as opposed to inhibitory cell targeted MeCP2 mutation, which causes frequent 

hyperexcitability discharges but never seizures125. Furthermore, our results suggest that excitatory 

synaptic alterations in Rett affect both general network responses and network stability, which 

may serve as substrates to cognitive dysfunction and seizures, respectively. Taken together, these 

results revel how cellular-synaptic mechanisms may relate to symptoms at the behavioral level. 

Importantly, investigation of the multidimensional parameter space was made possible by the 

significantly reduced simulation times of our ANN, as identical simulations with traditional 

modelling system are proposed to be four orders of magnitude slower. 

 

Future directions 

In this study, we present an ANN architecture suitable for investigation of membrane 

dynamics in neural cells in a drastically accelerated time frame. The proposed modeling solution 

has the promise to not only expedite large scale network simulations, but to achieve 

hyperparameterspace optimization in these networks as well, which was previously unattainable.  

Importantly, optimization of the Python code was kept to the minimum because our aim was to 

demonstrate the advantages of ANN over traditional simulation environments. Therefore, the 

reported simulation runtimes can be considered moderately overestimated. As a considerable 

portion of numerical calculations is spent on solving equations related to synaptic plasticity and 
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establishing connections, it would greatly benefit the simulation timeframe if this part of the 

Python code would be optimized. This can be done in at least two separate, but non-exclusive 

ways. First, numerical operations of Python can be optimized by employing language extensions 

(such as Cython148 or Numba149), which allows code compiling to faster languages. Second, we 

deliberately did not take advantage of specific parallelization options offered by Python. Currently, 

commercially available processors can offer 6 to 8 cores, which with optimum thread-count can 

run 12-15 processes in parallel. Interestingly, this number closely resembles the number of cell 

types typically represented in circuit models. Therefore, entire circuit models with could be 

efficiently parallelized using different neuron types with distinct biophysical properties in the near 

future. 

 In contrast to traditional modeling systems, the bottleneck for network simulations with 

multiple neuron types will not be the simulation runtime itself, but the generation of accurate ANN 

descriptions for each distinct neuron. This may be expedited by transfer learning150, 151. Transfer 

learning uses previously acquired knowledge of trained neural networks to solve new, but similar 

problems more quickly. In other words, if an ANN can learn basic signal processing mechanisms 

on neural cells, it can be retrained to represent neural dynamics of a morphologically similar 

neuron. For example, interneurons with similar branching or excitatory cells with similar 

topologies can be expeditiously cross-trained. 

In conclusion, we described a machine learning framework for simulating membrane 

potential dynamics of complex neural cells in a substantially accelerated timeframe. Our ANN 

approach allows for efficient large-scale network simulations without compromising biologically 

relevant cellular features, such as multicompartmental information processing. We propose that 

ANN-based network simulations can eliminate the need for expensive supercomputational 

resources and make large-scale network simulations more approachable for a wider audience.  

 

 

METHODS 

 

Single-compartmental NEURON simulation 

Passive and active membrane responses to synaptic inputs were simulated in NEURON (63, version 7.7, 

available at http://www.neuron.yale.edu/neuron/). Morphology (single compartment with length and 

diameter of 25 µm) and passive cellular parameters (Rm: 1 kΩ/cm2, Cm: 1 µF/cm2, Ri: 35.4 Ω/cm) were the 
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same for both cases and resting membrane potential was set to -70 mV. Additionally, the built-in mixed 

sodium, potassium and leak channel (152, based on the original Hodgkin-Huxley descriptions) was included 

in the active model (gNa: 0.12 pS/µm2, gK: 0.036 pS/µm2, gleak: 0.3 nS/µm2). Reversal potentials were set to 

50 mV for sodium, -77 mV for potassium and -54.3 mV for leak conductance. Simulations were run with 

a custom steady state initialization procedure153 for 2 seconds, after which the temporal integration step size 

was set to 25 µs.  

In order to simulate membrane responses to excitatory and inhibitory inputs, the built-in 

AlphaSynapse class of NEURON was used (excitatory synapse: τ: 2 ms, gpas: 2.5 nS, Erev: 0 mV, inhibitory 

synapse: τ: 1 ms, gpas: 8 nS, Erev: -90 mV). The number of synapses was determined by a pseudo-random 

uniform number generator (ratio of excitatory to inhibitory synapses: 8:3). Timing of individual synapses 

was also randomly picked from a uniform distribution. During the 10-second-long simulations the 

membrane potential, INa and IK currents were recorded along with the input timings and weights and were 

subsequently saved to text files. Simulations were carried out in three different conditions. First, resting 

membrane potential was recorded without synaptic activity. Second, passive membrane potential was 

recorded. Third, active membrane potential responses were recorded with fixed synaptic weights. 

 

Multicompartmental NEURON simulation 

Active multicompartmental simulations were carried out using an in vivo-labeled and fully reconstructed 

thick tufted cortical L5 PC43. The biophysical properties were unchanged and a class representation was 

created for network simulations. Excitatory and inhibitory synapses were handled similarly to single-

compartmental simulations. 100 excitatory (τ: 1 ms, gpas: 3.6 nS, Erev: 0 mV) and 30 inhibitory synapses (τ: 

1 ms, gpas: 3 nS, Erev: -90 mV) were placed on the apical, oblique or tuft dendrites, 50 excitatory and 20 

inhibitory synapses were placed on basal dendrites. The placement of the synapses was governed by two 

uniform pseudo-random number generators, which selected dendritic segments weighed by their respective 

lengths and the location along the segment (ratio: 2:1:1:1, for apical excitatory, apical inhibitory, basal 

excitatory and basal inhibitory synapses). Simulations were carried out with varied synaptic weights and a 

wide range of synapse numbers. 

 

ANN benchmarking 

To validate the overall suitability of different ANN architectures tested in this paper for multivariate time 

series forecasting, we used a weather time series dataset recorded by the Max Planck Institute for 

Biogeochemistry. The dataset contains 14 different features, including humidity, temperature and 

atmospheric pressure collected every 10 minutes. The dataset was prepared by François Chollet for his book 

Deep Learning with Python (dataset preparation steps can be found on the Tensorflow website: 
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https://www.tensorflow.org/tutorials/structured_data/time_series). All ANN architectures were 

implemented using the Keras deep-learning API (https://keras.io/) of the Tensorflow open-source library 

(version 2.3,154, https://www.tensorflow.org/), with Python 3.7. 

 The first architecture we implemented was a simple linear model consisting of three layers without 

activation functions; a Flatten layer, a Dense (fully connected) layer with 64 units and a Dense layer with 

3 units. The second architecture was a linear model with added nonlinear processing. The model contained 

three layers identical to the linear model, but the second layer had a sigmoid activation function. The third 

model was a deep neural net with mixed linear and nonlinear layers. Similar to the first two models, this 

architecture had a Flatten layer and a Dense layer with 64 units as the first two layers, followed by nine 

Dense layers (units: 128, 256, 512, 1024, 1024, 512, 256, 128, 64, for the 9 Dense layers) with hyperbolic 

tangent (tanh) activation function and Dropout layers with 0.15 dropout rate. The last layer was the same 

Dense layer with 3 units as in case of the linear and nonlinear models. The fourth model was a modified 

version of the WaveNet architecture introduced in 201662, implemented based on a previous publication42. 

The fifth and final architecture was a convolutional LSTM model59 which consists of three distinct 

functional layer segments. The lowest layers (close to the input layer) were three, one dimensional 

convolutional layers (Conv1D) with 128, 100 and 50 units, and causal padding for temporal data processing. 

The first and third layer had kernel size of one and the second had kernel size of 5. The first two layers had 

"rectified linear unit" (relu) activation functions, and the third layer had tanh activation, therefore the first 

two layers were initialized by He-uniform variance scaling initializers87, while the third layer was initialized 

by Glorot-uniform initialization (also known as Xavier uniform initialization)155. After flattening and 

repeating the output of this functional unit, a single Long-Short Term Memory layer (LSTM60) handled the 

arriving input, providing recurrent information processing. This layer had 128 units, tanh activation 

function, Glorot-uniform initialization and was tasked to return sequences instead of the last output. The 

final functional unit was composed of four Dense layers with 100 units, scaled exponential linear unit (selu) 

activations and accordingly, Lecun-uniform initializations156. The dropout rate between Dense layers was 

set to 0.15.  

 All benchmarked architectures were compiled and fitted with the same protocol. During compiling, 

the loss function was set to calculate mean squared error and the Adam algorithm157 was chosen as the 

optimizer. The maximum number of epochs was set to 20, however an early stopping protocol was defined 

to have a patience of 10, which was reached in all cases. 

 

Single compartmental simulation representation with ANNs 

As neural nets favor processed data scaled between -1 and 1 or 0 and 1, we normalized the recorded 

membrane potentials and ionic currents. Due to the 1 Hz recording frequency, AP amplitudes were variable 
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beyond physiologically plausible ranges, therefore peak amplitudes were standardized. The trainable time 

series data was consisting of 64 ms long input matrices with 3 or 5 columns (corresponding to membrane 

potential, excitatory input, inhibitory input and optionally INa and IK current recordings) and target 

sequences were vectors with 1 or 3 elements (membrane potential and optional ionic currents). Training, 

testing and validation datasets were created by splitting time series samples 80-10-10%.  

 Benchmarking the five different ANN architectures proved that these models can handle time series 

data predicting with similar accuracy, however, in order to obtain the best results, several optimization steps 

of the hyperparameter space were undertaken. Unless it is stated otherwise, layer and optimization 

parameters were unchanged compared to benchmarking procedures. First, linear models were created 

without a Flatten layer, instead of which a TimeDistributed wrapper was applied to the first Dense layer. 

The same changes were employed in case of the nonlinear model and the deep neural net. The fourth, 

convolutional model had 12 Conv1D layers with 128 filters, kernel size of 2, causal padding tanh activation 

function and dilatation rates constantly increasing by 2n. We found that the best optimization algorithm for 

passive and active membrane potential prediction is the Adam optimizer accelerated with Nesterov 

momentum158, with gradient clipping set to 1. Although mean absolute error and mean absolute percentage 

error was sufficient for passive membrane potential prediction, the active version warranted the usage of 

mean squared error in order to put emphasis on APs. We found out that mechanistic inference of the full 

dynamic range of simulated neurons was a hard task for ANNs, therefore we sequentially trained these 

models in a specific order. First, we taught the resting membrane potential by supplying voltage recordings 

with only a few or no synaptic inputs. This step was also useful to learn the isolated shapes of certain inputs. 

Second, we supplied highly active subthreshold membrane traces to the models and finally we inputted 

suprathreshold membrane potential recordings. During the subsequent training steps, previous learning 

phases were mixed into the new training dataset in order to avoid the catastrophic forgetting of gradient 

based neural networks159. 

 

CCN-LSTM for multicompartmental simulation representation 

Data preprocessing was done as described for single compartmental representations. Time series data for 

CNN-LSTM input was prepared as matrices having 201 rows for membrane potential and 200 synapse 

vectors, and 64 rows (64 ms long input). The CNN-LSTM architecture consisted of three Conv1d layers 

(512, 256 and 128 units), a Flatten layer, a RepeatVector, three LSTM layers (128 units each) and six Dense 

layers (128, 100, 100, 100, 100, 1 units). Activation functions and initializations were similar to the CNN-

LSTM described above, with the exception of the first Dense layer, which had relu activation function and 

He-uniform initialization. Additionally, Lasso regularization160 was applied to the first Conv1D layer. We 

found that the best optimizer for our purposes was a variant of the Adam optimizer based on the infinity 
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norm, called Adamax157. Due to the non-normal distribution of the predicted membrane potentials, an 

inherent bias was present in our results, which was scaled by either an additional bias term, or a nonlinear 

function transformation.  

 Network construction was based on a previous publication98. Briefly, 150 L5 PC were simulated 

in a network with varying unidirectional connectivity, and bidirectional connectivity proportional to the 

unidirectional connectivity (Pbidirectional = 0.5 * Punidirecional). Reciprocal connections were 1.5-times stronger 

than unidirectional connections. The delay between presynaptic AP at the soma and the onset of the 

postsynaptic response was 1 ms measured from the AP peak. Each connection consisted of five proximal 

contacts. Compared to the original publication, we modified the parameters of the Tsodyks-Markram 

model161 used to govern synaptic transmission and plasticity. Based on a recent publication103, we set U 

(fraction on synaptic resources used by a single spike) to 0.38, D (time constant for recovery from 

depression) to 365.6 and F (time constant for recovery from facilitation) to 25.71. The simulation was run 

for 250 or 300 ms, which consisted of a pre-stimuli period (to observe the occurrence of structured activity 

patterns) for 100 ms, and a post-stimuli period (to quantify network amplification). The stimulus itself 

consisted of a strong excitatory input (can be translated to 50 nS) delivered to a proximal dendritic segment, 

calibrated to elicit APs from all 150 cells in a 10 ms long time window. Scaling of inhibitory inputs was 

carried out by changing inhibitory quantal size of background inputs, while scaling of excitatory drive 

affected quantal size of recurrent synaptic connections as well. 

 

Computational resources 

We used several different commercially available and free-to-use computational resources to demonstrate 

the attainableness of large network simulations using neural networks. Single compartmental NEURON 

simulations were carried out on a CPU (Intel Core i7-5557U CPU @3.1 GHz). For multicompartmental 

NEURON simulations, we used the publicly available National Science Foundation funded High 

Performance Computing resource via the Neuroscience Gateway162. In contrast to NEURON models, ANN 

calculations are designed to run on GPUs rather than CPUs. Therefore, ANN models were run on the freely 

accessible Google Colaboratory GPUs (NVIDIA Tesla K80), Google Colaboratory tensor processing units 

(TPUs, designed for handling tensor calculations typically created by Tensorflow) and a single high-

performance GPU (GeForce GTX 1080 Ti). For speed comparison we run these models on Google 

Colaboratory CPUs (Intel Xeon, not specified, @2.2 GHz) and the previously mentioned CPU as well. 

During NEURON and ANN simulations parallelization was only employed for Neuroscience Gateway 

simulations and ANN fitting. 

 

Statistics 
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Averages of multiple measurements are presented as mean ± SD. Data were statistically analyzed by 

ANOVA test using Origin software and custom written Python scripts. Normality of the data was analyzed 

with Shapira-Wilks test. Explained variance was quantified as one minus the fitting error normalized by the 

variance of the signal58. For accuracy measurements APs were counted within 10 ms time window as true 

positive APs. Precision and recall were calculated based on the following equations: 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

where FP in the false positive rate and FN is the false negative rate. 

 

Data and software availability 

The code used for simulating single and multicompartmental NEURON models, ANN benchmarking, ANN 

representations and layer 5 microcircuit will be available upon publication. 
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