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Abstract 

 

Thermal profiling (TP) has emerged as a promising experimental methodology for elucidating 

the molecular targets of drugs and metabolites on a proteome-wide scale. Here, we present 

the Thermal Profiling Meltome Analysis Program (TP-MAP) software package for the analysis 

and ranking of 1D and 2D thermal profiling datasets. TP-MAP provides a user-friendly 

interface to quickly identify hit candidates and further explore targets of interest via 

intersection and crosslinking to public databases. 
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Introduction 

 

Assessing molecular perturbations in living cells caused by drug treatment, environmental 

changes, genetic mutations or alterations in metabolic flux in an unbiased and proteome-

wide manner constitutes a key challenge in chemical biology and systems pharmacology. 

Recently, thermal profiling (TP) has emerged as a novel approach for the unbiased 

interrogation of drug and metabolite effects in intact cells or cell lysate1–3. The underlying 

premise is built upon the notion that proteins tend to exhibit changes in thermal stability in 

ligand-bound versus unbound state. The cellular thermal shift assay (CETSA) was developed 

to elucidate drug-target interactions in living cells by heating compound treated and 

untreated cells and quantifying the change in aggregation or ‘melting’ behaviour between the 

two conditions for a given protein4. When applying multiple concentrations, isothermal dose 

response fingerprints (ITDRF) can be utilised to determine the dose-dependent response to a 

ligand and estimate binding affinities. TP combines the CETSA and ITDRF approaches with 

quantitative multiplexed mass spectrometry to enable the large-scale quantification of 

thousands of proteins, thereby significantly expanding the coverage of CETSA/ITDR from a 

single cognate target to the entire proteome in theory. Over the last couple of years, several 

studies have successfully utilised 1-dimensional (1D) TP (i.e. one fixed concentration of ligand 

versus temperature) and 2-dimensional (2D) TP (i.e. dose-response matrix with multiple 

concentrations and temperatures) for various purposes. TP was first applied for the 

identification of global target engagement of drugs1,3–7, and has since also been extended to 

areas such as investigating drug-induced re-wiring of protein interaction networks8–11, the 

identification of protein complex subunits12, and the characterisation of metabolic processes 

in humans13,14 and bacteria15,16. 

 

Bioinformatic workflows for analysing 1D TP commonly involve fitting sigmoid-like melting 

curves to treatment and vehicle replicates, and measuring the thermal shift observed 

between the two5,15; more recently, non-parametric methods have been reported17. For 2D 

TP, concentration-dependent dose-response curves are generally fitted for each 

temperature6,14, and recent studies have extended the use of non-parametric methods from 

1D thermal profiling to the analysis of 2D datasets17,18. 
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In order to further facilitate the analysis of TP datasets and adoption of the TP method in 

general, we developed the Thermal Profiling Meltome Analysis Program (TP-MAP) which 

features a user-friendly graphical user interface for analysing 1D and 2D TP datasets. TP-MAP 

offers functionality to import protein abundance data, calculates ratios and normalises the 

data, and provides the user with a summary table that can be inspected to identify proteins 

of interest, including ranking proteins by apparent stabilisation. For 1D datasets, ranking is 

based on thermal shift and curve fit quality, whereas for 2D datasets we present a new 

approach for ranking based on a hill-climbing algorithm. In addition, TP-MAP supports 

downstream analysis options including exporting proteins of interest to external databases 

for further exploration of e.g. protein-protein interaction networks and protein complexes. 

 

Results 

 

1D Thermal Profiling Analysis 

 

For 1D thermal profiling, TP-MAP fits a denaturation curve and determines the temperature 

at which 50% denaturation is observed (TM). In addition to TM, the 1D thermal profiling score 

considers the quality of the curve fit and reproducibility metrics. As the scoring may require 

adjusting for different datasets due to differences in data quality, experimental setup and 

target proteome, the score weighting can be adjusted interactively to prioritise TM shift or the 

quality of curve fit (see methods). The default weighting is set at 70% and can be shifted 

higher to prioritise potential targets with large TM shifts or lower for targets with small but 

reproducible TM shifts. 

 

To evaluate TP-MAP’s ability to correctly identify hits from 1D TP experiments, we selected 

previously published datasets for intact K562 cells treated with either two different 

concentrations of the clinical kinase inhibitor dasatinib (0.5 µM and 5 µM) versus DMSO 

surveyed over 10 temperature points3. As a reference for true hits we extracted and mapped 

known dasatinib drug targets19. 
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First, we assessed the outcome of shifting the weight of the TP-MAP score on target 

identification. Using a 50% TM shift weighting, TP-MAP successfully identified five known 

dasatinib kinase targets in the 0.5 µM dataset19 (BTK, ABL2, YES1, MAPK14 and MAPKAPK2), 

only two of which had previously been reported from thermal profiling experiments. Similarly, 

in the 5 µM dasatinib dataset, five kinase targets were picked up (MAPK14, BTK, CSK, GAK and 

YES1) when the TP-MAP weighting was set to 70% (Supplementary Figure 1). Interestingly, 

BTK and YES1 were found to have a negative TM shift in both 0.5 µM and 5 µM datasets. The 

high affinity dasatinib target BTK20 ranked highly when the weighting was low to prioritise 

curve fit over TM, ranking first in the 5 μM dataset when the weighting was set between 10-

30% and second in the 0.5 μM dataset between 20-60%. Conversely, mitogen activated 

protein kinase MAPK14 (p38α) ranked first in the 5 µM dataset when setting the weight 

between 40-90% (Figure 1). Using the TP-MAP built-in functionality to explore PPI networks 

of identified targets via STRING21, indirect targets of dasatinib were revealed such as CRKL, 

INPPL119 and STAT5B22, which also ranked highly using TP-MAP (Supplementary Figure 2).  

 

 

Figure 1 Melting curves for BTK (a) and MAPK14 (a) in intact cells treated with dasatinib 5 µM. 

BTK had a small but reproducible negative TM shift and ranked first with a 1D weighting of 10-

30% whereas MAPK14 ranked first when the weighting was shifted to prioritise TM shift 

between 40-90%. 

 

We further analysed a 1D thermal profiling dataset for the HDAC inhibitor panobinostat5 using 

TP-MAP. Out of 9 proteins known to have a thermal shift within this dataset, including six 

histone deacetylases (HDAC1, -2, -6, -7, -8, and -10), STX4, TTC38 and ZFYVE28 were ranked 

in the top 0.6% with weighting adjusted to 90% (Table 1). 
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Rank Gene Score Mean FC P Value 

1 HDAC1 0.8333 2.9736 <4.57E-43 

2 FADS1 0.8333 1.8987 <4.57E-43 

3 HDAC2 0.8167 2.9605 <4.57E-43 

4 PAH 0.6333 1.1646 <4.57E-43 

5 TTC38 0.4833 1.5346 <4.57E-43 

43 FADS2 0.2833 1.3024 5.84E-12 

107 Histone H4 0.2167 2.1169 1.40E-07 

109 HDAC6 0.2167 1.2041 1.40E-07 

     

Table 1 Ranking of targets and off-targets as well as indirectly affected proteins of 

panobinostat in intact HepG2 cells. Five of the direct targets appear as the top 5 stabilised 

proteins when ranked using the TP-MAP score (combined) and mechanistically-related 

indirect targets, e.g. histone H4, appear ranked in the top 2% of 8280 proteins. 

 

We next investigated the ability of TP-MAP to classify proteins on a quantitative scale by 

investigating protein stabilisation among ATP-binding proteins using a dataset treated with 

Na-ATP14. We used a 1D TP dataset using Jurkat crude lysate treated with 2 mM Na-ATP 

heated between 37-67 ˚C in two replicates. We downloaded proteins from UniProt that were 

annotated with the gene-ontology term ATP-binding (GO:0005524), which resulted in 475 

proteins being annotated as ATP-binding (12.69%). We evaluated the predictive power of TP-

MAP in identifying ATP-binding proteins from the TP-MAP 1D score by means of varying 

percentage weights using receiver operator characteristic (ROC) curves. An optimal area-

under-curve (AUC) was obtained using a weight of 70% with an AUC of 0.739 compared to an 

AUC of 0.722 when the weighting was set to 100% (Figure 2). A higher AUC of 0.771 was 

obtained using TM shift when ranked from positive (stabilising) to negative (destabilising). This 

may be a consequence of the TP-MAP score using the absolute TM shift, thereby not favouring 

stabilised proteins a priori. Indeed, if we limit our analysis to proteins with a positive mean 

TM shift between replicates, AUC is increased using the 1D TP-MAP score at a weight of 85% 

to 0.799, which is an improvement compared to 0.789 using mean TM shift alone. 

 

Taken together, these data suggest that a default weighting of 70% appears a reasonable 

starting point but should be adjusted as needed depending on the dataset. 
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Figure 2 AUC curve classifying ATP-binding proteins in 1D thermal profiling datasets using the 

TP-MAP 1D score for weighting between 0 and 100%, where 0% only considers curve fit 

quality and 100% is equivalent to TM shift. The optimal AUC for the ATP dataset is at 70%. 

 

 

2D Thermal Profiling Analysis 

 

A challenge with 1D experiments is that often a multitude of proteins exhibit apparent 

substantial shifts which makes prioritisation of potential hits for follow-up experiments 

difficult even when using optimised scoring metrics. In order to address this issue and to 

facilitate the identification of true and relevant targets, 2D thermal profiling adds 

concentration as an additional dimension which allows for dose-dependent prioritisation of 

hits. However, most current methods for analysing 2D TP data do not provide an automated 

ranking for 2D datasets. TP-MAP incorporates a novel metric for scoring 2D TP datasets based 

on the assumption that concentration-dependent stabilisation or destabilisation will occur at 

an optimum temperature and concentration combination, and that adjacent temperature 

and concentration combinations will ascend or descend towards an optimum point (see 

methods). A percentile threshold can be set to determine the maximum and minimum fold 

change required for a peak or trough to be considered stabilising or destabilising, respectively. 

Analogously to the 1D datasets, we benchmarked a number of 2D TP datasets and found a 

percentile threshold of 80% to be a good default setting. 
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First, we used TP-MAP to analyse a previously published 2D TP dataset investigating the HDAC 

inhibitor panobinostat6 in HepG2 intact cells and cell lysate. Processing of the data with TP-

MAP revealed 899 out of 8280 proteins that exhibited drug-induced stabilisation in intact cells 

(p-value < 0.05), and 517 out of 6971 proteins in cell lysate. Notably, the TP-MAP scoring 

method ranked the primary cognate targets HDAC1 and HDAC2 highly, with HDAC1 coming 

out first in both intact cells (score 0.83, p-value  < 5.57 × 10-43) and cell lysate (score 0.83, p-

value < 2.22 × 10-16), and HDAC2 ranked third in intact cells (score 0.82, p-value < 5.57 × 10-

43) and second in cell lysate (score 0.67, p-value < 2.22 × 10-16). Other off-targets and 

mechanistically related indirect targets also ranked highly using TP-MAP (Tables 1 and 2). 

 

Rank Gene Score Mean FC P Value 

1 HDAC1 0.8333 1.7303 <2.22E-16 

2 HDAC2 0.6667 1.5678 <2.22E-16 

3 TTC38 0.5833 1.3717 <2.22E-16 

4 HDAC10 0.4500 1.1170 <2.22E-16 

5 PAH 0.3500 1.1119 <2.22E-16 

7 HDAC6 0.2833 1.1274 3.11E-12 

700 FADS2 0.0500 1.0069 0.2199 

973 Histone H4 0.0000 1.0347 0.9963 

     

Table 2 Ranking of targets and off-targets as well as indirectly affected proteins of 

panobinostat in HepG2 cell lysate. All six identified direct targets appear among the top 7 

results when ranked using TP-MAP score (combined). As would be expected in cell lysate, 

indirect targets FADS2 and histone H4 do not change significantly in thermal stability. 

 

We further analysed a second 2D thermal profiling dataset interrogating ATP dose-dependent 

protein stabilisation in Jurkat crude lysate14. To assess the ability of TP-MAP to correctly 

identify direct targets of the metabolite ATP, we downloaded 4004 human proteins 

annotated with the gene ontology term “ATP Binding” (GO:0005524) from UniProt. Of these, 

737 mapped to 6857 proteins (10.75%) proteins and annotated them as ATP-binding while 

the remainder were annotated as non-ATP-binding. Figure 3 depicts receiver operator 

characteristic (ROC) curves for detecting ATP-binding proteins using the TP-MAP stabilisation 

score at different threshold percentiles (ranging from 10% - 90%). The highest area-under-
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the-curve value was observed at 70% representing an upper cut-off of 1.39 and a lower cut-

off of 0.73, with an AUC of 0.757. The mean fold-change may also be a viable predictor with 

an AUC of 0.746. As the study by Sridharan et al. provided data for additional replicates, we 

analysed all three available datasets with TP-MAP which gave comparable AUC values for 

replicates 2 and 3 (with an AUC of 0.758 and 0.737, respectively). There was a moderate 

correlation between mean fold-change and TP-MAP combined score (Spearman’s rank 

correlation, rho = 0.647, p < 0.0001), suggesting the two methods may be utilised in a 

complementary manner. At a p-value of < 0.0001, TP-MAP identifies 511 proteins as 

stabilised, of which 260 were annotated as stabilised at the 80% percentile threshold (50.88%) 

and 235 at the 70% percentile threshold (45.99%). In contrast, Sridharan et al. report 

identifying 753 proteins as stabilised at 1% FDR, of which 315 were annotated as ATP binding 

(41.83%). Among the top 753 proteins ranked using TP-MAP, we find 349 (46.35%) are 

annotated as ATP-binding, similar to those reported previously (Fisher’s exact test, p-value = 

0.09). 

 

 

Figure 3 ROC curves classifying ATP-binding proteins using the TP-MAP 2D stabilisation score 

in 2D thermal profiling datasets using (a) varying TP-MAP thresholds and (b) in three 

replicates as well as the mean score between three replicates. 

 

To investigate the capabilities of TP-MAP in exploring protein complex melting behaviour, we 

searched for proteasome subunits and identified PSMC4 as the most ATP-stabilised subunit. 

We then used the built-in CORUM functionality to identify known complexes that PSMC4 is a 

member of. The PA700 regulatory complex of the 26S proteasome included 19 additional 
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proteins present within the dataset (Supplementary Figure 2). We applied the mean 

difference functionality in TP-MAP to identify proteins which exhibit similar aggregation 

behaviour and therefore might interact with PSMC4. The mean difference in melting 

behaviour between PA700 complex members and PSMC4 was 0.134 compared to 0.507 

between PSMC4 and all other proteins (t-test, t = -13.9, df = 19.6, p-value < 0.0001). These 

results demonstrate that TP-MAP can aid in investigating protein complex co-aggregation12 

and protein network mapping using built-in functionality. 

 

Discussion 

 

Proteomics-based mechanism-of-action approaches are powerful means to elucidate the 

molecular interactions between drugs or metabolites in complex cellular systems. Many such 

studies have enabled the development of new therapeutics23–25 and these methods have now 

become an essential part of drug discovery programmes. Thermal profiling represents an 

attractive addition to the chemical biology toolbox as it does not require any modifications to 

the drug or compound of interest and works in intact living cells. However, in comparison to 

methods that are based on affinity enrichment before MS analysis, thermal profiling 

generates proteome-scale data for all conditions resulting in a significant amount of data. In 

the past, development of freely available and intuitive bioinformatics tools has supported the 

fast adaptation of new technologies in the systems biology community26,27. In order to 

facilitate data analysis, enable wet-lab scientists and therefore support further adoption of 

this technique, we developed TP-MAP as a data analysis tool for analysing thermal profiling 

datasets that provides an intuitive graphical user interface to conveniently explore large 

thermal profiling datasets and investigate proteins of interest via direct links to UniProt, 

STRING, and CORUM. 

 

The main display is organised to allow a user to browse through a ranked list of hits and 

investigate the 1D melting curves or 2D matrices. In addition to the score, TP-MAP includes 

several other metrics classifying thermal shift data. For instance, 1D datasets include TM and 

TM shift for each replicate, RMSE for each replicate, and binary variables indicating whether a 

shift occurs in the same direction in both replicates and whether a shift between vehicle and 
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treatment is greater than between the two vehicles. In 2D datasets, the mean fold-change is 

reported, as well as whether an effect is likely thermally induced or might be explained 

through changes in solubility or expression14 (i.e. a dose-dependent change is observed at the 

lowest temperature where a thermally induced shift would not be expected). This allows a 

user to identify hits and select proteins of interest for integrated downstream analysis, 

including investigating protein-protein interactions, gene-ontology functional enrichment, 

and identifying protein complex members (Supplementary Figure 2). Proteins of interest can 

be selected and exported as list in Excel file format whereas and curves can be stored as a 

PDF. 

 

For 1D thermal profiling TP-MAP employs a scoring metric that incorporates curve fit quality 

metrics, including RMSE and reproducibility between replicates which compares well with 

recently proposed non-parametric methods that also incorporate curve-fit quality metrics17. 

This non-parametric method reportedly yielded 16 hits in a 1D TP dataset for panobinostat5 

at a p-value threshold of 0.01, of which eight (HDAC1, -2, -6, -8, -10, H2AFV/H2AFZ, TTC38, 

ZFYVW28) are known panobinostat interactors. For comparison, the TP-MAP scoring 

identified the same eight proteins among the top 10 hits when a weighting was adjusted to 

90%, and two additional known protein interactors (STX4 and HDAC7) were identified among 

the top 36 hits. The weighting option in TP-MAP is used to prioritise TM shift over curve-fit 

quality. Depending on the target, we found that a weighting as low as 10-30% was optimal 

for identifying BTK as a dasatinib target, with a small but reproducible TM shift (Figure 1), 

whereas optimal results for panobinostat were obtained at 90%, since targets exhibited large 

TM shifts. Based on our global analysis of multiple 1D TP datasets, the default weight is set to 

70%, however, TP-MAP includes functionality to change this setting interactively to explore 

hits using different weightings. 

 

Importantly, the 1D TP-MAP score weights stabilised and destabilised proteins equally. 

Although the ATP dataset supports the notion that proteins become more stable when bound 

to a ligand, where a higher identification rate of ATP-binding proteins was obtained when 

only stabilised proteins were considered, our re-analysis of datasets identified known drug 

targets with negative shifts, such as BTK and YES1 for dasatinib, suggesting that negative shifts 
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should be considered or else real targets could be missed, as has been supported by recent 

publications28. Notably, TP-MAP also identified the known downstream kinase effector 

STAT5B as an indirect target of dasatinib. 

 

With TP-MAP we also introduce a new approach for ranking 2D thermal profiling datasets 

which does not rely on curve fitting. It has previously been noted that models that rely on 

fitting sigmoidal curves may not accurately represent the melting behaviour of all proteins in 

an organism, in particular proteins within specialised compartments, proteins within 

complexes, or proteins bound with a ligand17,18. TP-MAP allows a user to interactively change 

the cut-off at which a fold-change is considered stabilising or destabilising. This allows a user 

to limit scoring to proteins with the highest fold-changes. While at present TP-MAP does not 

have native support for multiple replicates in 2D TP datasets, we investigated whether 

predictive power could be improved by taking the average TP-MAP score across all three 

replicates in the 2D ATP dataset. We found the AUC of ROC curves to be higher when taking 

the average across three replicates, with replicates 1-3 having AUC values of 0.757, 0.758 and 

0.737, respectively, whereas the mean score between the three replicates had an AUC of 

0.802. We also considered an option to estimate the half-maximal effective concentration 

(EC50) from 2D thermal profiling datasets, although a reliable implementation has proved 

challenging as 2D TP datasets generally consist of few concentrations spanning several orders 

of magnitude. Further, we envisage the future integration of novel experimental methods 

based on thermal profiling such as proteome integral solubility alteration (PISA)29, into TP-

MAP. 

 

In summary, TP-MAP provides a GUI-based standalone application for analysing 1 and 2D 

thermal profiling datasets with added functionality to investigate targets of interest in the 

context of external databases without the need for deep a priori bioinformatics expertise. 

Therefore TP-MAP should facilitate further and broader adoption of thermal profiling-based 

approaches for target deconvolution and functional cellular mechanistic studies. 
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Methods 

 

TP-MAP software 

 

TP-MAP is a software application written in the Java programming language that has cross-

platform support for Microsoft Windows, Apple macOS, and Linux operating systems. The 

software can import protein quantification files extracted from 1D and 2D thermal profiling 

experiments, and offers a graphical user interface to quickly identify proteins of interest, and 

provides additional functionality for exploring and analysing the data to determine likely 

targets identified in thermal profiling experiments. The software can import protein 

abundance levels either from TP-MAP formatted tables or ProteomeDiscoverer™ (Thermo 

Fisher Scientific, Waltham MA, USA) output in combination with an additional configuration 

table in which temperature and concentration values are specified for respective TMT 

samples and channels. An optional normalisation step can be performed whereby 

concentration-dependent ratios for 2D datasets are normalised by dividing by the median 

ratio at each temperature and concentration position. 

 

Scoring 

 

1D 

 

TP-MAP supports thermal melting curve estimation for temperature dependent abundance 

ratios for vehicle and treatment, each consisting of two replicates. Up to four melting curves 

are fitted for vehicle and treatment replicates 1 and 2, and take the form of the following 

degradation curve equation5: 

 

𝑓(𝑇) = 𝑝𝑙𝑎𝑡𝑒𝑎𝑢 +  
1 − 𝑝𝑙𝑎𝑡𝑒𝑎𝑢

1 + 𝑒−(
𝑎
𝑇

 – 𝑏)
 

 

Where T refers to the temperature, and a, b, and plateau are constants. 
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For each protein, statistics about the curve fit are presented, including the melting point (TM) 

values for each vehicle and treatment condition (TM V1, TM V2, TM V3 and TM V4), thermal shift 

for each replicate (TM shift V1T1 and TM shift V2T2) as well as between vehicle conditions (TM 

shift V1V2), root mean squared error for each fit (RMSE V1, RMSE V2, RMSE T1, RMSE T2), mean 

RMSE, as well as Boolean values indicating that both replicates shift in the same direction, 

and that the mean TM shift between vehicle and treatment is greater than between vehicle 

replicates (Delta VT > Delta VV). Finally, a score is calculated from these attributes to provide 

a suggested ranking. 

 

Scoring of 1D melting curves is performed using a rank-based approach factoring in the Tm 

shifts of each replicate, RMSE of vehicle and treatment curve fits for each replicate, and mean 

difference between data points of each of the replicates, according to the following equation: 

 

Score1D = weight × ( RankTm ) + ( 1 – weight ) × ( RankRMSE + RankRep ) 

 

Where RankTm is a vector (TmVT1, TmVT2) containing the scaled rank between [0,1] of 

increasing thermal melting point shift between vehicle and treatment in the two replicates 

respectively, RankRMSE is a vector (RMSEV1, RMSEV2, RMSET1, RMSET2) containing the scaled 

rank between [0,1] in decreasing order of root mean squared error (RMSE) of vehicle 

replicates 1 and 2, and treatment replicates 1 and 2, respectively, and RankRep is a vector (RepV 

and RepT) containing the scaled rank between [0,1] of the mean difference between vehicle 

replicates and treatment replicates, respectively. A weight is used to shift the score to 

prioritise either Tm shift or curve fit quality metrics. By default the weight is set to 70% and 

can be changed interactively, and depending on the quality of the dataset being analysed, 

may be shifted to prioritise curve fit quality or Tm shift. The resulting score is then scaled to 

range from 0 to 10. 

 

2D 

 

A novel approach for scoring 2D heat maps is implemented, which is based on the assumption 

that concentration-dependent stabilisation or destabilisation will occur at an optimum 
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temperature and concentration combination, and that adjacent temperature and 

concentration combinations will climb towards the optimum point. To achieve this, hill ascent 

and descent algorithms are implemented to identify peaks and troughs in a heatmap, 

respectively. TP-MAP calculates Scorestabilisation and Scoredestabilisation ranging between 0 and 1, 

and Scorecombined = Scorestabilisat–on - Scoredestabilisation ranging from -1 to +1, where -1 indicates 

destabilisation and +1 indicates stabilisation. Supplementary Figure 3 depicts an example of 

how the scores are calculated. By default, a threshold beyond which a fold-change is 

considered stabilising or destabilising is set to the 80th and 20th percentile of the whole 

dataset and can be altered interactively by sliding the lower and upper threshold percentile 

sliders for destabilisation and stabilisation, respectively. A bootstrap analysis can optionally 

be run, whereby data points are resampled randomly for 106 iterations to empirically 

estimate a P-value of the likelihood that Score2D is reached by chance. In addition, the mean 

fold-change of proteins can be used as an additional measure to investigate proteins that 

show high rates of stabilisation or destabilisation and is displayed alongside Score2D, and may 

be used as alongside the TP-MAP score as a complementary method for identifying highly 

stabilised or destabilised proteins. 

 

Export format 
 

TP-MAP allows a user to export selected proteins as Excel tables or as tab-separated text files. 

For 1D analysis, a PDF with melting curves can be exported. 

 

Downstream analysis of thermal profiling datasets 

TP-MAP incorporates several methods for analysing 1D and 2D thermal profiling datasets. The 

table can be navigated interactively and proteins that appear to be of interest can be selected 

by ticking the checkbox in the first column.  

 

The mean difference between a selected protein and all other proteins in the dataset can be 

calculated. The mean difference will be displayed in the “MD” column, which can be used to 

determine proteins that may share similar melting characteristics, such as protein co-

aggregation12. Proteins with similar melting profiles can be identified by calculating the mean 
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difference between a target protein of interest and the rest of the dataset. The mean 

difference is calculated from the difference in melting point ratio at each position in the heat 

map between two proteins and divided by the total number of positions.  

 

In addition, analysing selected proteins with several external databases is possible. TP-MAP 

presently includes functionality for: 

 

1. STRING21 network image: Load a protein-protein interaction network using the 

STRING database highlighting stabilised proteins as green and destabilised 

proteins as red (Supplementary Figure 2). 

2. STRING functional enrichment: Load functional enrichment for selected proteins 

using the STRING database. 

3. CORUM30: Identify protein complexes members of selected proteins using the 

comprehensive resource of mammalian protein complexes (CORUM) version 3.0, 

which includes 4274 mammalian protein complexes (Supplementary Figure 2). 

4. UniProt31: Load UniProt pages for selected proteins. 

 

Implementation 
 

The TP Meltome Analysis Program (TP-MAP) is implemented in Java 11, compiled using the 

Open Java Development Kit (OpenJDK) version 11.0.5 (https://adoptopenjdk.net). TP-MAP 

makes use of the following open source libraries: JavaFX version 11 (https://openjfx.io/), 

Apache Commons Math version 3.6.1 (https://commons.apache.org/proper/commons-

math/), Apache HttpComponents version 4.5.10 (https://hc.apache.org/), JFreeChart version 

1.6.0 and JFreeChartFX version 1.0.1 (http://www.jfree.org/jfreechart/), Apache PDFBox 

version 2.0.17 (https://pdfbox.apache.org/), and Apache POI version 4.1.0 

(https://poi.apache.org/). TP-MAP can be run on computer operating systems with support 

for the Java Runtime Environment (JRE) version 11, including Windows, Mac OS X, and Linux. 
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Availability of software 

 

TP-MAP is licensed under a GNU GPL version 3 license (https://www.gnu.org/licenses/gpl-

3.0.en.html). The source code and binary files are freely available for download at the 

following location: 

 

https://www.gitlab.com/ChemBioHub/tpmap 
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Supplementary Figure 1 Ranking of targets in the top 100 within three 1D thermal profiling 

datasets when shifting the weighting of TM shift between 0 and 100% at 10% intervals. Bars 

indicate the number of proteins identified for each drug within the top 100 hits, and box and 

whisker plots are used to show the distribution of rankings. Protein names are indicated at 

their respective rankings. 
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Supplementary Figure 2 Screenshots displaying some of the downstream functionality of TP-

MAP, including (a) identifying complex members of the proteasome in the ATP dataset and 

(b) a STRING network showing the top 75 hits for the dasatinib 1D data, showing a cluster of 

kinases and interacting proteins. 
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Supplementary Figure 3 Schematic of the TP-MAP scoring algorithm, on the left a 

hypothetical concentration dependent stabilisation matrix is displayed with concentrations 

C1 to C5 and temperatures T1 to T12, on the right the corresponding TP-MAP scoring algorithm 

is shown. Teal and red nodes indicate stabilised (>1) and destabilised (<1) nodes climbing 

towards a peak or trough, respectively, which are represented by a number showing the 

number of nodes tending towards the respective peak or trough. Peaks and troughs marked 

with an asterisk (*) show those that are above or below a threshold of 1.5 or 0.75, 

respectively. Of these, Scorestabilisation is calculated as the number of nodes tending towards 

the highest peak (22 at T6, C4) divided by the total number of nodes (60), 22/60 = 0.367, 

Scoredestabilisation is analogously calculated as 6/60 = 0.100, and Scorecombined is calculated as 

0.367-0.100 = 0.267. 
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