At the Intersection Between SARS-CoV-2, Macrophages and
 the Adaptive Immune Response: A Key Role for Antibody Dependent Pathogenesis But Not Enhancement of Infection in
 COVID-19

Jennifer K. DeMarco^{1,2*}, Wiliam E. Severson¹, Daniel R.
DeMarco⁴, Gregory Pogue⁵, Jon Gabbard¹, Kenneth E.
Palmer^{1,2,3}

9

¹Center for Predictive Medicine for Biodefense and Emerging 10 ²Department Infectious Diseases, of 11 Microbiology and 12 Immunology, ³James Graham Brown Cancer Center, University of Louisville, Louisville KY, USA, ⁴Eurofins Microbiology 13 Laboratories, Louisville KY, USA, ⁵Kentucky BioProcessing Inc., 14 15 Owensboro KY, USA

- 16 * Correspondence:
- 17 Jennifer K. DeMarco, MSc
- 18 jennifer.wolf.2@louisville.edu
- 1920 Abstract Word Count: 148
- 20 Abstract Word Count: 148
- 21 Text Word Count: 3495 22 _____

```
23 Abstract
```

```
24 Since entering the world stage in December of 2019,
```

- 25 SARS-CoV-2 has impacted every corner of the globe with over
- 26 1.48 million deaths and caused untold economic damage.
- 27 Infections in humans range from asymptomatic to severe disease
- 28 associated with dysregulation of the immune system leading to the

29	development of acute respiratory distress syndrome (ARDs).
30	The distinct shift in peripheral monocyte activation and
31	infiltration of these cells into the respiratory tract in ARDs patients
32	suggests severe COVID-19 may largely result from damage to the
33	respiratory epithelia by improperly activated macrophages. Here,
34	we present evidence that dysregulation of the immune response in
35	COVID-19 begins with activation of macrophages by non-
36	neutralizing antibodies and induction of ACE2 expression,
37	rendering these cells susceptible to killing by SARS-CoV-2. Death
38	of macrophages occurs independently of viral replication and leads
39	to the release of inflammatory mediators and modulation of the
40	susceptibility of downstream epithelial cells to SARS-CoV-2.
41	
42	Key Words: COVID-19, SARS-CoV-2, macrophage, antibody-
43	dependent enhancement
44 _	
45	Introduction
46	Following the appearance of COVID-19 in December 2019 in
47	Wuhan, China, SARS-CoV-2 has swept across the globe at a rate

48 not seen since the Spanish influenza of 1918 (1-3). A high rate of

49	transmission	combined	with a	large	percentag	ge of
----	--------------	----------	--------	-------	-----------	-------

50	asymptomatic/mild carriers has led to more than 62 million cases
51	and 1.48 million deaths, as well as a devastating economic toll
52	worldwide (1-3). Following its emergence, SARS-CoV-2 was
53	rapidly identified by Zhu et al (1) as a betacoronavirus closely
54	related to SARS-CoV and MERS-CoV. Like other members of this
55	family, SARS-CoV-2 has a large genome of approximately 30Kbp
56	surrounded by an envelope comprised of S (spike), N
57	(nucleocapsid), E (envelope), and M (membrane) proteins (3). Of
58	these, the spike protein, a type I trimeric glycoprotein, has received
59	the most attention as a target for both potential vaccine and
60	therapeutic development due to its involvement in host receptor
61	binding and viral uptake (3). The spike protein harbors two
62	primary regions: an S1 domain containing a receptor binding
63	region (RBD) able to bind to the human angiotensin II converting
64	enzyme receptor (ACE2) and an S2 domain containing a furin
65	cleavage site that facilitates fusion of the virus and host cell
66	membrane following receptor binding (3). Studies with SARS-
67	CoV and MERS-CoV have suggested that neutralization of the
68	receptor binding domain (RBD) may provide protection from
69	infection, making this region a key target for vaccine and

70 therapeutic development (3).

71	While the majority of patients with SARS-CoV-2 present with
72	mild to moderate respiratory symptoms, approximately 15%
73	develop severe disease with a high rate of mortality due to ARDs
74	(4). Although risk factors influencing expression of ACE2
75	(diabetes, high blood pressure, kidney and cardiovascular disease)
76	are now well documented, the factors that determine the outcome
77	of COVID-19 cases remain elusive (4-5). Furthermore, it is now
78	known that a subset of patients with mild to moderate cases will
79	also go on to develop long-term symptoms of COVID-19, though
80	whether this is the result of direct tissue damage by the virus or
81	ongoing inflammatory responses is not yet clear (4-6).
82	Recent clinical studies have characterized two distinct phases of
83	COVID-19 (4-6): (1) an early phase with relatively mild symptoms
84	
	during the first five days of infection with high levels of viral
85	during the first five days of infection with high levels of viral occurring in susceptible tissues and (2) a late phase in which
85 86	
	occurring in susceptible tissues and (2) a late phase in which
86	occurring in susceptible tissues and (2) a late phase in which severe symptoms including ARDs, hypercoagulability and multi-
86 87	occurring in susceptible tissues and (2) a late phase in which severe symptoms including ARDs, hypercoagulability and multi- organ failure emerge as a result of immune dysregulation and

91	antibody-antigen presenting cell (APC) interface may be in part
92	responsible for the majority of morbidity and mortality associated
93	with COVID-19 (4-7). Comparison of hematological profiles
94	between patients with relatively mild disease and those with ARDs
95	supports this hypothesis, showing marked elevation in CD14+ IL-
96	1b producing monocytes in the peripheral circulation (7),
97	infiltration of monocytes and neutrophils into the respiratory tract
98	(4)as well as IL-6 and IL-1b in the serum of ARDs patients (4,7).
99	Taken together with the finding that multiple serological markers
100	in severe COVID-19 patients that mirror those observed in
101	macrophage activation syndrome (MAS) such as
102	hyperferritinaemia, altered liver function and coagulopathy,
103	suggests a critical role for macrophages in determining the
104	outcome of SARS-CoV-2 infection (4).
105	To date, there has been considerable controversy surrounding
106	the role of APCs in COVID-19 and whether they are susceptible
107	(8-9) or recalcitrant (10-12) to SARS-CoV-2 infection. Expression
108	of ACE2 only occurs on a subset of CD14+ monocytes (11-12) and
109	given the relationship between inflammation and ACE2 expression
110	in epithelial cells (13), caution is in order when interpreting these
111	results as many of the techniques used to culture macrophages may

112	unintentionally polarize these cells towards an activated
113	phenotype. Monocytes and macrophages are first on the scene in
114	response to pathogens and responsible for many components of the
115	immune response to novel pathogens including recruitment of T
116	cells and neutrophils to the site of infection, presentation of bound
117	antigen-antibody complexes thru Fc receptors, secretion of
118	inflammatory mediators to support lymphocyte development and
119	initiation of wound healing responses post-infection (8-12). Given
120	the correlation in the timing of the emergence of antibodies with
121	severe COVID-19 and the similarity of late stage COVID-19 to
122	MAS (4, 8-12), we examined the role of antibodies in modulating
123	the inflammatory response in murine macrophages and show that
124	non-neutralizing antibodies to SARS-CoV-2 induce ACE2
125	expression in murine macrophages, rendering them susceptible to
126	replication-independent killing by SARS-CoV-2. Supernatants
127	from these cells exhibit a cytokine profile similar to those observed
128	in the serum of ARDs patients and addition of these supernatants
129	to Vero E6 cultures significantly enhances susceptibility to SARS-
130	CoV-2. These results suggest a model for antibody-dependent
131	induction of immune dysregulation in COVID-19.

Results

133	Given the expression of ACE2 in only a small subset of
134	peripherally derived CD14+ cells (11-12), we asked whether
135	activation of ACE2-negative macrophages could induce ACE2
136	expression and render macrophages susceptible to SARS-CoV-2.
137	No reduction in viability was observed between naive
138	macrophages and those incubated with SARS-CoV-2 in the
139	absence of antibody. Addition of non-neutralizing antibodies to
140	either the intracellular nucleocapsid antigen or surface-expressed
141	spike protein reduced cell viability to 35.98% (p<0.0001) and
142	53.67% (p<0.0001), respectively (Figure 1). By stark contrast,
143	sensitization to viral killing by SARS-CoV-2 did not occur in the
144	presence of neutralizing antibodies to the receptor-binding domain
145	(RBD), suggesting that antibody binding to macrophages may be
146	able to induce ACE2 expression and that availability of the RBD
147	domain is required for virus-induced cytotoxicity. Subsequent
148	analysis by qPCR revealed no increase in viral load, indicating that
149	death is not due to lytic replication (Figure 1).
150	To confirm that antibody-induced susceptibility to SARS-CoV-2
151	resulted from induction of ACE2 expression following Fc ligation,
152	we evaluated expression of ACE2 in Raw264.7 cells incubated

153	with virus in the presence or absence of antibodies or LPS by
154	fluorescent microscopy. In the absence of non-neutralizing
155	antibodies, macrophages were found to express only minimal
156	levels of ACE2 (Figure 2). Following activation either by
157	antibody-dependent Fc ligation or Toll-like receptor 4 (TLR4)
158	induction after exposure to LPS expression of ACE2 increased by
159	49.5 and 48.9-fold respectively (p<0.0001, Figure 2).
160	Given the finding that treatment with LPS alone induced ACE2
161	expression, we examined the susceptibility of LPS-activated
162	macrophages to SARS-CoV-2. Exposure to LPS prior to virus
163	challenge reduced macrophage survival following virus challenge
164	to 77.35% in the absence of antibody (p<0.0149, Figure 3).
165	Addition of non-neutralizing antibody further reduced survival to
166	11.13%, significantly less than that observed in the presence of
167	antibody alone (44.94%, p<0.0001; Figure 3). These data suggest
168	that induction of ACE2 expression is only one component required
169	for sensitization of macrophages to SARS-CoV-2 and that Fc
170	ligation by non-neutralized antibody-virus complexes are a key
171	component of this process.
172	To further characterize the potential impact of antibody-
173	dependent susceptibility of macrophages to SARS-CoV-2 on

174	downstream cell populations, we next examined the impact of
175	macrophage supernatants on susceptibility of Vero E6 cells to
176	SARS-CoV-2. Supernatants from macrophages exposed to SARS-
177	CoV-2 had no significant impact on susceptibility of Vero E6 to
178	SARS-CoV-2 (Figure 3). However, those from macrophages
179	activated with antibodies in the presence of SARS-CoV-2
180	enhanced viral killing of Vero E6 cells by 2.8-fold (p=0.011). This
181	suggests that macrophages infected with SARS-CoV-2 by
182	antibody-based induction of susceptibility to SARS-CoV-2 may be
183	directly responsible for enhancing viral damage to respiratory
184	epithelial cells in severe COVID-19.
185	From a comparison of recent clinical studies, elevation of sixteen
186	cytokines (TNF-a, IL-6, IL-10, RANTES, IL-1b, IL-2, GM-CSF,
187	IL-18, IP-10, IL-4, IFN-y, IL-9, G-CSF, MCP-1, IL-17a and MIP-
188	1a) have emerged as hallmarks of severe COVID-19 (14). Of these,
189	we observed that nine (TNF-a, RANTES, IL-6, IL-1b, GM-CSF,
190	IL-18, IFN-y, G-CSF and MIP-1a) were found to be reduced in the
191	supernatants of macrophages activated through Fc ligation and
192	markedly increased after these cells were infected with SARS-
193	CoV-2 (Figure 4 and Table 1). Five additional cytokines (IL-2, IP-
194	10, IL-4, IL-9 and IL-17a) were induced only with SARS-CoV-2

195	infection (See Figure 5), suggesting that induction of pro-
196	inflammatory mediators in APCs likely occurs through at least two
197	pathways: one that is Fc-dependent and one that results directly as
198	a result of SARS-CoV-2 infection. Of note, IL-10 was only
199	elevated in the supernatants of LPS-activated suggesting that either
200	macrophages are not directly responsible for the elevated levels of
201	IL-10 observed in COVID-19 patients or induction of IL-10 occurs
202	in the final stages of the cytokine storm through activation of
203	additional inflammatory signaling pathways.

204 **Discussion**

205 The high degree of correlation observed between migration of 206 mononuclear cells into infected tissue and a pattern of MAS-like 207 inflammatory markers that occur in patients with severe disease has led to the morbidity and mortality in COVID-19 being 208 209 attributed to dysregulation of macrophages in the later stages of the 210 infection (15-16). The onset of ARDs coincides with the 211 emergence of antibodies at the transition between the innate and 212 adaptive immune response, suggesting that immune modulation by 213 newly circulating antibodies may be important to initiating a 214 hyperinflammatory state in susceptible individuals. The timing of

215	onset of severe symptoms also argues that regardless of the
216	initiating factor(s), the pathway leading to immune dysregulation
217	in COVID-19 is not an innate state but must be induced during
218	development of the adaptive immune response. This is notable,
219	particularly in the context of APCs as it suggests that the
220	populations key to understanding the pathogenesis of COVID-19
221	are those that are initially refractory to infection with SARS-CoV-
222	2 and that contribution of the subset of CD14+ cells that innately
223	express ACE2 are likely minor in comparison to those that come
224	into play as antibodies emerge. We observed that naïve
225	macrophages express little ACE2 on the cell surface and are
226	resistant to killing by SARS-CoV-2. Non-neutralizing antibodies
227	render these cells susceptible via induction of ACE2 expression,
228	suggesting that the cascade leading to ARDs in COVID-19 may
229	begin with the ligation of Fc receptors on APCs at the onset of the
230	adaptive immune response.
231	The ability of TLR induction to induce ACE2 expression and
232	render macrophages susceptible to SARS-CoV-2 is notable as a
233	number of viruses promote type I interferon signaling through
234	induction of the TLR4/MyD88 axis (17). A recent study by Duan
225	et al (16) characterizing the role of macrophage polarization

et al (16) characterizing the role of macrophage polarization

236	demonstrated that although M1 and M2 macrophages show similar
237	competency to eliminate SARS-CoV-2, M1 polarized
238	macrophages contributed to respiratory damage whereas M2
239	polarized macrophages cleared the virus without causing
240	inflammatory-medicated injury. Given that M1 and M2
241	polarization are typically exclusive states, the high level of ACE2
242	receptor induction in LPS-activated (M1) polarized macrophages
243	may be something that does not occur in M2 polarized cells. This
244	warrants further investigation, and if confirmed, may suggest that
245	inappropriate polarization of macrophages to an M1 phenotype,
246	whether pre-existing or induced by SARS-CoV-2 infection, sets
247	the stage for ARDs.
248	It is important to note that induction of ACE2 receptor
249	expression only constitutes part of the story as addition of non-
250	neutralizing antibodies enhanced viral killing of LPS-activated
251	macrophages by nearly 2-fold that observed with LPS alone. This
252	suggests that not only is induction of ACE2 receptor expression
253	required to render macrophages susceptible to SARS-CoV-2, but
254	that binding of virus by antibodies may also enhance uptake of
255	receptor-bound virus.
256	Antibody-dependent enhancement has been a point of concern in

257	the rapid development of vaccines for COVID-19 as ADE has been
258	documented with other betacoronaviruses in the experimental
259	setting and has thwarted development vaccines for feline
260	coronaviruses, as well as a number of others for decades (18).
261	Dengue fever is perhaps the best-known model of ADE. Infection
262	of naive hosts with dengue virus results in a classical presentation
263	of DF, which is typically self-limited in immunocompetent hosts
264	(18-19). Subsequent infection with a strain different carries a
265	significant risk of developing dengue hemorrhagic fever (DHF) as
266	a direct result of harboring pre-existing antibodies that not only fail
267	to neutralize the second virus, but also enhance viral uptake and
268	replication (18-19). Compared to DF, DHF carries a significantly
269	higher morbidity and mortality rate (18-19).
270	Models of ADE developed from the classical presentation of
271	enhanced disease following re-infection in the Flaviridae (18-19),
272	form the basis of the current ADE paradigm, wherein non-
273	neutralizing antibodies, either from vaccination or previous
274	infection enhance two key components of viral pathogenesis: 1)
275	viral uptake into normally non-permissive cell populations and 2)
276	subsequent enhancement of viral replication. COVID-19 is
277	difficult to reconcile with the established paradigm for ADE as

278 SARS-CoV-2 is able to infect and kill, but not replicate in several 279 key leukocyte populations (8-12). However, as a direct result of abortive replication, SARS-CoV-2 induces a pyroptosis-like cell 280 281 death that results the release of inflammatory mediators into the 282 extracellular space (6, 9, 20). Our findings that supernatants from SARS-CoV-2 infected macrophages enhance susceptibility in Vero 283 284 E6 cells and correlate with published profiles of cytokine and 285 chemokine expression in COVID-19 patients (4, 13, 21), suggests 286 the need for an updated model of antibody-dependent pathogenesis 287 in COVID-19 wherein non-neutralizing antibodies activate and 288 render APCs susceptible to SARS-CoV-2. Death of infected APCs 289 releases cytokines and chemokines which are able to directly alter 290 the outcome of infection in epithelial cells and initiate a cascade of 291 proinflammatory stimuli leading to a multi-component cytokine 292 storm. This model would account for the limited efficacy observed 293 in clinical trials of therapeutic agents targeting individual cytokines, such as tociluzimab (anti-IL-6, 22-23) and TNF- α^6 294 295 compared to broad-spectrum inhibition of the inflammatory 296 response with dexamethasone (24). 297 The importance of the macrophage and non-neutralizing

antibodies at the intersection of the innate and adaptive immune

299	response in COVID-19 has significant ramifications for the use of
300	convalescent plasma and the development of effective vaccines.
301	The antibodies that comprise convalescent plasma vary greatly
302	from donor to donor, in both the ratio and affinity of neutralizing
303	versus non-neutralizing antibodies (25). This may in part explain
304	why variable results have been observed in clinical trials for
305	convalescent plasma (25) compared to the relative efficacy of
306	targeted antibody cocktails such as those marketed by Regeneron
307	(26).
308	The probable involvement of M1 polarized macrophages in
309	damaging surrounding tissues when non-neutralizing antibodies
310	are present during infection with SARS-CoV-2 is problematic for
311	many of the vaccines being developed for COVID-19, as most
312	currently rely on production of antibodies using variations in
313	delivery of the spike protein alongside an adjuvant to elicit
314	production of an Th1 response. The preference for Th1-directed
315	vaccines in COVID-19 originated due to historical observations of
316	the association between Th2/Th17 responses in other virus models
317	and subsequent immunopathology (27). Given what has been
318	documented thus far for SARS-CoV-2 and the impossibility of
319	preventing associations between macrophages and antibodies in

320	the context of infection, this strategy may need to be reconsidered
321	in favor of promoting a more balanced immune response. As yet,
322	no antibody-dependent enhancement of disease has been observed
323	in Phase I and II clinical studies (28) suggesting that despite
324	production of non-neutralizing antibodies alongside those directed
325	against the RBD there is little risk to vaccinated individuals as long
326	as a sufficient titer of anti-RBD antibodies is generated and
327	maintained.
328	However, once immunity starts to wane, a high ratio of non-
329	neutralizing to neutralizing antibodies alongside M1 polarization,
330	may be riskier than RBD-specific vaccination and may suggest
331	that neutralizing antibody titers in vaccinated individuals should be
332	monitored regularly to establish timelines for administration of
333	booster doses. Lastly, the impact of M1 observed here and in the
334	literature suggests that recalibration of COVID-19 vaccines to
335	produce a more balanced Th1/Th2 response may alleviate side
336	effects, leading to greater compliance from vaccine-hesitant
337	populations, without sacrificing efficacy against disease.

338 Materials and

339 Methods

340 <u>Macrophage Infection Assays</u>

341	Low passage Raw264.7 cells (ATCC TIB-71) were cultured in
342	DMEM containing, 4 mM L-glutamine, sodium pyruvate (Hyclone
343	SH30243), penicillin/streptomycin (Gibco 15140-122) and 10%
344	FBS (Gibco 16000-044). The day prior to the assay, cells were
345	seeded at a density of 1×10^4 cells in 96 well tissue culture plates
346	(Costar 3904) and incubated overnight at 37°C with 5% CO2. The
347	following day cells were washed twice with 200ul of 1XPBS
348	(Hyclone SH30256) and following the second wash, allowed to
349	incubate in 100 ul of DMEM containing penicillin/streptomycin
350	and 5% FBS (VIM).
351	Prior to the addition of virus, serial dilutions of antibodies
352	against either the nucleocapsid (Genetex GTX632269) or spike
353	proteins (polyclonal anti-spike, Abcam ab272504 ; anti-RBD,
354	AcroBiosystems SAD-S35-100ug) of SARS-CoV-2 in a total
355	volume of 60ul of VIM were made in a separate 96 well dilution
356	plate to which 60 pfu/well of SARS-CoV-2 (USA-WA1/2020) was
357	added for a final MOI of 0.05. The dilution plate was then
358	incubated for 1 hour at 37°C, 5% CO2. Following incubation,
359	media on the cells was replaced with 100 ul of the antibody and
360	virus mixture and incubated for two days at 37°C, 5% CO2.

361 S	upernatants	were removed	and store	ed at ·	-80°	C for	subsequ	ient
-------	-------------	--------------	-----------	---------	------	-------	---------	------

- 362 experiments with Vero E6 cells. Media was replaced with 100ul of
- 363 VIM and viability of macrophages was then assessed by the
- addition of 100ul of Cell Titer Glo (Promega G7573) per well
- 365 which was read for luminescence (Biotek) following incubation at
- 366 room temperature for 5 minutes.
- 367 <u>Determination of Viral Load</u>
- 368 Raw 264.7 cells were seeded at a density of $2x10^6$ cells/well in a
- 369 6-well plate (Geiner Bio-One 657165) and allowed to settle
- 370 overnight at 37° C, 5% CO2. The following day, cells were
- infected with SARS-CoV2 with an MOI of 0.05 and incubated
- overnight at 37 °C with 5% CO2. Cells were lysed with 1 ml
- 373 Trizol® (Ambion 15596018) and RNA extracted using a Direct-
- 374 zolTM-96 MagBead RNA miniprep kit (Zymo R2102).
- 375 Quantitative PCR was performed using the VIRSeek SARS-CoV2
- assay (Eurofins Genescan Technologies, Freiberg, Germany).
- 377 Activation of MPs with LPS
- 378 Escherichia coli (Microbiologics 0617K) was grown overnight in
- 379 BHI (Neogen NCM0016A) at 37°C. The culture was then diluted
- 380 with 1X PBS to an OD of 1.0 in BAX System Lysis Buffer
- 381 (Hygiena ASY2011) and heated for 10 minutes at 95 °C. Sterility

382	was confirmed by inoculation of 20 ul of the resulting lysate into
383	DMEM, which was then incubated at 37 $^{\circ}$ C for 24 hours prior to
384	use in the macrophage assay at a volume of 10 ul per well for a 96
385	well plate or 30 ul per well for a 6 well plate. Negative controls
386	received BAX System Lysis buffer without LPS at an equivalent
387	volume.
388	Evaluation of ACE2 Receptor Expression in Raw264.7 cells
389	Raw 264.7 cells were seeded onto sterile glass coverslips (VWR
390	16004-304) in a 6-well plate (Geiner Bio-One 657165) at a density
391	of $2x10^6$ cells/well and allowed to settle overnight. Polyclonal
392	anti-spike at a concentration of 6.25 ug/ml (described above)
393	and/or LPS were added as appropriate in 1.5 ml of VIM which
394	replaced the previous media after which the plate was returned to
395	the incubator. The following morning, cells were infected with
396	SARS-CoV2 with an MOI of 0.05 and incubated overnight at 37
397	°C with 5% CO2. Following incubation, all media was removed
398	and the cells were fixed for 24h with 4% paraformaldehyde.
399	After fixation, coverslips were washed twice with 1X PBS for 5
400	minutes at room temperature prior to the addition of 2 mls of
401	1XPBS containing 0.5% Triton X-100 (Sigma X100-1L) and 5%
402	w/v nonfat dry milk. Coverslips were incubated overnight at 4 $^{\rm o}{\rm C}$

403	in blocking buffer and probed the following morning with 1 :500
404	rabbit anti-ACE2 (Abcam ab15348) for 1h at room temperature on
405	an orbital rocker. Following incubation, samples were washed
406	three times with 1XPBS+0.2% Triton-X100 for 5 minutes, prior to
407	incubation with 1:1,000 anti-rabbit IgG secondary antibody
408	(Rockland 611-141-122) for 1 hour. Following incubation, samples
409	were once again washed three times with 1XPBS+0.2% Triton-
410	X100 for 5 minutes and mounted onto slides with ProLong Gold
411	antifade reading with DAPI (Invitrogen P36935). Images were
412	captured using a Zeiss LSM 710 confocal microscope and receptor
413	expression quantitated using ImageJ.
414	Impact of MP Supernatants on Vero E6 Susceptibility to SARS-
415	<u>CoV-2</u>
416	Vero E6 cells (ATCC VERO C1008) were cultured in DMEM
417	containing, 4 mM L-glutamine, sodium pyruvate (Hyclone
418	SH30243), penicillin/streptomycin (Gibco 15140-122) and 10%
419	FBS (Gibco 16000-044). The day prior to the assay, cells were
420	seeded at a density of 1 x 10^4 cells in 96 well tissue culture plates
421	(Costar 3904) and allowed to incubate overnight at 37° C with 5%
422	CO2. The following day cells were washed twice as described
423	above with PBS and 100ul of VIM added to each well.

424	Prior to the addition of virus, 20 ul of the appropriate
425	macrophage supernatant or DMEM was added to 40 ul of VIM for
426	a total volume of 60ul in a separate 96 well dilution plate. SARS-
427	CoV-2 (USA-WA1/2020) was added for a final MOI of 0.05
428	(60pfu/well in a volume of 60 ul) and 100 ul of the resulting
429	supernatant+virus mixture was then added to the Vero E6 plate by
430	replacing the media. The plate was then incubated for 3 days at
431	37°C with 5% CO2 and viability of the cells assessed as described
432	for the macrophage assay described above.
433	Quantitation of Inflammatory Mediators in Macrophage
434	Supernatants
435	To evaluate the presence of cytokines and chemokines in the
436	supernatants of SARS-CoV-2 infected macrophages, 50 ul of each
437	supernatant was evaluated in triplicate using the Mouse Cytokine
438	& Chemokine 36-Plex Procarta 1A Panel (ThermoFisher
439	EPXR360-26092-901) as per manufacturer's instructions. Data
440	was collected using a Luminex FlexMap3D.
441	Statistical Analysis
442	All graphical presentations of data and ANOVA analysis was
443	conducted in GraphPad Prism 9.
444	

445 **Competing Interest Statement:** The authors declare that they

- 446 have no known competing interests.
- 447 **Funding Statement:** The author(s) received no financial support
- 448 for the research, authorship, and/or publication of this article.
- 449 **References**
- 450 1. Zhu N, Zhang D, Wang W, Li X, Yang B Song J, Zhao X,
- 451 Huang B, Shi W, Lu R, Niu P, Zhan F, Ma X, Wang D, Xu W,
- 452 Wu G, Gao GF, Tan W. 2019. A novel coronavirus from
- 453 patients with pneumonia in China. N Engl J Med 382:727–733.

454 <u>https://www.nejm.org/doi/full/10.1056/nejmoa2001017</u>

- 455 2. WHO. WHO; 2020. Coronavirus Disease 2019 (COVID-19)
 456 situation Report 52.
- 457 3. Mittal A, Manjunath K, Ranjan RK, Kaushik S, Verma V.
- 458 2020. COVID-19 pandemic: Insights into structure, function
- 459 and hACE2 receptor recognition by SARS-CoV-2. PLoS
- 460 Pathog Aug; 16(8): e1008762.
 461 https://doi.org/10.1371/journal.ppat.1008762
- 462 4. Rodríguez Y, Novelli L, Rojas M, de Santis M, Acosta-
- 463 Ampudia Y, Monsalve DM, Ramírez-Santana C, Costanzo A,
- 464 Ridgway WM, Ansari AA, Gershwin ME, Selmi C, Anayaa
- 465 JM. 2020. Autoinflammatory and autoimmune conditions at

466		the crossroad of COVID-19. J Autoimmun Nov; 114: 102506.
467		https://doi.org/10.1016/j.jaut.2020.102506.
468	5.	Zhou Y, Fu B, Zheng X, Wang D, Zhao C, Qi Y, Sun R, Tian
469		Z, Xu X, Wei H. 2020. Pathogenic T cells and inflammatory
470		monocytes incite inflammatory storm in severe COVID-19
471		patients. Natl Sci Rev 2020
472		https://doi.org/10.1093/nsr/nwaa041.
473	6.	Karki R, RajSharma B, Tuladhar S, Williams EP, Zalduondo L,
474		Samir P, Zheng M, Sundaram B, Banoth B, Subbarao-
475		Malireddi RK, Schreiner P, Neale G, Vogel P, Webby R,
476		Jonsson CB, Kanneganti TD. 2021. Synergism of TNF-a and
477		IFN-y triggers inflammatory cell death, tissue damage, and
478		mortality in SARS-CoV-2infection and cytokine storm. Cell
479		184(1): 149-168.e17. <u>https://doi.org/</u>
480		<u>10.1016/j.cell.2020.11.025</u> .
481	7.	McGonagle D, Sharif K, O'Regan A, Bridgewood C. 2020.
482		The Role of Cytokines including Interleukin-6 in COVID-19
483		induced Pneumonia and Macrophage Activation Syndrome-
484		Like Disease. Autoimmun Rev
485		19(6):102537. https://doi.org/10.1016/j.autrev.2020.102537. E
486		pub 2020 Apr 3.

487	8.	Zhou Y, Fu B, Zheng X, Wang D, Zhao C, Qi Y, Sun R, Tian
488		Z, Xu X, Wei H. 2020. Aberrant pathogenic GM-CSF+T cells
489		and inflammatory CD14+CD16+ monocytes in severe
490		pulmonary syndrome patients of a new coronavirus. Natl Sci
491		Rev 7(6): 998-1002. <u>https://doi.org/10.1093/nsr/nwaa041</u> .
492	9.	Zheng J, Wang Y, Li K, Meyerholz DK, Allamargot C,
493		Perlman S. 2020. SARS-CoV-2 induced immune activation
494		and death of monocyte-derived human macrophages and
495		dendritic cells. J Infect Dis 2020; Dec 5;
496		https://doi.org/10.1093/infdis/jiaa753
497	10	. Dalskov L, Møhlenberg M, Thyrsted J, Blay-Cadanet J,
498		Poulsen ET, Folkersen BH, Skaarup SH, Olagnier D, Reinert
499		L, Enghild JJ, Hoffmann HJ, Holm CK, Hartmann R. 2020.
500		SARS-CoV-2 evades immune detection in alveolar
501		macrophages. EMBO Rep (2020)21:e51252.
502		https://doi.org/10.15252/embr.202051252.
503	11	. Gomez-Rial J, Rivero-Calle I, Salas A, Martinon-Torres F.
504		2020. Role of Monocytes/Macrophages in Covid-19
505		Pathogenesis: Implications for Therapy. Infect Drug Resist13:
506		2485-2493. https://doi.org/10.2147/IDR.S258639.

507	12. Jafarzadeh A, Chauhan P, Saha B, Jafarzadeh S, Nemati M.
508	2020. Contribution of monocytes and macrophages to the local
509	tissue inflammation and cytokine storm in COVID-19: Lessons
510	from SARS and MERs, and potential therapeutic interventions.
511	Life Sci Sep 15; 257: 118102. doi: <u>10.1016/j.lfs.2020.118102</u> .
512	13. Wruck W, Adjaye J. 2020. SARS-CoV-2 receptor ACE2 is co-
513	expressed with genes related to transmembrane serine
514	proteases, viral entry, immunity and cellular stress. Sci Rep10:
515	21415. doi: 10.1038/s41598-020-78402-2.
516	14. Wang J, Jiang M, Chen X, Montaner LJ. Cytokine storm and
517	leukocyte changes in mild versus severe SARS-CoV-2 infection:
518	Review of 3939 COVID-19 patients in China and emerging
519	pathogenesis and therapy concepts. J Leuk Biol 108(1):17-41.
520	https://doi.org/10.1002/JLB.3COVR0520-272R.
521	15. Merad M, Martin JC. 2020. Pathological inflammation in
522	patients with COVID-19: a key role for monocytes and
523	macrophages. Nat Rev Immunol 20: 352-362.
524	doi:10.1038/s41577-020-0331-4.
525	16. Duan F, Guo L, Yang L, Han Y, Thakur A, Nilsson-Payant BE,
526	Wang P, Zhang Z, Ma CY, Zhou X, Han T, Zhang T, Wang X,
527	Xu D, Duan X, Xiang J, Tse HF, Liao C, Luo W, Huang FP,

528	Chen YW, Evans T, Schwartz RE, tenOever B, Ho DD, Chen
529	S, Lian Q, Chen HJ. 2020. Modeling COVID-19 with human
530	pluriopotent stem cell-derived cells reveals synergistic effects
531	of anti-inflammatory macrophages with ACE2-inhibition
532	against SARS-CoV-2. Res Sq Preprint. 2020 Aug 20. doi:
533	10.21203/rs.3.rs-62758/v1.
534	17. Astuti I,Y. 2020. Severe Acute Respiratory Syndrome
535	Coronavirus 2 (SARS-CoV-2): An overview of viral structure
536	and host response. Diabetes Metab Syndr 14(4):407–12.
537	doi:10.1016/j.dsx.2020.04.020
538	18. Huisman W, Martina BE, Rimmelzwaan GF, Gruters RA,
539	Osterhaus AD. 2009. Vaccine-induced enhancement of viral
540	infections. Vaccine 27(4): 505–512.
541	doi: <u>10.1016/j.vaccine.2008.10.087</u> .
542	19. Ulrich H, Pillat MM, Tarnok A. 2020. Dengue Fever, COVID-
543	19 (SARS-CoV-2), and Antibody-Dependent Enhancement
544	(ADE): A Perspective. Cytometry 97(7): 662-667.
545	https://doi.org/10.1002/cyto.a.24047
546	20. Song P, Li W, Xie J, Hou Y, You C. 2020. Cytokine storm
547	induced by SARS-CoV-2. Clin Chim Acta 509: 280–287.
548	https://doi.org/10.1016/j.cca.2020.06.017

549	21. Wen W, Su W, Tang H, Le W, Zhang X, Zheng Y, Liu X, Xie
550	L, Li J, Ye J, Dong L, Cui X, Miao Y, Wang D, Dong J, Xiao
551	C, Chen W, Wang H. 2020. Immune cell profiling of COVID-
552	19 patients in the recovery stage by single-cell sequencing. Cell
553	Discov. 6:31. https://www/nature.com/articles/s41421-020-
554	<u>0168-9</u> .
555	22. Lan SH, Lai CC, Huang HT, Chang SP, Lu LC, Hsueh PR.
556	2020. Tocilizumab for severe COVID-19: a systematic review
557	and meta-analysis. Int J Antimicrob Agents 56(3): 106103. doi:
558	<u>10.1016/j.ijantimicag.2020.106103</u> .
559	23. Rehman MF, Fariha C, Anwar A, Shahzad N, Ahmad M,
560	Mukhtar S, Ul Haque M. 2020. Novel coronavirus disease
561	(COVID-19) pandemic: A recent mini review. Comput Struct
562	Biotechnol 19: 612-623. doi: <u>10.1016/j.csbj.2020.12.033</u>
563	24. Shetty VU, Brotherton BJ, Achilleos A, Akrami KM, Barros
564	LM, Checkley W, Cobb N, Maximous S, Misango D, Park C,
565	Taran S, Lee BW. 2020. Pragmatic recommendations for
566	therapeutics of hospitalized COVID-19 patients in low- and
567	middle- income countries. Am J Trop Med Hyg. 2020 Dec 29.
568	doi: <u>10.4269/ajtmh.20-1106</u> . Online ahead of print.

569	25. Zaffanello M, Piacentini G, Nosetti L, Franchini M. 2020. The
570	use of convalescent plasma for pediatric patients with SARS-
571	CoV-2: A systematic literature review. Transfus Apher Sci.
572	2020 Dec 23;103043. doi: <u>10.1016/j.transci.2020.103043</u> .
573	26. Weinreich DM, Sivapalasingam S, Norton T, Ali S, Gao H,
574	Bhore R, Musser BJ, Soo Y, Rofail D, Im J, Perry C, Pan C,
575	Hosain R, Mahmood A, Davis JD, Turner KC, Hooper AT,
576	Hamilton JD, Baum A, Kyratsous CA, Kim Y, Cook A,
577	Kampman W, Kohli A, Sachdeva Y, Graber X, Kowal B,
578	DiCioccio T, Stahl N, Lipsich L, Braunstein N, Herman G,
579	Yancopoulos GD. 2021. REGN-CoV2, a neutralizing antibody
580	cocktail, in outpatients with COVID-19. N Engl J Med 384:
581	238-251. doi: 10.1056/NEJMoa2035002.
582	27. Kuo T, Lin M, Coffman RL, Campbell JD, Traquina P, Lin YJ,
583	Liu LT, Cheng J, Wu Y, Wu C, Tang W, Huang C, Tsao K,
584	Chen C. 2020. Development of CpG-adjuvanted stable
585	prefusion SARS-COV-2 spike antigen as a subunit vaccine
586	against COVID-19. Sci Rep. 10(1): 20085.
587	doi: 10.1038/s41598-020-77077-z.
588	28. Tumban E. Lead SARS-CoV-2 candidate vaccines:
589	Expectations from Phase III trials and recommendations post-

590 vaccine approval. Viruses. 2020 Dec 31;13(1):E54. doi:

- 591 <u>10.3390/v13010054</u>.
- 592
- 593 Figure & Table Legends

594 Figure 1: Antibody-dependent killing of macrophages by

595 SARS-CoV-2. A-B) In the absence of antibody, Raw 264.7 cells are resistant to killing by SARS-CoV-2. Addition of non-596 neutralizing antibodies against either the nucleocapsid or spike 597 598 protein reduced survival at 48 hours post-infection to 35.98% and 53.67% of the cell control (p<0.0001). Neutralization of the RBD 599 prevents viral killing, suggesting that binding of ACE2 may be 600 601 required for antibody-dependent infection of monocytes and macrophages. C) No increase in virus load was observed between 602 naïve and activated macrophages incubated with SARS-CoV-2. 603 suggesting that death is not due to lytic replication. 604

Figure 2: Activation of Raw264.7 cells induces ACE2
expression and susceptibility to SARS-CoV-2. Following
incubation with polyclonal anti-spike or LPS and/or SARS-CoV-2
as described above, Raw264.7 cell were fixed and evaluated for
ACE2 expression via confocal microscopy. A.) Fold changes were
calculated as a ratio of the experimental group : naive

macrophages. Activation of Raw264.7 cells by Fc ligation or
through LPS exposure induced expression of ACE2 nearly 48-fold
(p<0.0001) and B.) resulted in morphological changes consistent
with macrophage activation. Blue, DAPI ; green, ACE2.

615 Figure 3: Activation of Raw264.7 cells thru TLR4 enhances

616 susceptibility to SARS-CoV-2. A) Activation of RAW264.7 cells

with LPS enhanced the susceptibility of macrophages in the 617 absence of antibody, reducing survival to 77.35% after 48 hours of 618 incubation with SARS-CoV-2 (p=0.0149). Addition of non-619 neutralizing antibodies further reduced survival to 11.13%, 620 significantly less than that observed in the presence of antibody 621 622 alone (44.94%, p<0.0001). B) The addition of supernatants from 623 SARS-CoV-2 infected macrophages enhances viral killing of Vero 624 E6 cells by nearly 2.8-fold (p=0.011).

625 Figure 4 and Table 1: Modulation of inflammatory mediators

626released from SARS-CoV-2 occurs thru an antibody-627dependent process.627dependent process.628identified as hallmarks of severe COVID-19 infection by Wang et629 al^{12} from macrophages were modulated by Fc ligation alone630(MP±Ab).631production of all nine, as well as IL-2, IP-10, IL-4, IL-9 and MIP-

1a suggesting that at least two distinct pathways are activated in
response to infection with SARS-CoV-2 in macrophages
(MP+Ab±Virus). Significant induction of IL-10 was only observed
in macrophages activated via TLR4 induction (MP+Ab+Virus
±LPS).

637 Figure 5: Evidence for multiple pathways for macrophage

638 **activation in SARS-CoV-2 infection.** Five additional markers, IL-

2, IP-10, IL-4, IL-9 and IL-17a were observed to be modulated 639 640 only after infection of macrophages with SARS-CoV-2, suggesting 641 that there are at least two separate pathways (Fc-dependent and Fcindependent) through which SARS-CoV-2 initiates production of 642 643 cytokines in macrophages. Induction of IL-10 was only observed in LPS-activated macrophages suggesting that either macrophages 644 645 are not directly responsible for the increase in IL-10 observed in ARDs patients or that secondary activation of macrophages 646 647 through Toll-like receptors may play a role during the later stages

of the disease.

649

648

650 Presentation Statement: Preliminary data from this article was
651 presented at IDWeek 2020 (*Open Forum Infectious Diseases*,
652 Volume 7, Issue Supplement_1, October 2020, Page

- 653 S319, <u>https://doi.org/10.1093/ofid/ofaa439.701</u>)
- 654
- 655 All correspondence should be directed to:
- 656 Jennifer DeMarco
- 657 Center for Predictive Medicine
- 658 950N Hurstbourne Parkway
- 659 Louisville, KY 40222
- 660 (502) 419-7564
- 661 Jennifer.wolf.2@louisville.edu

С

Sample ID	Average Ct	
Naïve no virus	ND	
Naïve+virus	26.6±0.2	
Naïve+Ab+virus	28.4±1.9	
LPS+virus	27.27±0.9	
LPS+Ab+virus	28±0.2	

В

	MP±Ab	MP+Ab±+Virus	MP+Ab+Virus±LPS
TNF-a	0.0003	<0.0001	0.0012
RANTES	<0.0001	<0.0001	NS
IL-6	0.0089	<0.0001	< 0.0001
IL-10	NS	NS	<0.0001
IL-1b	0.0002	<0.0001	< 0.0001
IL-2	NS	0.0006	< 0.0001
GM-CSF	<0.0001	<0.0001	< 0.0001
IL-18	< 0.0001	<0.0001	NS
IP-10	NS	<0.0001	< 0.0001
IL-4	NS	<0.0001	0.0013
IFN-y	0.0141	<0.0001	0.0031
IL-9	NS	0.0343	NS
G-CSF	<0.0001	<0.0001	NS
MCP-1/CCL-2	NS	NS	NS
IL-17a	NS	0.0034	0.001
MIP-1a/CCL-3	<0.0001	<0.0001	NS