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Abstract5

Changes in the short-term dynamics of excitatory synapses over development have been observed throughout6

cortex, but their purpose and consequences remain unclear. Here, we propose that developmental changes in synaptic7

dynamics buffer the effect of slow inhibitory long-term plasticity, allowing for continuously stable neural activity.8

Using computational modelling we demonstrate that early in development excitatory short-term depression quickly9

stabilises neural activity, even in the face of strong, unbalanced excitation. We introduce a model of the commonly10

observed developmental shift from depression to facilitation and show that neural activity remains stable throughout11

development, while inhibitory synaptic plasticity slowly balances excitation, consistent with experimental observations.12

Our model predicts changes in the input responses from phasic to phasic-and-tonic and more precise spike timings. We13

also observe a gradual emergence of synaptic working memory mediated by short-term facilitation. We conclude that14

the developmental depression-to-facilitation shift may control excitation-inhibition balance throughout development15

with important functional consequences.16
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Introduction17

Short-term synaptic plasticity is a hallmark of synaptic function. It refers to transient and fast changes in synaptic18

efficacy in the range of a few milliseconds up to several seconds1–3. Different short-term plasticity (STP) profiles19

regarding the direction and time scale of change are found across cell types4–7, brain regions8–12, and throughout20

development8–10,13–15. For example, excitatory synapses from pyramidal cells in cortex are predominately short-term21

depressing in young animals, whereas adult synapses exhibit short-term facilitation8. Conversely, inhibitory synapses22

from cortical fast-spiking inhibitory interneurons are short-term depressing throughout development4,6,7. Functionally,23

STP is known to homeostatically control synaptic transmission and firing rates in neuronal networks on millisecond24

timescales16–18. However, it has remained unclear what is the combined impact of long-term and short-term plasticity25

for homeostatic control in neural circuits.26

Recent studies suggest that long-term inhibitory plasticity (ISP)19–23, acting on the time scale of minutes to hours,27

is also responsible for homeostasis, by way of establishing and maintaining excitation-inhibition balance, limiting28

the destabilising effects of its excitatory counterpart24,25. However, the stabilising effects of co-tuning excitatory and29

inhibitory tuning curves, the hallmark of inhibitory synaptic plasticity, can only be observed in adult animals. In young30

animals, a tight excitation-inhibition balance has not yet formed and receptive are often unbalanced25,26. Despite this31

lack of detailed excitation-inhibition tuning, experimental observations consistently show that neural circuits exhibit32

stable firing activity at all stages of development27–30. Here, we hypothesise that short-term plasticity provides the33

homeostatic control needed in young animals for healthy neural activity.34

Using computational models, we show how short-term plasticity can complement and even control the expression35

of inhibitory long-term plasticity, thus acting as a gating mechanism for the emergence of excitation-inhibition balance36

across development. In particular, we show that short-term depression is critical to maintain stable neural activity37

even with flat inhibitory tuning curves in young animals25. Further, the gradual shift to short-term facilitation, as38

observed throughout development8–10,13–15 allows for excitatory-inhibitory balance to emerge. We show that this39

developmental control of STP shapes the properties of neuronal dynamics, making neural responses more diverse and40

postsynaptic spike timings more precise over the course of maturation. Finally, the maturation of STP in our model41

leads to synapse-based working memory properties in a EI balanced neuron model.42

Results43

Changes in short-term plasticity (STP) are a hallmark of neural development8,12,31, but their impact on neuronal44

dynamics has remained unclear. Here, we study the effects of short-term plasticity in congruence with long-term45

inhibitory plasticity in a developing neuron model, and show that STP can play a crucial role in young neurons,46
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Figure 1: A cortical circuit with short-term synaptic plasticity exhibits healthy neural dynamics in both young
and adult conditions. (a) Schematic of animal development from young with short-term depression (left) to adult with
short-term facilitation (right) at excitatory synapses as observed experimentally8–10,13,14. Traces of short-term synaptic
plasticity (STP) for depression (orange) and facilitation (purple)8. In the middle is a schematic of the feedforward neural
circuit with eight independent input channels, each with an excitatory (red) and an inhibitory (blue) group synapsing
onto a postsynaptic neuron (Fig. S1). (b) Inhibitory tuning does not mirror excitatory tuning in young animals (left).
Once animals reach adulthood, a precise excitation-inhibition (EI) balance can be observed. Panels adapted from Dorrn
et al. 25 . (c) Computational model with long-term synaptic plasticity in inhibitory synapses (ISP; see inset) started from
unbalanced excitation-inhibition (top left) and gradually developed EI balance (top right). Neuron with unbalanced
excitation-inhibition showed high activity (∼20 Hz; bottom left), which was gradually reduced through ISP (∼4.5 Hz;
bottom right). Bottom raster plots represents postsynaptic spiking activity. (d) A computational model with both ISP
and STP started from unbalanced excitation-inhibition (top left) and gradually developed EI balance (top right). Neuron
with unbalanced excitation-inhibition shows low/healthy firing activity (∼4.5Hz; bottom left) throughout development
(∼4.5Hz; bottom right). Bottom raster plots represents postsynaptic spiking activity. (e) Firing rates of a model without
STP (solid gray line) and a model with both ISP and STP in young (left, solid orange line) and adult (right, solid purple
line) conditions. Desired activity (dashed green line) represents baseline firing rate as observed experimentally27–30.
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compensating for a lack of inhibitory tuning. Moreover, gradual change of excitatory STP from depression to facilitation47

over development allows for excitatory-inhibitory balance to develop in the neuron while guaranteeing stable response48

properties.49

To investigate these effects, we built a model of a simple feedforward network with a single conductance-based50

integrate-and-fire neuron receiving inputs from 800 excitatory and 200 inhibitory afferents21. To emulate heterogeneous51

inputs we modelled eight different pathways (Fig. 1a) each with 100 excitatory and 25 inhibitory synapses, whose activity52

is determined by a time-varying rate signal (Methods). Excitatory and inhibitory synapses were modulated by short-term53

plasticity, consistent with experimentally observed profiles in young and adult mice8–10,12–14,31–35. Inhibitory synapses54

additionally experienced long-term plasticity (ISP)19,22. Excitatory afferents were tuned according to experimentally55

observed receptive fields, while inhibitory baseline weights were initially flat (Fig. 1b, see also25)56

Inhibitory long-term synaptic plasticity working on a time-scale of hours has been suggested to underlie excitation-57

inhibition (E-I) balance in cortical networks19,21,22. The slow nature of long-term synaptic plasticity is consistent with58

the gradual and slow development of E-I balance over multiple days from young to adult animals25 (Fig. 1b). However,59

the lack of detailed balance in young animals could lead to unstable, unnaturally high activity (Fig. 1c,e). Increased60

learning rates, on the other hand, lead to unstable learning36,37.61

Short-term plasticity can offer an elegant solution to maintain low firing rates throughout development. To this end,62

we added experimentally observed4,6,7 short-term depression to all afferent synapses using a standard Tsodyks-Markram63

model16 (Methods). In contrast with the ISP-alone model, the addition of an appropriate STP profile that features64

short-term depression at the excitatory synapses, led to lower firing rates in the ’young’ model, despite unbalanced65

excitation-inhibition (Fig. 1d,e).66

Notably, the low postsynaptic firing rates that resulted from short-term depression in the excitatory afferents67

effectively prevented long-term plasticity from tuning inhibitory tuning curves as has been observed in adult animals68

(Fig. 1b;25). As we will see below, the shift of short-term plasticity profiles over the course of development8,12,31
69

allowed the gradual tuning of inhibition in ageing animals.70

Gradual depression-to-facilitation shift enables stable activity over development71

Next we studied how the developmental changes of short-term depression (STD) to short-term facilitation (STF) in72

excitatory synapses8–10,12–14,31–35 may aid the tuning of inhibitory synapses by way of long-term plasticity, and provide73

stable postsynaptic firing rates throughout the process.74

To simulate ageing in our model, we devised an algorithm that slowly changed the STP parameters between young75

and adult profiles fitted to experimental data (Fig. 2a; Methods). The algorithm monitored average postsynaptic firing76

over sliding windows of 500 ms. When rates were stable and low, excitatory STP parameters were modified by a small77
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Figure 2: Gradual short-term plasticity shift maintained stable firing rates while detailed EI balance developed.
(a) Schematic of our developmental short-term plasticity (STP) model (cf. Fig. S1); top: young and adult STP (as in
Fig. 1); bottom: gradual changes in STP from depressing to facilitating dynamics (orange and purple respectively, in
log-scale as in b-f). (b-f) Different variables of the model across simulated development for three different models:
fixed short-term depression (fixed-STD, orange), fixed short-term facilitation (fixed-STF, purple) and developmental
model with gradual changes in STP (dev-STP, green line). Note x-axis on log-scale. (b) Receiver neuron firing rate. (c)
Mean inhibitory weight. (d) Mean changes in the weight of the inhibitory synaptic afferents. (e) Rate of STP change
(note that both fixed-STF and STD remain fixed, shown as dashed lines). (f) Area between normalised excitatory and
inhibitory tuning curves (cf. h-j) during the course of simulated development. A normalised area close to 0 represents a
perfectly balanced neuron. (g) Additional statistics for the three models. (i) Total neuronal activity calculated using the
area between the firing rate in (b) and the desired target rate of 5 Hz. (ii) Average coefficient of variation of the firing
rates across simulated development (cf. (b)). (iii) Percent of time spent under homeostasis (i.e. at the desired firing
rate; cf. (b)). (iv) Average change in inhibitory weights (cf. (d)). (h-j) Snapshots of excitatory and inhibitory tuning
curves across three points in simulated development: 10s (star), 1000s (square) and 10 000s (triangle). Shaded gray
area represents difference between excitatory and inhibitory tuning curves (cf. (f)). (h-j) Excitatory (red) and inhibitory
(blue) postsynaptic tuning curve for the fixed-STD (h), fixed-STF (i) and dev-STP models (j).
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amount towards facilitation (see Methods and Figs. S2-S4 for variations). For computational reasons we used a total78

simulation time of 8 hours to model development, but the exact temporal frame does not qualitative change our results79

(data not shown).80

The developmental STP model (dev-STP) maintained a healthy level of firing activity throughout the simulation81

(i.e. approximately 5Hz) while a tight excitation-inhibition balance in the circuit developed (Fig. 2b). As controls, we82

considered two other models in which STP was fixed either at STD (fixed-STF) or STF (fixed-STF). The fixed-STF83

scenario exhibited high and more variable firing rates before ISP was able to balance the postsynaptic neuron and lower84

the firing rates (Fig. 2b,g; Fig. S5). On the other hand, the fixed-STD scenario was able to maintain homeostatic balance85

throughout the simulation (Fig. 2b,g), but did not develop a tightly balanced inhibitory receptive field (Fig. 2f,h).86

Although the developmental STP and fixed-STF models converged to the same mean inhibitory weights (Fig. 2c),87

the fixed-STF scenario led to substantially higher firing rate variability during development, and large, somewhat erratic88

weight changes (Fig. 2g,d). In contrast dev-STP maintained relatively small weight changes throughout development89

(Fig. 2d). Finally, while the initial changes of receptive field in the fixed-STF scenario arose quickly, the time of90

convergence was similar to the dev-STP model (Fig. 2f,i,j), because long-term inhibitory plasticity in the dev-STP91

scenario sped up dramatically as facilitation developed (Fig. 2b-f). In the dev-STP model, ISP evolved the inhibitory92

tuning to match excitation stepwise (Fig. 2f), incrementally handing over control of the target firing rate to inhibition,93

which ensured postsynaptic activity remained relatively low (Fig. 2b). This means that each increase in the excitatory94

efficacy through strengthened STF was matched by an increase in the inhibitory efficacy through ISP, until inhibition95

was fully tuned and the excitatory synapses reach their adult profile of short-term facilitation.96

The dev-STP model was able to maintain the neuron in a (globally) balanced state throughout development while97

allowing inhibition to gradually mirror the excitatory tuning. In line with experimental in vivo observations in rat98

auditory cortex across development25 inhibitory tuning curves were initially flat (Fig. 3a). In the adult neuron, both99

model and experiment showed E-I balance. Using the same linear correlation analysis as in the experimental work,100

we confirmed that excitatory and inhibitory responses in ’young’ models were not correlated, but became strongly101

correlated in the adult profile (Fig. 3b).102

Developmental changes in STP shape signal dynamics and transmission103

In line with the establishment of detailed balance21, the postsynaptic firing rates in the dev-STP model were initially104

more correlated with the fixed-STD model, and gradually became more correlated with the fixed-STF model (Fig. 4a,b,c;105

Fig. S5). Across all input channels we found a gradual decrease of input-output correlation (Fig. 4d)). This was largely106

due to the fact that the output responses became less correlated with the preferred channel versus the non-preferred107

channels (Fig. 4e).108
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Another functional consequence of the changes in short-term dynamics could be observed in the phasic and tonic109

stimulus responses profiles. Transient (phasic) and steady state (tonic) neural activity has been observed in sensory110

cortical circuits as part of their stimulus response repertoire27,33,38,39. We examined these properties by probing the111

neuron responses using a step input stimulus (see Methods) (Fig. 5b) to the preferred input channel (channel 5),112

simulating the sudden presence of a strong sensory feature. We defined the phasic response as the average activity over113

the first 50ms after stimulus onset, and the tonic response as the average rate over the remaining stimulus duration114

(200ms). Over development, the average phasic activity of the circuit decreased, while the tonic activity increased115

(Fig. 5b; Fig. S6). These changes in the dynamics are a direct consequence of the gradual change from depressing116

to facilitating synapses, interacting with the strengthening inhibition. The shift in tonic and phasic responses to a117

single stimulus also affected subsequent input responses when using two paired step inputs (Fig. 5d inset; Methods).118

This interaction between subsequent responses was largest for the phasic response, which grew substantially over119

development, as seen by the increasing ratio of firing rate between the two stimuli (Fig. 5d,e). On the other hand, the120
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Figure 3: Depression-facilitation shift captured inhibitory receptive field development. (a) Comparison of ex-
perimentally observed and simulated (dev-STP model) excitatory and inhibitory tuning curves, for both young (i)
and adult (ii) conditions. (b) Excitatory-inhibitory responses for model (gray) and experiments (black). Different
dots represent different tone frequencies in the data and different input channels in the model. Lines represent linear
correlation between excitatory and inhibitory responses in both model (gray) and experiments (black). Experimental
data reproduced from Dorrn et al. 25 .
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Figure 4: Input-output response correlations over development. (a) Schematic of the modelled development from
young with depressing synapses (left) to adult facilitating synapses (right). Bottom color bar indicates the gradual
shift in STP (as in Fig. 2). (b) Correlation of the dev-STP model response profiles to that of the fixed-STD (orange)
and fixed-STF (purple) scenarios during development. (c) Example output responses (cf. Fig. S5) for the fixed-STD
(orange), fixed-STF (purple), and dev-STP (green) models at three points in simulated development (i: 10s, stars; ii:
2000s, squares; iii: 30000s, triangles). (d) Normalised range of correlation to input (Methods). (e) Example of output
correlations at specific times during the course simulated development (same timings as in c). Results shown here were
averaged over 50 trials.

tonic response decreased, but only slightly.121

We also investigated the phasic response to a step stimulus on very short time scales (Fig. 6a), specifically focusing122

on the temporal jitter of the first evoked spike (Fig. 6b). In line with previous experimental observations of reduced123

jitter over development25, we observed substantially more stimulus-locked spike times in the adult model than in the124
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Figure 5: Developmental STP shaped tonic and phasic input-output transmission. (a) Schematic of the modelled
development from young with depressing synapses (left) to adult facilitating synapses (right), as in previous figures. (b)
Average phasic (red) and tonic (blue) postsynaptic firing rates for a step-input of 150Hz (inset; cf. Figs. S5,S6). (c)
Example output responses for the phasic (red) and tonic (blue) activities at three points during development. (d) Ratios
of the average phasic (red) and tonic (blue) firing rates between two consecutive step stimuli (inset). (e) Examples of
responses to the first (light red) and second (dark red) phasic activities in response to the double step input stimulus at
specific points during development. Results shown here were averaged over 50 trials.

young model (Fig. 6c,d). The young scenario showed higher normalized jitter (Methods) than the adult scenario across125

all stimulus strength, and particularly when the background activity before stimulus onset was low (Fig. 6e).126
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Figure 6: Adult STP improves temporal precision of postsynaptic spikes. (a) Examples of postsynaptic voltage
responses with preferred-channel input for both young STP model (i) and adult STP model (ii); gray bar at top represents
time during which preferred channel is stimulated. (b) Stimulus evoked responses in in vivo recordings across a few
trials in young (i) and adult (ii) animals. Panels adapted from Dorrn et al. 25 . In (a,b) the background firing rate is 5 Hz.
(c,d) Normalized jitter of postsynaptic spikes in the young (c) and adult (d) model for different background firing rates
(denoted by different shades of gray; see Methods). (e) Difference between normalized jitter of young STP model (c)
and adult STP model (d).

Developmental STP enables working memory properties in a balanced neuron127

Finally, we also investigated the longer term effects of changing STP over development with regard to its implications128

for short-term memory. Short-term plasticity has recently been proposed as a substrate for working memory40,41, owing129

to the fact that STF can promote increased response to previously displayed stimuli. Here, we tested these ideas in130

the dev-STP model, by comparing the responses to "recall" stimuli that were or were not preceded by a "preloaded"131

stimulus.132

Models with no STP mechanism, as well as the ’young’ dev-STP model showed identical firing rates during the133

recall period (Fig. 7a,b) independently of whether they had experienced a preloaded stimulus or not. In other words,134

the ’young’ model could not rely on silent working memory traces. The ’adult’ dev-STP model, on the other hand,135
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Figure 7: Gradual emergence of synaptic-based working memory over development. (a-c) Raster plot of a working
memory test (WMT, i-top)) with a preloaded stimulus and subsequent recall stimulus (black and gray bars respectively)
compared with rasterplot of trials without the preloaded stimulus (i-bottom). Average firing rates (ii) for both memory
preloaded (light green) and control conditions (dark brown). (a) WMT in a model with only inhibitory synaptic plasticity
(i.e. no STP) (b) WMT in a model with young STP profile. (c) WMT in a model with adult STP profile. (d) Firing
rates during the recall period with (light green) or without (dark brown) preloaded stimulus. WMTs were preformed
every 50 seconds during dev-STP development simulation (cf. Fig. 2) as STP changes from depression to facilitation
at excitatory synapses. We only highlight the first 4000s of the simulation as after this point STP become minimal.
(e) Normalised recall firing rates to the average firing rate of the control case (i.e. without memory preloading). The
STP paired-pulse ratio (black) measuring the STP strength of the excitatory synapses for this period is also plotted as
reference. (f) Normalized recall rate for three model conditions: no STP (gray), young STP (orange), and adult STP
(purple).

showed substantially higher firing rates during the recall period (Fig. 7c,d) when the recall stimulus was preceded by a136

preloaded cue that activated the short-term facilitation in excitatory synapses. Dev-STP thus allowed the neuron to137

gradually utilise this silent working memory mechanism in a neuron with EI balance (Fig. 3a,b, Fig. 7e,f).138
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Discussion139

It has been widely observed that short-term synaptic dynamics of the cortex change from depressing to facilitating140

throughout the course of development8–10,12–14,31–35. Here, we show that this commonly observed shift in STP may141

interact with long-term plasticity at inhibitory synapses to form the fundamental architecture of neuronal processing.142

According to our model, short-term depressing synapses could help to stabilize neural networks in the absence of143

properly tuned inhibition in young animals (Fig. S5). A gradual change from short-term depression to facilitation then144

allows for stable dynamics throughout development while inhibitory synaptic plasticity-mediated, detailed excitation-145

inhibition balance can emerge (Fig. 2). In addition to this stabilising interplay, we show that the developmental146

maturation of STP also shapes signal processing, by allowing for more temporally precise coding (Fig. 6), and the147

emergence of synaptic working memory (Fig. 7).148

There are currently two dominant views on how changes in STP throughout development may arise. One view is149

that these changes are caused by sensory experience32; the other view poses that these are hard-wired, pre-programmed150

changes13. Our developmental STP model suggests a way to reconcile these two views, in that both the sensory-151

dependent32 and non-sensory-dependent13 changes observed experimentally may be simply caused by changes in the152

neural baseline activity. However, although we have modelled changes in STP as a function of neural activity, it is in153

principle possible to allow for these changes to be purely hard-wired and continuous (cf. Fig. S4). In our hands, the154

latter mode, i.e. unilateral maturation of STP without heeding the co-development of inhibitory tuning curves, can also155

lead to stable development (Fig. S4), but this requires fine tuning of a STP change interval, and additional experimental156

work remains to be done to further study this scenario.157

Our work highlights how developmental-STP may shape temporal aspects of synaptic transmission. In particular,158

our model predicts that young animals primarily encode stimuli with transient, phasic activity, whereas adult animals159

may transmit both phasic transients and sustained tonic rates equally well. Interestingly, both modes of transmission160

have been observed in sensory cortices27 at different developmental stages. In our model we have assumed that161

STP changes at all excitatory synapses happen in lockstep over development. However, in the brain not all synapses162

are modified coincidentally8–10, and it is possible that this degree of variability gives a tighter homeostatic control163

throughout development.164

We have focused on long-term inhibitory synaptic plasticity, but excitatory synapses also undergo long-term synaptic165

plasticity. Importantly, long-term excitatory synaptic plasticity also changes the short-term synaptic dynamics18,42–44.166

It is possible that the gradual changes of STP at excitatory synapses that we have considered here are mediated by167

long-term excitatory plasticity. In future work it would be interesting to explore the effects of long-term excitatory168

plasticity with realistic inputs in conjunction with inhibitory synaptic plasticity as a potential model for developmental169

STP19,36,45.170
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Our model shows a gradual increase in temporal precision of spiking over development, consistent with experimental171

observations in the auditory cortex of rats25, suggesting that STP maturation plays an important role in temporal172

encoding46–50. Our findings add to the growing experimental literature showing that inhibition-excitation balance173

sharpens spike timings25,49,51,52.174

Working memory is traditionally thought of as being a property of recurrent neural network dynamics in the175

prefrontal cortex. However, forms of working memory are also known to exist in sensory cortices53,54. Moreover,176

short-term facilitation has been proposed as a biologically plausible mechanism of working memory at the synaptic177

level40,55. We have shown that working memory-like properties in line with previous theoretical work40 gradually178

emerge in our model as short-term facilitation becomes more dominant. Moreover, we show here that retaining EI179

balance does not interfere with this type of silent working memory. Our results suggest that silent synaptic working180

memory properties are more likely prevalent in adult cortex, potentially enabling animals to retain information about181

the recent past even in sensory cortices.182

Finally, dysfunctions in the regulation of excitation-inhibition balance underlie numerous neurological disorders56–65.183

In our model we show that short-term plasticity can dynamically control the expression of long-term inhibitory synaptic184

plasticity, thus modulating E-I balance. Maldaptive developmental STP should thus be reflected in E-I malfunction.185

Interestingly, this is supported by disease animal models, in which STP and excitation-inhibition balance are both186

altered in animal models of dysplasia66,67.187

Overall, our results suggest important functional roles for the commonly observed shift in STP during development.188
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Supplementary material194

Methods195

Neuron models196

In this study, we used a conductance-based integrate-and-fire neuron model for simulations68. In this model, the197

membrane voltages are calculated following198

τ
dV

dt
= −gleak · (Vrest − V ) + gexc · (Eexc − V ) + ginh · (Einh − V ) (1)

where V is the membrane potential of the neuron as a function of time t, τ is the membrane time constant, Vrest is the199

resting membrane potential, Eexc is the excitatory reversal potential, and Einh is the inhibitory reversal potential. Our200

neuron parameters are the same as in Vogels and Abbott 68 . In particular, we used a membrane capacitance, C, of 200pF201

with membrane resistance, R, of 100MΩ, which gives a membrane time constant τ = 20ms. gexc and ginh, expressed in202

the units of the resting membrane conductance, are the synaptic conductances, and gl is the leaky conductance. The203

synaptic conductances are modelled as τexc

dgexc

dt
= −gex and τinh

dginh

dt
= −gin where τexc and τinh are the synaptic time204

constants for the excitatory and the inhibitory conductances, respectively. When the neuron receives a presynaptic205

action potential, its conductance increases by gexc → gexc + wexc or ginh → ginh + winh for excitatory and inhibitory206

synapses, respectively. The model parameters used are summarized in Table 1.207

Parameter Value

τ 20.0ms
R 100.0MΩ
C 200.0pF
gleak 10.0nS
τexc 5.0ms
τinh 10.0ms
Eexc 0mV
Einh -70mV
Vrest -60mV
Vthresh -50mV
Vreset -60mV
τrefrac 4ms
wexc 0.5ns
winh 0.1ns

Table 1: Parameter values for conductance-based leaky integrate-and-fire model.
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Synaptic dynamics D (s) F (s) U f PPR

Depression 0.3134 0.0798 0.3917 0.062 0.70
Facilitation 0.0845 0.2959 0.1973 0.1168 1.24

Table 2: STP parameter values. Paired-pulse ratio (PPR) is given by dividing the second postsynaptic response by the
first.

Synaptic plasticity models208

We used both short-term plasticity and long-term inhibitory synaptic plasticity models in our work. Both were calculated209

separately in the simulations and combined as explained below.210

Short-term synaptic plasticity (STP)211

Short-term plasticity was used in the simulations following the model defined by5,69,70 following212

dR(t)

dt
=

1−R(t)

D
− u(t)R(t) · δ(t− tAP)

du(t)

dt
=
U − u(t)

F
+ f · (1− u(t)) · δ(t− tAP)

(2)

where R models vesicle depletion and u models the presynaptic release probability. Every presynaptic spike at tAP213

causes a decrease in R, the number of vesicles available by uR, which then recovers exponentially to its baseline value214

of 1 with a time constant D. At the same time every presynaptic spike at tAP also causes an increase in the release215

probability u by f · (1− u(t)) (where f is the facilitation rate) and recovers exponentially to its baseline U with a time216

constant F . Finally, the postsynaptic potential, or the weight of the STP component for a synapse exhibiting STP at217

time t is computed as wSTP(t) = AR(t)u(t), where A is baseline amplitude factor. In simulations, the initial value of u218

is set to U , and the initial value of R is set to 1. We used the four-parameter version of the TM model (D,F,U, f ) as it219

provides an overall better fit of short-term dynamics data70.220

STP model fitting221

We found STP parameters which produced excitatory STP paired-pulse responses (PPRs) that matched those found222

in experiments for young and adult animals. Specifically, we used the STP PPRs observed by Reyes and Sakmann 8 ,223

with excitatory STP PPRs of 0.7 and 1.24 for young and adult animals respectively. In order to find STP parameter224

values that matched these PPRs, we interpolated between strong STD and strong STF parameter values70 (Fig. S1e).225

Using this interpolation we then calculated the PPR across all parameter sets. We use these PPRs to compared with226

experimental data from young and adult animals as observed in Reyes and Sakmann 8 . Finally we used least squares to227

obtain STP parameters that best matched the data in both young (STD) and adult conditions (STF) (see Table 2).228
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Inhibitory synaptic plasticity229

Long-term inhibitory synaptic plasticity (ISP) is implemented in all inhibitory synapses in all simulations unless230

otherwise specified. We used the same model as Vogels et al. 21 . In this model, each synapse i has a presynaptic trace231

xi, which increases with each spike by xi → xi + 1 and decays exponentially following τSTDP
dxi
dt = −xi. Then, the232

synaptic weight of a given synapse following pre- or postsynaptic spikes are updated by233

wISP → wISP + η(xpost − α) with each presynaptic spikes

wISP → wISP + ηxpre with each postsynaptic spikes
(3)

where η is the learning rate, α = 2 · rtarget · τSTDP is the depression factor, where τSTDP = 20ms is the STDP time234

constant, and rtarget = 5Hz is a constant parameter that defines the target postsynaptic firing rate. In simulations, the235

initial values of wISP is set to zero.236

ISP with STP237

In our simulations, ISP is combined with STP in some cases at the inhibitory synapses. In these cases, the total synaptic238

weight winh is computed as the product of the STP and ISP weight components at the time of the postsynaptic spike239

winh = winh
STP · wISP while the excitatory weight was given by wexc = wexc

STP.240

Simulations241

Input signals and connectivity242

To model the neural responses with naturalistic inputs we used 8 independently generated traces of low-pass filtered,243

half-wave rectified white noise signals. Each of the 8 independent channels represents a signal pathway, and consists of244

100 excitatory neurons and 25 inhibitory neurons, giving a total of 1000 presynaptic neurons21. All presynaptic neurons245

synapse onto a single postsynaptic neuron with a total of 1000 synapses, 800 excitatory and 200 inhibitory.246

As in Vogels et al. 21 for each of the 8 channels, we generated its time-varying rates iteratively as ŝk(t + dt) =247

ξ − (ξ − ŝk(t)) · e−
dt
τs where ŝk is the k-th signal, ξ ∈ [−0.5, 0.5] is drawn from a uniform distribution, dt = 0.1ms is248

the simulation time step, and the filtering time constant is τs = 50ms. We normalized all rates to a preferred firing rate249

of 100Hz, and negative values were remove and replaced with a background activity level of 5Hz.250

These traces represent the firing rates across time of each of the 8 input signal channels (see examples in Fig. S1b).251

We used these rates as seeds to generate Poisson spike trains for each of the eight channels. These inputs were used in252

the simulations shown in Figures 1, 2, and S5.253
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Developmental and fixed STP254

When simulating dev-STP, we first found the STP parameters whose paired-pulse ratio (PPR, i.e. EPSP2/EPSP1)255

best matched experimental data8. To this end, we started with STP parameters which give strong depression and256

strong facilitation70. Next, we conducted a parameter sweep of the STP parameters from strong depression to strong257

facilitation using a dense linear space between these two conditions. We then simulated 50 Poisson input spike trains at258

35Hz8, calculated the average PPRs of each train for all STP parameters. We then used the STP parameter values that259

best matched those of Reyes and Sakmann 8 for our simulations. These parameter values are summarized in Table 2.260

Calibrating the parameters for dev-STP Using the STD and STF parameters given in Table 2, we then calculated a261

set of 3600 parameter values spaced logarithmically between the STD and the STF parameter values. Log interpolation262

was used instead of linear interpolation because a marginal change towards facilitation generates a higher marginal263

change in PPR when closer to facilitation than to depression. For each of the 3600 STP parameter values, each time we264

changed STP parameters, we normalized the STP magnitude parameter A to equal265

A =
wexc

baseline

u(t = 0) ·R(t = 0)

=
wexc

baseline

U

(4)

where wexc
baseline = 0.35 nS is the baseline excitatory weight. This normalization fixed the amplitude of the first PSP to266

the same value, regardless of the STP parameters, thus keeping the baseline weight of excitatory synapses the same267

throughout development during the simulation (see below for alternative normalizations). Note that the initial value of268

u is set to U , the initial value of R is set to 1, and the total excitatory weight for a first pre-synaptic spike is given by269

wexc(t = 0) = wexc
STP(t = 0)

= AR(t = 0)u(t = 0)

=
wexc

baseline

U
· 1 · U

= wexc
baseline

(5)

regardless of the STP parameters, thus the baseline excitatory weight is invariant across development in our simulations.270

To start the dev-STP simulation, we used the baseline STD parameters given in Table 2 at the beginning of the271

simulation, and slowly changed the parameters from depressing to facilitating at excitatory synapses. Toward this end,272

we averaged the postsynaptic neuron’s firing rate over a 500ms window and monitored how often it exceeded the ISP273
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target rate of 5Hz by way of a variable xexceed that was updated as follows274

xexceed =


xexceed +

⌈
rpost

rtarget

⌉
if rpost ≥ rtarget

xexceed − 1 if rpost < rtarget

(6)

where rpost is the postsynaptic firing rate and rtarget is the ISP target rate (see above). We increment STP to the next275

set of more facilitating STP parameters when xexceed ≤ 0. In other words, the STP parameters are incremented only276

when the postsynaptic firing rate is equal to or below the ISP target rate for a sufficient period of time, i.e. a time277

that is proportional to the degree to which the postsynaptic firing rate has exceeded the target rate in the recent past.278

Changing the excitatory STP to a more facilitating state raises the postsynaptic firing rate, which increases xexceed, thus279

preventing further facilitating changes in STP until inhibitory synaptic weights strengthen and subsequently decrease280

the postsynaptic firing rate to the target rate, and the cycle starts over. Eventually, the STP parameter values reach the281

final (experimentally observed8) STF parameter values (given in Table 2).282

For both the fixed-STF and fixed-STD simulations, STP parameters at all excitatory synapses were set to depression283

and facilitation (Table 2), respectively, for the duration of the simulation.284

Further, we quantified the level of “pathological activity” in all three models as the cumulative difference between285

the observed firing rate and the target firing rate for all input channels (Fig. 2g.i). We also considered the variability of286

firing rates, i.e. the coefficient of variation (standard deviation divided by the mean) of the firing rates averaged across287

10s bins using a sliding window (Fig. 2g.ii).288

Variants of developmental STP model289

We conducted additional simulations to test three variants of the dev-STP model introduced above. In the first control290

variant we normalized the steady-state PSP amplitudes when using a 5 Hz presynatic Poisson input (Fig. S2) instead of291

normalizing to the first PSP. STP parameters in this dev-STP model were modified over development as described above.292

In this variant, the fixed-STF model displayed a lower initial firing rate than that of the standard model (Fig. S2b), failing293

to reach the ISP target rate and experimentally observed firing rates in young animals27–30. Receptive field development294

in this variant is otherwise qualitatively similar to our dev-STP model, if somewhat more slowly (Fig. S2g).295

In the second control variant we normalized the steady-state PSP of both STD and STF to be equal when using a296

10Hz (instead of 5Hz as in the standard model) presynatic Poisson input (Fig. S3). In this case, STF was weakened297

enough that fixed-STF in young animals exhibited firing rates near the ISP target rate as observed experimentally27–30.298

However, because of weakened STF, the model failed to develop fine-tuned tuning curves over development (Fig. S3f-h).299

Finally, we tested a variant of our model in which the developmental shift from STD in young neurons to STF in300

adult neurons was not activity-dependent. Instead, we altered the dev-STP model to a model in which STP changes301
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occurred at fixed intervals of 3 seconds (Fig. S4e). If these changes occur too frequently, unstable dynamics unfolded so302

some fine tuning of how often STP changes was required. This third variant also produced qualitatively similar results303

to our standard dev-STP model (compare Fig. S4, Fig. 2).304

Excitatory and inhibitory tuning curves305

To calculate the excitatory and inhibitory tuning curves, we monitored the excitatory and inhibitory conductances for306

each of the 8 input channels separately, and calculated the respective currents using307

Iexc
k (t) = gexc

k (t)(Eexc − V (t))

I inh
k (t) = ginh

k (t)(Einh − V (t)) + gleak(Vrest − V (t))/K

(7)

where Iexc
k (t) and I inh

k (t) are the excitatory and inhibitory currents and gexc
k (t) and ginh

k (t) are the excitatory and308

inhibitory conductances of the k-th channel at time t, respectively21. Eexc and Einh are the excitatory and inhibitory309

reversal potentials, respectively. V (t) is the postsynaptic membrane potential at time t, gleak is the leaky conductance,310

and Vrest is the resting membrane potential. After calculating the excitatory and inhibitory currents for each channel311

at all time points, we averaged the excitatory and inhibitory currents across 10 seconds to generate the tuning curves312

shown in the figures.313

Output response dynamics across development314

To measure how the neuron output response changed over the course of simulated development, we stopped the dev-STP315

simulation (Fig. 2) at 10s, 500s, 1,000s, 2,000s, 10,000s, and 30,000s simulated time and examined the neuron response316

dynamics of the model. For each snapshot, we ran 50 step current trials with frozen parameters and compared the317

average firing rates of the dev-STP scenario with those of the fixed-STD and fixed-STF scenarios (Fig. 4b).318

To investigate how input tuning changed over development, we calculated the cross correlations between the input319

and output rates for each of the 8 channels21. We obtained the correlation range by subtracting the minimum from the320

maximum correlation and normalized the range by dividing by the mean correlation of all channels with the output321

(Fig. 4d).322

Signal transmission across development323

To investigate signal transmission across development, we presented a 250ms long 150Hz input stimulus to the preferred324

input channel every 100 seconds of the dev-STP simulation (Fig. 2). We analysed the output firing rates during the first325

50ms after stimulus onset (phasic period) and the remaining 200ms afterwards (tonic period); Fig. 5b,c). We also tested326

a double step input stimulus, two 250ms 150 Hz input stimuli separated by 250ms of spontaneous activity (Fig. 5d,e).327
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Temporal precision simulations328

We compared the temporal precision of postsynaptic spikes in our model with experimental observations25. To this329

end, we stimulated the preferred channel (5) of the output neuron with a 200ms step current, imitating a pure tone in330

the preferred frequency in the auditory cortex25. To quantify the temporal precision of the response, we calculated331

the standard deviation of the delay between the stimulus onset and the first postsynaptic spike, denoted as the jitter25.332

To allow comparison across different firing rates, we also calculated a normalized jitter, i.e., the jitter’s coefficient of333

variation. The normalized jitter was compared for different preferred-channel stimulus strengths as well as for varying334

spontaneous activity levels (Fig. 6c-e).335

Working memory336

To test for working memory-like properties, we used two simulation protocols. In the “memory preloaded” trials,337

we stimulated the neuron with a 300ms long 150Hz steady state stimulus (a memory) in the preferred channel. All338

remaining channels received spontaneous rates at 5Hz. After the memory preloading period, the preferred channel input339

received spontaneous firing rate inputs for a 300ms delay period, followed by a weaker, 100ms long 50Hz “recall cue”340

stimulus. For “control” trials, the input channels of the neuron only received the 100ms recall cue, to the preferred341

channel, without preloading.342

We then compared the firing rates during recall between the memory preloaded and control trials, to study the ’silent’343

working memory effects in our model. We tested this throughout simulated development, by freezing the dev-STP344

simulation every 50s and simulating 500 trials of the memory-preloaded simulations and 500 trials of the control345

simulations.346

Simulator347

Simulations were conducted in Python using Brian Simulator 2. Code to reproduce our key findings is available at348

github.com/djia/dev-stp.349
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Figure S1: Details of the cortical circuit and plasticity models. (a) Schematic of a single channel feedforward circuit
with correlated excitatory and inhibitory input, and the respective forms of plasticity. (b) Feedforward neural circuit
with 8 channels and correlated excitatory and inhibitory inputs. (c) Left: example of input given to the 8 channel
feedforward neural circuit; right: excitatory tuning curve strength for each of the 8 channels. (d) Each of the four
STP parameters, τD, τF , U , and f resulting in different paired-pulse ratios (PPRs) (Table 2). Parameters matching the
young (orange star) and adult (purple triangle) STP PPRs as used in the dev-STP model are highlighted. (e) Example
postsynaptic potential traces for the STP parameter values of both young (i) and adult animals (ii; cf. d).
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Figure S2: Developmental STP model with depression and facilitation normalized to the steady-state firing rate
at 5Hz input. (a) Schematic of our developmental short-term plasticity (STP) model (cf. Fig. S1); top: young and
adult STP (as in Fig. 1); bottom: gradual changes in STP from depressing to facilitating dynamics (orange and purple
respectively, in log-scale as in b-f). (b-f) Different variables of the model across simulated development for three
different models: fixed short-term depression (fixed-STD, orange), fixed short-term facilitation (fixed-STF, purple) and
developmental model with gradual changes in STP (dev-STP, green line). Note x-axis on log-scale. (b) Receiver neuron
firing rate. (c) Mean inhibitory weight. (d) Mean changes in the weight of the inhibitory synaptic afferents. (e) Rate of
STP change (note that both fixed-STF and STD remain fixed, shown as dashed lines). (f) Area between normalised
excitatory and inhibitory tuning curves (cf. h-j) during the course of simulated development. A normalised area close
to 0 represents a perfectly balanced neuron. (g) Additional statistics for the three models. (i) Total neuronal activity
calculated using the area between the firing rate in (b) and the desired target rate of 5 Hz. (ii) Average coefficient of
variation of the firing rates across simulated development (cf. (b)). (iii) Percent of time spent under homeostasis (i.e. at
the desired firing rate; cf. (b)). (iv) Average change in inhibitory weights (cf. (d)). (h-j) Snapshots of excitatory and
inhibitory tuning curves across three points in simulated development: 10s (star), 1000s (square) and 10 000s (triangle).
Shaded gray area represents difference between excitatory and inhibitory tuning curves (cf. (f)). (h-j) Excitatory (red)
and inhibitory (blue) postsynaptic tuning curve for the fixed-STD (h), fixed-STF (i) and dev-STP models (j).
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Figure S3: Developmental STP model with depression and facilitation normalized to the steady-state firing rate
at 10Hz input. (a) Schematic of our developmental short-term plasticity (STP) model (cf. Fig. S1); top: young and
adult STP (as in Fig. 1); bottom: gradual changes in STP from depressing to facilitating dynamics (orange and purple
respectively, in log-scale as in b-f). (b-f) Different variables of the model across simulated development for three
different models: fixed short-term depression (fixed-STD, orange), fixed short-term facilitation (fixed-STF, purple) and
developmental model with gradual changes in STP (dev-STP, green line). Note x-axis on log-scale. (b) Receiver neuron
firing rate. (c) Mean inhibitory weight. (d) Mean changes in the weight of the inhibitory synaptic afferents. (e) Rate of
STP change (note that both fixed-STF and STD remain fixed, shown as dashed lines). (f) Area between normalised
excitatory and inhibitory tuning curves (cf. h-j) during the course of simulated development. A normalised area close
to 0 represents a perfectly balanced neuron. (g) Additional statistics for the three models. (i) Total neuronal activity
calculated using the area between the firing rate in (b) and the desired target rate of 5 Hz. (ii) Average coefficient of
variation of the firing rates across simulated development (cf. (b)). (iii) Percent of time spent under homeostasis (i.e. at
the desired firing rate; cf. (b)). (iv) Average change in inhibitory weights (cf. (d)). (h-j) Snapshots of excitatory and
inhibitory tuning curves across three points in simulated development: 10s (star), 1000s (square) and 10 000s (triangle).
Shaded gray area represents difference between excitatory and inhibitory tuning curves (cf. (f)). (h-j) Excitatory (red)
and inhibitory (blue) postsynaptic tuning curve for the fixed-STD (h), fixed-STF (i) and dev-STP models (j).
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Figure S4: Developmental STP model in which STP changes are pre-defined. (a) Schematic of our developmental
short-term plasticity (STP) model (cf. Fig. S1); top: young and adult STP (as in Fig. 1); bottom: gradual changes in STP
from depressing to facilitating dynamics (orange and purple respectively, in log-scale as in b-f). (b-f) Different variables
of the model across simulated development for three different models: fixed short-term depression (fixed-STD, orange),
fixed short-term facilitation (fixed-STF, purple) and developmental model with gradual changes in STP (dev-STP, green
line). Note x-axis on log-scale. (b) Receiver neuron firing rate. (c) Mean inhibitory weight. (d) Mean changes in the
weight of the inhibitory synaptic afferents. (e) Rate of STP change (note that both fixed-STF and STD remain fixed,
shown as dashed lines). (f) Area between normalised excitatory and inhibitory tuning curves (cf. h-j) during the course
of simulated development. A normalised area close to 0 represents a perfectly balanced neuron. (g) Additional statistics
for the three models. (i) Total neuronal activity calculated using the area between the firing rate in (b) and the desired
target rate of 5 Hz. (ii) Average coefficient of variation of the firing rates across simulated development (cf. (b)). (iii)
Percent of time spent under homeostasis (i.e. at the desired firing rate; cf. (b)). (iv) Average change in inhibitory weights
(cf. (d)). (h-j) Snapshots of excitatory and inhibitory tuning curves across three points in simulated development: 10s
(star), 1000s (square) and 10 000s (triangle). Shaded gray area represents difference between excitatory and inhibitory
tuning curves (cf. (f)). (h-j) Excitatory (red) and inhibitory (blue) postsynaptic tuning curve for the fixed-STD (h),
fixed-STF (i) and dev-STP models (j).
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Figure S5: Developmental STP shapes firing statistics. (a) Input activity for each of the 8 channels over 3 seconds.
Activity at the start of simulated development (i, young condition) and after 8 hours of simulation (ii, adult condition)
as in Fig. 2; color code represents firing rate of input. (b-d) Raster plot of receiver neuron for fixed-STD model (b),
fixed-STF (c) and developmental STP model (d). (e-g) Summary statistics of the three models (as in b-d) for both
young (i) and adult conditions (ii). (e) Coefficient of variation of the inter-spike intervals. (f) Average firing rates of the
receiver neuron over 50 trials. (g) Average net current of the receiver neuron.
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Figure S6: Spike rasters for step inputs at various snapshots. (a) Spike responses to two 150Hz step inputs to the
preferred channel when using the dev-STP model at 100s (i), 2,500s (ii), and 10,000s (iii); color bars on top represent
the time at which the step inputs were given; the first 50ms corresponds to the phasic activity (red), and the rest of the
input time period to the tonic activity (cyan); b Firing rates of the spikes in (a) averaged across trials using 5ms bins.
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