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Abstract 16 

This article describes the adaptation of a non-spatial model of pastureland dynamics, including 17 

vegetation life cycle, livestock management and nitrogen cycle, for use in a spatially explicit and 18 

modular modelling platform (k.LAB) dedicated to make data and models more interoperable. The 19 

aim is to deliver an existing, locally successful monolithic model, into a more modular, 20 

transparent and accessible approach to potential end users, regional managers, farmers and other 21 

stakeholders. This allows better usability and adaptability of the model beyond its originally 22 

intended geographical scope (the Cantabrian Region in the North of Spain). The original model, 23 

named Puerto, is developed in the R language and includes 1,491 lines of code divided into 13 24 

script files and linked to 19 input tables. The spatiotemporal rewrite is structured around a set of 25 

10 namespaces called PaL (Pasture and Livestock), which includes 198 interoperable but 26 

independent models. The end user chooses the spatial and temporal context of the analysis 27 

through an intuitive web-based user interface called k.Explorer. Each model can be called 28 

individually or in conjunction with the others, by querying any PaL-related concepts in a search 29 

bar. A scientific workflow is built as a response, which is run to produce result datasets and a 30 

report with information on the data sources and modelling processes used, delivering results with 31 

full transparency. We argue that this work demonstrates key steps needed to create more 32 

Findable, Accessible, Interoperable and Reusable (FAIR) models. This is particularly essential in 33 

environments as complex as agricultural systems, where multidisciplinary knowledge needs to be 34 

integrated across diverse spatial and temporal scales in order to understand complex and 35 

changing problems. 36 

 37 

Introduction 38 
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Extensive farming, when paired with the conservation of natural vegetation, has historically been 39 

capable of sustaining food production in agricultural areas while maintaining ecosystems in good 40 

condition (European Environment Agency, 2004; Hendrickson et al., 2008; Lemaire et al., 2014). 41 

Since the 1950s, the increase of labour costs and beginning of widespread mechanisation and 42 

fertilizer application in the developed countries (Hayami & Ruttan, 1971; Billen, Lassaletta & 43 

Garnier, 2014) led to important changes such as the intensification of land use and the expansion 44 

of farming scale. This paradigm shift benefited from the European Union's Common Agricultural 45 

Policy (CAP) subsidies scheme. These policies simultaneously contributed to disincentivizing low-46 

input land uses, causing land abandonment and afforestation in extensive agricultural areas, while 47 

also decreased agricultural commodity prices due to overproduction of intensive farming (Strijker, 48 

2005; Pe’er et al., 2014). 49 

 50 

Today, multiple human activities, such as urban development and tourism, are adding further 51 

pressures to ecosystems in addition to the increased productivity of intensive agriculture. These 52 

activities are moving pasture from mountain areas (Daugstad, Mier & Peña-Chocarro, 2014) to 53 

more accessible locations closer to urban centres (Fernández-Giménez & Fillat Estaque, 2012). 54 

Agricultural intensification in concentrated areas is threatening ecological sustainability and the 55 

provision of ecosystem services (van Zanten et al., 2014; Balbi et al., 2015). Such pressures are 56 

leading to ecosystem degradation by reducing biodiversity and threatening species linked to low-57 

intensive agricultural production (Pimentel et al., 1992; Donald, Green & Heath, 2001; Henle et 58 

al., 2008), and by depleting plant resources, increasing contamination by leachate and soil erosion 59 

(Pimentel et al., 1995; Kumar et al., 2005; Tan, Lal & Wiebe, 2005; Rosegrant, Ringler & Zhu, 60 

2009; Cordell, Drangert & White, 2009). 61 

 62 

At the same time, farmland abandonment in rural areas can cause: (i) loss of woodland clearings, 63 

(ii) increased fuel loads and fire hazards and (iii) negative impacts on biological diversity 64 

(MacDonald et al., 2000; Casasús et al., 2007). The improvement of farmers’ socio-economic 65 

conditions, extensive farming evolution and the balance with the environment require more 66 

efficient use of pastoral vegetation, including proper livestock management (grazing rotations by 67 

species and across time and space (Gibon, 2005)) and the controlled use of fire to preserve 68 

pasture availability (López, 2002; López-Sáez et al., 2016). The lack of quantitative tools for the 69 

analysis of such processes has been a major limitation for smarter and more sustainable 70 

management of mountain pastureland (Bernués et al., 2011). 71 

 72 

Agricultural production systems have benefited from technological advances primarily developed 73 

for other industries such as mechanization, synthetic fertilizers, genetic engineering and 74 

automation. The information age brings new technology that can transform agriculture to low-75 

input, high-efficiency and sustainable systems (Zhang, Wang & Wang, 2002; Balbi et al., 2015), 76 

such as cloud computing, remote sensing and artificial intelligence (Putfarken et al., 2008; 77 

Janssen et al., 2017; Kamilaris, Kartakoullis & Prenafeta-Boldú, 2017). The agricultural industry 78 

is now capable of gathering more comprehensive data on production variability across both space 79 

and time (Angelov, Iglesias & Corrales, 2018). Data and models can play an important role in 80 

sustainable agriculture, optimizing resources, providing key spatial-temporal information and 81 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 26, 2021. ; https://doi.org/10.1101/2021.02.23.432363doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.23.432363
http://creativecommons.org/licenses/by-nc-nd/4.0/


identifying the most appropriate and effective practices for better management (Vries, Teng & 82 

Metselaar, 1993). 83 

 84 

One main issues preventing the full use of these new technologies in agricultural modelling arises 85 

from the multidimensional nature of needed data and models that are produced by different 86 

scientific domains from climatology to ecology and social sciences (Farina, 2000). Although an 87 

agricultural system can be designed for a specific purpose, such as crop production or animal 88 

breeding, understanding it requires knowledge from diverse fields (e.g., agricultural production, 89 

natural resources and human factors) (Argent, 2004; Jones et al., 2017). These components 90 

cannot be studied in isolation (Hieronymi, 2013), since they interact with each other and with 91 

their environment (Wallach et al., 2019). 92 

 93 

The Puerto model (Busqué, 2014) was created in response to some of the above-mentioned 94 

agricultural systems challenges. The Puerto model was developed at the Centre for Agricultural 95 

Research and Training of Cantabria (CIFA) as part of its research on the structure, growth and 96 

utilization of pastures in the Cantabrian rangeland (Marcos, Lodos & Rodríguez-Arango, 2003). 97 

Puerto is an empirical dynamic model based on established biophysical relationships and 98 

constants between vegetation’s life cycle (including growth, senescence death and litterfall), 99 

livestock grazing process (livestock ingestion, digestion, excretion and weight change) and the 100 

nitrogen cycle (nitrogen uptake, soil cycling and leaching). It evaluates existing nitrogen and 101 

grazing imbalances (under- or overgrazing) and their relationship with animal productivity. 102 

Puerto’s four main goals are to: (i) provide a tool to support pastoral management; (ii) quantify 103 

and assess grazing system and nitrogen cycle imbalances; (iii) enable managers to develop 104 

strategies to resolve imbalances; and (iv) visualize the effects of management actions through 105 

scenarios. This model has proven to be a valuable tool for modelling pastureland in Cantabria and 106 

was used in several regional projects (Busqué, Fernández & Fernández, 2006; Bedia, Cabañas & 107 

Busqué, 2009) at different temporal and spatial scales. Although its reliability and usefulness 108 

have been validated and improved over the years, this model is essentially inaccessible to a non-109 

initiated programming audience, and Cantabrian land managers must rely on technical 110 

consultancies to use it. Further, Puerto has always been used in isolation, never contributing to 111 

more comprehensive computational modelling workflows. We argue that these limitations arise 112 

from three choices made in Puerto’s modelling philosophy, which are typical to modern 113 

environmental modelling: 114 

1. the model’s interface is not user friendly, it is coded in R and is only usable by advanced 115 

R users, with each run requiring the modification of source files to point to input data; 116 

2. it is monolithic and cumbersome (1,491 lines of code divided into 13 script files and 117 

linked to 19 input tables), which makes understanding of its computational workflow 118 

difficult; 119 

3. it lacks transparency in the definition of multiple parameters, which lack semantics and 120 

appear as acronyms defined as fixed values in the code. 121 
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These limitations are common practice in most current scientific modelling exercises, which are 122 

not developed as Findable, Accessible, Interoperable and Reusable (FAIR) scientific artifacts 123 

(Parker et al., 2002; Wilkinson et al., 2016).At the same time, the importance of accessibility, 124 

interoperability and reusability of models and resources is increasingly recognized by modelling 125 

communities. While novel approaches are available to facilitate that (van Ittersum et al., 2008; 126 

Verburg, Eickhout & van Meijl, 2008; Ewert et al., 2009; Peckham, Hutton & Norris, 2013), 127 

none has yet reached the necessary levels of practicality, generality and community acceptance to 128 

make a dent into a still widespread model and data curation malpractice. 129 

 130 

The aim of this article is to demonstrate the implementation of Puerto into a semantic-first 131 

modelling approach, which aims to better achieve the FAIR criteria.  This redesign makes the 132 

models, from now on referred to as the Pasture and Livestock (PaL) namespace(s), and their 133 

results more accessible to end users such as farmers and policy-makers. PaL is written in k.IM, a 134 

semantic modelling language designed for the k.LAB modelling platform. K.LAB is powered by 135 

artificial intelligence, and in particular by machine reasoning, for the interoperability of data and 136 

models (Villa, 2007; Villa et al., 2017). PaL will be part of ARIES (ARtificial Intelligence for 137 

Environment and Sustainability), the best known application of k.LAB (Villa et al., 2014; 138 

Bagstad et al., 2014). ARIES is an open-source platform for interoperable models and data 139 

backed by an international and multidisciplinary community, producing a web-based platform 140 

linking, synthesizing and providing easy access to integrated knowledge to address a wide range 141 

of sustainability problems. In this article, we describe the PaL implementation and its application 142 

to a study area in Northern Spain. In the methods section, we describe the key requirements and 143 

distinctions of the semantic modelling approach as applied to Puerto and PaL. Our results 144 

compare the outputs of Puerto and PaL when applied to a region in eastern Cantabria and 145 

illustrate key end-user features of the k.LAB modelling environment. Finally, our discussion and 146 

conclusions describe implications of this approach for environmental modelling more generally 147 

and agricultural modelling specifically. 148 

 149 

Materials & Methods 150 

Study area 151 

The study area was selected to match the location where the original model has been most 152 

frequently applied. The Pas, Miera, and Ason watersheds (43°20′36″N, 3°44′28″W) are adjacent 153 

to the Cantabrian mountain range in the eastern Cantabria region, covering a terrestrial, riverine 154 

and estuarine system of 173,700 ha (Fig. 1). This study area, with its river basins draining into 155 

the Cantabrian Sea, has a temperate hyper-oceanic climate, defined mainly by mild temperatures 156 

and high humidity due to regular precipitation and fog. Although the average annual temperature 157 

is 14º C, snow is common in the mountains from late autumn to early spring. 158 

 159 
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This unique landscape is a product of the combined use of fire and livestock grazing for over 400 160 

years (Montserrat & Fillat, 1990). As a consequence, almost 75% of the landscape consists of 161 

managed grasslands and shrublands, relegating mature forests to headwater basins and marginal 162 

lands with low agricultural value on steeper slopes. The pastoral lands are dominated by nine 163 

pastureland types and multiple livestock types, including cattle and mares (Fig. 2). 164 

  165 

There are three climatic sub-regions influenced by the mountain ranges (including the “Picos de 166 

Europa” mountain range) and the ocean. The coastal zone, which is under high human pressure, 167 

has widespread grasslands and eucalyptus plantations (Eucalyptus globulus) on gentle slopes. 168 

The central part is the most rugged, with elevation ranging between 100-1200 m a.s.l., dominated 169 

by semi-extensive pastures grazed by livestock. Large areas are occupied by Ulex europaeus, 170 

Erica tetralix, Pteridium aquilinum or Carex asturica and productive plantations of Pinus 171 

radiata. The mountain ranges in the south, with steep slopes and a more complex management, 172 

have a great diversity of plant communities used by livestock. 173 

Model description 174 

The Puerto Model 175 

Puerto’s main code can be divided into four components. The first component consists of climate, 176 

topography and soil, which affect vegetation growth and livestock ingestion of forage. The 177 

second part captures the entire life cycle of vegetation including growth, senescence and litterfall. 178 

The third component focuses on the nitrogen cycle, including mineralization, plant reabsorption 179 

and leaching. Finally, the last component describes grazing, ingestion, weight variation, and 180 

excretion of manure and urine of livestock. 181 

 182 

Puerto needs with a substantial set of input data and parameters to be initialized, derived from 183 

literature or field measurements, related to vegetation, soil, climate, the nitrogen cycle and, 184 

optionally, livestock management. In total, it requires 56 data inputs as tables and 27 constant 185 

parameters. After initialization, it executes dynamic transitions over a modeller-defined temporal 186 

horizon, by daily timestep for entire years, simulating the management of pastoral systems. 187 

Outputs are produced as R tables associated with each management unit of pastureland, such 188 

tables can be transformed into vector data by a technician proficient in Geographical Information 189 

System (GIS) software so that the results can be displayed spatially. 190 

The Pasture and Livestock namespaces 191 

The Pasture and Livestock (PaL) namespaces provide an integrated modelling framework for the 192 

Puerto model designed to better adhere to the FAIR Principles while making the model more 193 

accessible for nontechnical users. They operate under the k.LAB open-source software platform 194 

and k.IM semantic annotation and modelling language (Table 1) (Villa, 2007; Villa et al., 2017) 195 

the only programming language using  semantics as the primary organizational principle. The 196 
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k.LAB platform connects a network of data, models, and semantic resources distributed globally 197 

on the semantic web. The code of PaL in k.IM language is available online at the Bitbucket 198 

repository (https://bitbucket.org/integratedmodelling/im.ecology.grassland.livestock/). 199 

 200 

Semantics are used to annotate all resources (i.e., data and model components) in PaL 201 

namespaces, using a well-established and expert-vetted vocabulary (Arp, Smith & Spear, 2015). 202 

The concepts used to build the model components and to represent data are not built specifically 203 

for a model, but come from a shared, network-accessible worldview which provides uniform 204 

definitions encompassing concepts and the relationships between them. The use of semantics to 205 

describe data and models enables an artificial intelligent algorithm to build meaningful 206 

connections between inputs and outputs by making inferences and ranking each model 207 

component for the best fit to the concepts required as input. Any resource available in k.LAB can 208 

be automatically and accurately interpreted by a receiving system (Martínez-López et al., 2019) 209 

as a response to a query. Such a modelling approach is modular by design, parsimonious and 210 

logically consistent, which makes the knowledge contained in the resources unambiguously and 211 

more transparently sharable while making the model more accessible for non-technical users. By 212 

providing a web-based query tool with intuitive spatial and temporal context selection 213 

(k.Explorer), the scientific information in models and data can be displayed in understandable 214 

and accessible fashion, without compromising on rigor and machine-readability of results. 215 

 216 

PaL is structured into 10 k.IM code files (namespaces), which integrate multiple data and models 217 

related to climatic growth limitations, vegetation’s life cycle, livestock grazing and the nitrogen 218 

cycle. PaL generates spatially explicit outputs at user-specified temporal and spatial scales. In 219 

case the user does not want to change the output characteristics, a set of default output properties 220 

is defined. These features are: spatial resolution of 50 meters, daily time step, time period 221 

between 2018 and 2050. Each model finds its input data on the network, previously annotated 222 

from international and recognized data providers from regional to global scale and from the 223 

literature; the choice of data is done by the k.LAB AI based on fit to the context and the scale 224 

chosen by the user. The user can also provide data to override any of the PaL components, be 225 

them input datasets or computational logics for each of the concepts involved in the model. 226 

Outputs include multiple open-source models, algorithms and spatial outputs of primary interest 227 

to pastureland managers. For example, selected results include the amount of above and below 228 

ground biomass of vegetation, concentration of nitrogen leaching or livestock weight gain. These 229 

outputs can be used for quantitative analysis of pastureland sustainability (or assessment of 230 

farmland requirements and tradeoffs). The set of namespaces in PaL consists of 10 thematic 231 

namespaces that describe the interactions between vegetation, animals and their environment 232 

(Fig. 3, Table 2). 233 

 234 

Each namespace, in turn, is composed of several model components that each describe one 235 

concept involved in the PaL logical structure, for a total of 198 models that are logically 236 

consistent, self-contained and can run independently. The dependencies between models are 237 
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defined at the purely logical level as concepts, and are resolved at the moment of execution by 238 

the k.LAB engine: if needed, the modeler can influence the choice using well-defined scoping 239 

rules.  When dependencies cannot be satisfied within the same namespace or project, or within 240 

user-provided data and models, the k.LAB engine will look for ways to satisfy them by looking 241 

up models from the network and ranking them for appropriateness to the context. The ability to 242 

access the entire k.LAB semantic web enacts a fully distributed, interoperable chain of 243 

computation that minimizes the effort involved in producing results without compromising on 244 

quality, transparency or traceability. 245 

 246 

In this particular implementation, all models are deterministic, using equations and look-up tables 247 

derived from the literature and expert knowledge. For example, the simplest namespace, the 248 

Radiation module (Table 2), is composed of the “Solar Radiation over Vegetation” model, which 249 

includes three different component models. Each of these sub-models generates an output and, at 250 

the same time, is interoperable with others to generate more complex models, such as the “Solar 251 

Radiation limiting factor causing Vegetation Growth” model (Fig 4). 252 

 253 

In addition, each of these models interact with other namespaces. For example, Figure 5 shows 254 

the model of “Nitrogen in living aboveground biomass caused by cattle solid manure” from the 255 

'Excretion' namespace (Table 2), which is composed of three different models that are developed 256 

within other namespaces. For example, “Proportion of Living AboveGround Biomass in Cattle 257 

Digestion” is located within the “Livestock mass” namespace while ‘Proportion of Nitrogen in 258 

Living AboveGround Biomass ’is in the “Nitrogen” namespace and ‘Living AboveGround 259 

Biomass causing Cattle Ingestion’ in “Ingestion.” 260 

 261 

In this way, each namespace is composed of models that can run independently, unlike Puerto’s 262 

original monolithic structure. This semantic-driven interoperability allows each model to 263 

interoperate with models from the same namespace or from different ones, according to the 264 

projects available in the k.LAB resource network and ARIES project. For example, the nitrogen 265 

leaching model can interoperate with a runoff model from an independently developed 266 

hydrological modelling project, automatically connecting knowledge across these projects. 267 

Consistency is maintained through the semantic infrastructure, generating an integrated response 268 

to user queries and scenarios. 269 

 270 

PaL namespaces use spatially explicit data (raster and vector) and look-up tables as input files. 271 

Most of the data come from field-validated expert knowledge, including for instance the raster 272 

dataset of main pastureland species. Open-source data from global to local scale with different 273 

temporalities can complement the model when local parameters are missing, such as the raster 274 

data describing soil texture. Based on the user-defined spatial and temporal context, k.LAB 275 

changes the spatial resolution and harmonizes the spatial reference of input data on the fly. Each 276 

input dataset can thus have different spatial and temporal resolution, which are automatically 277 

mediated by the system based on a given user query. 278 
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 279 

To use the model in dynamic mode, PaL requires climate data for the entire model timeline. The 280 

rest of the inputs are only needed at initialization, because PaL generates the transitions based on 281 

the declared algorithms. 282 

 283 

Results 284 

The main result of PaL, the k.LAB-compatible recoded version of Puerto, is the ability to 285 

calculate any of the 198 component models independently and quickly; making them reliably 286 

available to stakeholders with minimal work (depending on the model, from seconds to 6 minutes 287 

at 50 meters’ spatial resolution). The results generate parameters with self-explanatory variable 288 

names, thanks to the k.IM semantic language (Table 1). Both the data sources and the algorithms 289 

used as inputs for the results are automatically generated, and are publicly available and 290 

downloadable, giving the users additional information to interpret and communicate model 291 

results and maintain quality control (see “End-user features” below). 292 

 293 

In the following sections, we describe the main outputs of each PaL namespace for the 294 

Cantabrian Pas, Miera, and Ason watersheds, thus emphasizing the importance of taking a 295 

systems approach in agricultural modelling. The main outputs are temporally explicit raster data 296 

produced on demand for the context of analysis (including the selected spatial and temporal 297 

scales). As the graphical outputs of the Puerto model are limited, predetermined and based on a 298 

monolithic code structure, it is difficult to directly compare all the PaL model results with those 299 

of the original Puerto model. However, we can validate some of the PaL results that directly 300 

match the final Puerto outputs. For this, the Puerto results had to be postprocessed to give them 301 

spatial dimension, the R-generated outputs are not spatially explicit. 302 

 303 

The PaL models outputs have been run at the default spatial resolution of 50 meters using mean 304 

climate values for May 2018. The entire list of the models is in the Supplementary Material 1 and 305 

the code in Bitbucket repository 306 

(https://bitbucket.org/integratedmodelling/im.ecology.grassland.livestock/). 307 

Model outputs 308 

Factors limiting Vegetation Growth 309 

The "Factors limiting Vegetation Growth" model is composed of three main models: Moisture, 310 

Radiation, Temperature and Nitrogen (Fig. 6). These dynamic models quantify climatic and soil 311 

conditions’ control of potential vegetation growth. Vegetation growth follows an annual cycle 312 

influenced by seasonal patterns and extreme weather events. These models thus depend on time 313 

and can help to forecast changes in vegetation behaviour with climate change, as seasons shift 314 

and extreme events become more frequent. Moreover, factors limiting vegetation growth are 315 

affected by the spatial distribution of vegetation, which is influenced for example by the presence 316 
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of mountain ranges. These effects are complex: soil characteristics affect water content, aspect 317 

affects shade patterns and the incidence of radiation, and elevation affects the temperatures and 318 

precipitation levels to which plants are exposed. 319 

 320 

Figure 6 shows the influence of each variable managed vegetation growth in May 2018. While 321 

soil moisture (Fig. 6B) and solar radiation incidence (Fig. 6D) positively affect vegetation growth 322 

(except in some shaded areas in the case of solar radiation incidence), temperature (Fig. 6A) has 323 

an increasing influence with elevation and nitrogen is the most uniformly limiting factor (Fig. 324 

6C). 325 

 326 

Puerto does not provide these results in spatial form. An expert in R can extract the R internal 327 

table (Table 3), which contains outputs of the limiting factor for climate. The table indicates: 328 

 the observed plot ("IDMancha"),  329 

 the code of the main (“com”) and overstory (“com2”) vegetation, in case there is one,  330 

 the timeline, starting at the first of January of the year determined by the modeller, 331 

 the mean parameter corresponding to Temperature (“FT”), Radiation (“FR”), Moisture 332 

(“FH”) and Nitrogen (“FN”) as vegetation limiting factor for each observed plot, vegetation 333 

type, time. 334 

 335 

In this case, users can link the plot identification to a vector dataset to know where the plots are 336 

located. We do not know the distribution of vegetation within each plot. 337 

Vegetation 338 

The entire vegetation life cycle - including growth, senescence, and litterfall - is composed of 339 

three different namespaces which include 44 component models. Vegetation life cycle is affected 340 

not only by climate, but also by livestock activity, nutrient uptake and human intervention, in 341 

particular by harvesting or fertilization cycles. With PaL, we can estimate the evolution of the 342 

parameters in each grid cell over time, depending on the type of vegetation. This group of models 343 

can be run with or without human and animal influence.  344 

 345 

Figure 7A shows the potential vegetation growth under climatic factors (temperature, solar 346 

radiation and soil moisture). The results of Figure 7B are the actual growth model, based on 347 

potential growth but also taking into account nitrogen limitation and the influence of livestock on 348 

the grazing areas. Two notable trends emerge – first, that maximum potential daily vegetation 349 

growth is 5.29 grams per day, while actual growth is 1.58 grams per day. Second, the distribution 350 

of vegetation growth is heterogeneous, decreasing in mountainous areas than flatter areas (Figure 351 

7B). 352 

 353 

Puerto vegetation growth outputs include tables in R or graphical bar and line graph outputs (Fig. 354 

8). The information on monthly average vegetation growth (bars) and livestock ingestion (line) 355 

are shown for a period of years determined by the modeller, in this case, 5 years. Results are 356 
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aspatial, as compared to the spatially explicit outputs for a flexible, user-defined time period in 357 

PaL. 358 

Livestock 359 

The namespaces related to intake (Ingestion namespace), excretion (Excretion namespace) and 360 

variation of body mass (Livestock mass) of livestock include a total of 55 component models, 361 

including both cattle and mares. Key outputs include sustainability of the exploitation of pastures, 362 

biomass intake, the variation of livestock weight and the amount of excrement returned to the 363 

environment. Based on modelled livestock mass variation for cattle (Fig. 9A) and mares (Fig. 364 

9B), cattle are more affected by altitude and vegetation availability than mares. 365 

 366 

Results depend not only on vegetation type and life cycle, but also on the estimated number of 367 

animals on each hectare of land, competition between them, accessibility to the vegetation, and 368 

topography, among other influences. 369 

 370 

The Puerto version result for livestock (Figure 10) is the cumulative livestock mass variation per 371 

hectare and year for both mares (“Equino”) and cattle (“Vacuno”). Results are aggregated by 372 

grazing unit but are not spatially distributed as in the PaL model. 373 

Nitrogen Cycle 374 

The nitrogen cycle namespace includes all the models related to nitrogen in its different states 375 

and forms. The calculation of the nitrogen content in senesced leaves, mineral nitrogen present in 376 

the soil, nitrogen in livestock excrement and that used for plants are some of the models called on 377 

by this namespace. An interesting part of this namespace is the "Nitrogen leaching" model (Fig. 378 

11), which can interact with the models related to the water cycle within k.LAB for future studies 379 

of water quality and pasture management. The output of Puerto is an internal R table as Table 3. 380 

End-user features 381 

Output maps 382 

The first set of outputs provided to the end-user is a series of temporally explicit maps. 383 

Temporally dynamic outputs can be viewed using the “play” button at the bottom of the menu on 384 

the left side of Figure 12. A user can also view all the models computed as dependencies of the 385 

requested model. All results (main model and dependent models) can be downloaded in geotiff 386 

format or as an image. In addition, basic information is provided such as total grid size, cell size, 387 

temporality, total observed model area, symbology and colour ramp style with labelling and a 388 

histogram for each of the model’s inputs and outputs (Fig. 13).  389 

Data flow 390 

k.LAB creates an interactive data flow of the requested model that is built on the fly (Fig. 14). 391 

Thus, all the models and dependencies are shown. By clicking on each block of the data flow, 392 

more information is provided describing:  393 
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1) for resources (data sources), basic information about the data source. This is based on 394 

metadata contributed by users who have previously contributed data resources to the 395 

k.LAB network, including links back to the original data source; Fig. 15.A);  396 

2) for tables, each table’s composition (Fig. 15.B); and  397 

3) for parameterised models, the expression or algorithm used (Fig. 15.C).  398 

Report 399 

A printable report (Fig.16) is also created on the fly, collecting documentation from each model 400 

being run and adapting it to the results being calculated. Basic documentation about each model 401 

component is entered by each model’s contributor in k.LAB, which is called when the model is 402 

run and assembled into the report; the modellers’ documentation uses a template language that 403 

makes it possible to “react” to the results. This reporting facility complements the workflow 404 

graph in making the system transparent and reliable. The report follows the standard structure of 405 

a scientific article (introduction, methods, results, discussion, conclusion and references). It can 406 

include tables, figures or other elements, depending on the model, and can be downloaded in .pdf 407 

format. 408 

 409 

Discussion 410 

A sustainable balance between agricultural production and healthy ecosystems in agricultural 411 

landscapes has been challenging to achieve. The main difficulties can be linked to population 412 

growth and people’s increased demands for food, water and energy, the limited area of arable land 413 

to expand food production and increasing pressure on natural resources from various human 414 

activities (Zhang, Wang & Wang, 2002; Kitzes et al., 2008). These factors are further compounded 415 

by land degradation and water contamination, climate change, sub-optimal agricultural and land-416 

use policies and market fluctuations (Kendall & Pimentel, 1994; Laurance, Sayer & Cassman, 417 

2014). The PaL models developed in k.LAB can be used to improve the management of agricultural 418 

systems by: 419 

 integrating all the components of agricultural systems modelling in one platform, 420 

 simulating the effects of alternative resource use strategies, 421 

 improving the efficiency of low-input and intensive agricultural systems, and 422 

 improving accessibility and transparency of simulation models to stakeholders. 423 

 424 

The divergence in the time scales between farmer choices and environmental goals is a 425 

substantial management challenge. While farmers often need or want to fulfil their financial and 426 

land management objectives in the short term (i.e., months and seasons in this and the following 427 

year), environmental goals may take much longer to be reached (potentially years to decades). 428 

The temporal flexibility in modelling plays a key role to quantify short- and long-term processes 429 

in both the agricultural system and the environment. As we show in this article, the k.LAB 430 

approach ensures semantic consistency in temporal data, from historical observations to future 431 

scenarios, to respond to these needs in different situations. Moreover, the PaL namespaces could 432 

be expanded to simulate environmental disturbances, disease spread, climatic change and 433 

simulated management plans to deal with such challenges, building on the existing PaL 434 
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namespaces and without having to change any of them and its models. For example, providing a 435 

model for “change in X” is all it takes to make a previously static model of concept X dynamic, 436 

as the k.LAB engine will automatically insert it in the workflow whenever the context is 437 

computed over multiple timesteps. 438 

 439 

Because environmental modelling, including pasture and livestock simulation, tends to be driven 440 

by the need to address case-specific issues, data and model reuse recommendations are often 441 

unclearly defined. Moreover, the collected data are often not made available to other researchers; 442 

when they are placed in public repositories data are often findable and accessible but lag in their 443 

interoperability and reusability (Borycz & Carroll, 2020). As a result, in the best case substantial 444 

manual GIS processing is required before a user can work with previously generated data; in the 445 

worst case data may be lost entirely after the modelling results are published. In this article, we 446 

demonstrate a semantics-first approach to harmonize data and models of livestock and 447 

pastureland, in order to make them interoperable (Villa et al., 2014). Thus, PaL’s modular 448 

approach allows models and data to be combined for specific purposes in one platform, making 449 

the simulation process more efficient by representing diverse pieces of knowledge in the same 450 

system, which is a common difficulty in agricultural modelling systems (Harrison et al., 2016). 451 

This is a significant improvement in dealing with the complex interdependencies between 452 

humans and nature in agricultural systems, where data come from different sources and 453 

knowledge domains as in the case study presented. 454 

 455 

The models, algorithms, data sources, and results described in this article are accessible to non-456 

technical users through a web browser application, k.Explorer – a substantial improvement from 457 

the previous edition of the Puerto model, which was only available to technical modelers 458 

proficient in the R programming language. As described in the “End-user features” section of the 459 

Results, this makes scientific information more easily understandable and accessible, bringing 460 

scientific research closer to society with greater transparency (Figs. 12-16). k.LAB is an open and 461 

collaborative technology aiming to expand and improve the availability of interoperable data and 462 

models across disciplines (Willcock et al., 2018; Martínez-López et al., 2019). This technology 463 

can be used to substantially improve agricultural data and models’ accessibility, harmonize them 464 

in order to facilitate their wider reuse, improve their quality and consistency. PaL namespaces are 465 

made available to both farmers and policy makers as an open, reusable and efficient toolbox. 466 

Modellers can contribute new data and models and the knowledge to ensure their appropriate 467 

reuse through a dedicated interface (Villa et al., 2014) - a collective effort to provide stakeholders 468 

with the needed tools to face the new challenges in agriculture systems (Matthews et al., 2007; 469 

Verburg, Eickhout & van Meijl, 2008). 470 

 471 

The versatility and flexibility of this approach encourages model reusability, which is particularly 472 

valuable to iteratively update assessments as newer or more reliable information becomes 473 

available. Data inputs made available in the k.LAB system can affect PaL modelling outputs and 474 

other ecosystem services models connected through semantics (Fig. 5). Both inputs and outputs 475 
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from the PaL namespaces can be automatically reused at different temporal and spatial scales, 476 

ranging from local analysis to national scales. 477 

 478 

While this article offers an integrated and semantic modelling adaptation of the original Puerto 479 

model, we note three limitations and complexities for the benefit of future investigations. First, 480 

input data needed to run PaL outside the Cantabrian case study region are available on the k.LAB 481 

network but may not have the same quality or resolution due when relying on global data. This 482 

could affect the reliability of PaL outputs when run outside the Cantabrian region.  Hence, we 483 

recommend further validation of model outputs in future applications. Second, the types of 484 

modelled pastureland vegetation and livestock are currently limited to certain classes (Figure 2). 485 

Third, some excessively complicated models (Sun et al., 2016) could be replaced by simpler 486 

ones. This would require more accessible cloud-hosted data, but would simultaneously decrease 487 

computational needs. 488 

 489 

This article demonstrated how agricultural modelling can be made more transparent and 490 

accessible. In particular, we showed how to run and produce results from the Pasture and 491 

Livestock (PaL) namespaces in the k.LAB modelling platform, capitalizing on a semantics-first 492 

approach (Villa et al., 2017). We applied this set of models to a case study in the Cantabrian 493 

region of Spain, where complex interactions among vegetation, livestock, and nitrogen need to be 494 

disentangled for improved agroecosystem management. Additional agricultural models can be 495 

incorporated and connected with the currently available PaL namespaces in the future. Some of 496 

these models may expand on other ecological aspects, such as pest, weed and disease spread or 497 

carbon and phosphorus cycling, which are closely linked to nitrogen. Others might expand on the 498 

microeconomics of farm operations, taking into account the cost-efficiency of management 499 

activities given farmers’ current economic status. Similarly, the existing namespaces can 500 

incorporate new input data related to vegetation and livestock species. Moreover, further research 501 

could analyse the interactions between PaL namespaces and other ecosystem service models, to 502 

fully capture the complex implications of pasture management patterns (Bagstad et al., 2014; 503 

Balbi et al., 2015; Martínez-López et al., 2019). 504 

 505 

Conclusions 506 

The evolution of agriculture and the challenges it faces, both in terms of productivity and 507 

ecological impacts, require focused efforts to design more sustainable agricultural systems. The 508 

case study in Cantabria addresses a set of environmental and agricultural management changes 509 

over the past decades. The current pressure of tourism and the trend of farmland abandonment are 510 

risking the balance between nature and society in these systems. One of the main challenges of 511 

this study was to combine, using a unified yet highly flexible and accessible approach, the 512 

biophysical, technical and management knowledge needed to analyse the current conditions and 513 

explore future trends. 514 

 515 
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In this article, we break down the original monolithic Puerto model, developed for managing 516 

rangelands in the Cantabrian region of Spain, into ten Pasture and Livestock k.LAB namespaces, 517 

composed of 198 models. We applied these a fine temporal and spatial scale over the case study 518 

area, the Pas, Miera and Ason watersheds in Cantabria, responding to the needs for modelling 519 

their extensive agricultural systems. To do so, we first provided insights into current and past 520 

agricultural trends derived from literature and expert knowledge regarding to the Cantabrian 521 

agroecosystem situation. Next, we developed an open and semantic modelling application for 522 

pasture and livestock modelling in the k.LAB platform. This provides stakeholders with an 523 

accessible and user-friendly web-browser with that better bridges the gap between technical 524 

scientific modelling and land managers. Accessible and context-dependent models can provide 525 

solutions for different needs, such as those of i) policy-makers, who can better monitor landscape 526 

performance and health, ii) farmers, who can simulate alternative management strategies and 527 

potential risks to farming production and devise adaptation strategies, and iii) scientists, who can 528 

contribute to greater knowledge reuse and application to on-the-ground decision making. 529 

 530 

This article elaborated the importance of overall modelling strategy and design for 531 

interoperability and reusability, showing how to improve the ease of use of scientific models and 532 

their application to decision making. Within a collaborative modelling system like k.LAB, all 533 

models are enhanced through wider community testing, reuse, and application to different 534 

contexts. Through wider reuse, models can become increasingly realistic, reliable and useful. 535 

This approach is applicable for a wide range of environmental modelling problems, though it is 536 

especially suitable for agricultural systems, where underlying data are gathered from different 537 

sources and domains, as it facilitates a transdisciplinary scientific approach to complex modelling 538 

and management problems. 539 
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Table 1: 
Comparison between R and k.IM language for the “Potential above ground biomass caused by 
growth” model. Colour coding in the k.IM language denotes different types of semantic meaning: 
brown denotes processes, green qualities, and blue attributes that can be combined to describe 
semantically meaningful scientific observables (Villa et al., 2017). 

Concept Language Code 

Potential 
above 
ground 
biomass 
caused by 
growth 

R 
setkey(Fhijt,com2);setkey(pl1$B3,com) 
T1<-pl1$B3[Fhijt][,.(IDMancha,com=i.com,com2=com,t,diay,FT,FR,FH,FTRH,xi,ph,prPerc, 
                                  crecpot=FTRH*xi*ph)] 

k.IM 

model im:Potential ecology:AboveGroundBiomass caused by biology:Growth in g/m^2 
'AboveGroundBiomass caused by Potential Growth' 
     observing  
 im:Maximum ecology:Biomass caused by biology:Growth in g/m^2 named xf, 
 percentage of ecology:Vegetation biology:Growth caused by ecology:VegetationLimitingFactor 

     named ftrh, 
 occurrence of ecology.incubation:PhenologyActivity named ph 
     set to [xf*ftrh*ph]; 
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Table 2: 
Description of PaL namespaces related to climatic growth limitations, vegetation life cycle, 
livestock grazing and nitrogen cycle. 

Namespace Description 

Moisture All processes involving the limitation of vegetation growth due to soil moisture. 

Radiation All processes involving the limitation of vegetation growth due to solar radiation. 

Temperature All processes involving the limitation of vegetation growth due to atmospheric temperature. 

Ingestion All processes related to grazing and digestion. 

Livestock mass Set of models related to livestock weight change. 

Excretion The process of livestock solid and liquid manure. 

Nitrogen Nitrogen concentration and nitrogen proportions in the N-cycle (including leaching and nitrogen 
uptake) 

Vegetation 
Growth 

Calculation of potential and actual vegetation growth depending on limiting abiotic factors 

Senescence Senescence process and quantity of the remaining, living biomass  

Litterfall Process related to dead plant material (harvesting, litterfall and dead biomass) 
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Table 1: 
Sample Vegetation Limiting Factor output from R table of Puerto model. 

IDMancha com com2 t FT FR FH FN 

442 9 9 1 0.701909 0.164 1 0.5 

442 14 14 1 0.701909 0.164 1 0.65 

442 28 28 1 0.701909 0.164 1 0.65 

458 7 7 1 0.701909 0.116 1 0.65 

458 13 13 1 0.701909 0.116 1 0.5 

IDMancha: observed plot;  
com: main vegetation;  
com2: overstory vegetation in case there is one;  
t: timeline, starting at the first of January of the year determined by the modeller;  
FT: the mean parameter corresponding to vegetation limiting factor caused by temperature;  
FR: the mean parameter corresponding to vegetation limiting factor caused by radiation;  
FH: the mean parameter corresponding to vegetation limiting factor caused by moisture;  
FN: the mean parameter corresponding to vegetation limiting factor caused by nitrogen.  
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