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Abstract 
Campylobacteriosis is among the world’s most common foodborne illnesses, caused predominantly by the bacterium 
Campylobacter jejuni. Effective interventions require determination of the infection source which is challenging as 
transmission occurs via multiple sources such as contaminated meat, poultry, and drinking water. Strain variation has allowed 
source tracking based upon allelic variation in multi-locus sequence typing (MLST) genes allowing isolates from infected 
individuals to be attributed to specific animal or environmental reservoirs. However, the accuracy of probabilistic attribution 
models has been limited by the ability to differentiate isolates based upon just 7 MLST genes. Here, we broaden the input 
data spectrum to include core genome MLST (cgMLST) and whole genome sequences (WGS), and implement multiple 
machine learning algorithms, allowing more accurate source attribution. We increase attribution accuracy from 64% using 
the standard iSource population genetic approach to 71% for MLST, 85% for cgMLST and 78% for kmerized WGS data using 
machine learning. To gain insight beyond the source model prediction, we use Bayesian inference to analyse the relative 
affinity of C. jejuni strains to infect humans and identified potential differences, in source-human transmission ability among 
clonally related isolates in the most common disease causing lineage (ST-21 clonal complex). Providing generalizable 
computationally efficient methods, based upon machine learning and population genetics, we provide a scalable approach 
to global disease surveillance that can continuously incorporate novel samples for source attribution and identify fine-scale 
variation in transmission potential.

Author summary 
C. jejuni are the most common cause of food-borne bacterial gastroenteritis but the relative contribution of different sources 
are incompletely understood. We traced the origin of human C. jejuni infections using machine learning algorithms that 
compare the DNA sequences of bacteria sampled from infected people, contaminated chickens, cattle, sheep, wild birds and 
the environment. This approach achieved improvement in accuracy of source attribution by 33% over existing methods that 
use only a subset of genes within the genome and provided evidence for the relative contribution of different infection 
sources. Sometimes even very similar bacteria showed differences, demonstrating the value of basing analyses on the entire 
genome when developing this algorithm that can be used for understanding the global epidemiology and other important 
bacterial infections.
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1 Introduction 

2 Campylobacter jejuni and Campylobacter coli are among the most common causes of gastroenteritis 

3 globally and are responsible for approximately nine million annual cases in the European Union (1,2). 

4 These zoonotic bacteria are a common commensal constituent of the gut microbiota of bird and 

5 animal species (3,4) but cause serious infections in humans. Symptoms include nausea, fever, 

6 abdominal pain, and severe diarrhoea, with potential for the development of debilitating, and 

7 sometimes fatal, sequelae (5,6). Various infection sources have been identified including animal 

8 faeces, contaminated drinking water and especially raw or under-cooked poultry and other meats (7). 

9 However, effectively combating disease requires a detailed understanding of the relative contribution 

10 of different sources to human infection. 

11

12 As in many other bacterial species, Campylobacter populations represent diverse assemblages of 

13 strains (3,8–10). Within this structured population, some lineages are more commonly observed in 

14 particular host species (3,4,11). Because of this host association, DNA sequence comparisons of 

15 bacteria from human gastroenteritis and potential reservoir populations have potential to reveal the 

16 infection source. This has identified contaminated poultry as a major source of human infection 

17 (12,13). Based on the body of evidence including DNA sequence analysis (14), targeted interventions 

18 have been implemented, including improved biosecurity measures on poultry farms, which have 

19 halved recorded campylobacteriosis cases in New Zealand (15,16).

20

21 Extending the principal of linking source-sink populations using genotype data, methods have been 

22 developed to attribute C. jejuni to the likely source based on bacterial gene frequencies in potential 

23 reservoir populations (17,18). Among the most common genotyping approaches for C. jejuni has been 
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24 multi-locus sequence typing (MLST) that catalogues DNA sequence variation across seven 

25 housekeeping genes that are common to all strains (19,20). Isolates with identical alleles at all loci are 

26 assigned to the same sequence type (ST) and those with identical sequences at most or all loci are 

27 grouped within the same clonal complex (CC). Using these data, and allele frequencies, it has been 

28 possible to probabilistically assign clinical isolates (STs and CCs) to host source using source attribution 

29 models such as the asymmetric island model implemented in iSource (17) and the Bayesian population 

30 assignment model STRUCTURE (18,21). Both methods have been instructive in estimating the relative 

31 contribution of a range of domestic and wild animal hosts to human infection, with poultry often 

32 identified as the principal source of human campylobacteriosis across different regions and countries  

33 (17,18,22–25).

34

35 There are two main limitations when using genotype data to for bacterial source attribution. The first 

36 is that the ability to attribute is only as good as the degree of genotype segregation. For example, in 

37 C. jejuni there are host restricted genotypes (3,26) that can be readily attributed to a given host source 

38 when observed in human infections, as well as ecological generalists (27,28) that have relatively 

39 recently transitioned between hosts and cannot therefore be attributed with confidence (29). While 

40 host switching potentially imposes a biological constraint on quantitative attribution models, the 

41 second limitation is far more tractable. Specifically, most current source attribution methods are 

42 subject to limitations imposed by the underlying data. Reflecting the technology of the time, MLST-

43 based source attribution is based only on a small fraction of the genome (approximately 0.2% for C. 

44 jejuni (25)) and there is considerable potential for better strain differentiation using current 

45 techniques. 

46

47 The increasing availability of large whole genome sequence (WGS) datasets has greatly enhanced 
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48 analyses of bacterial population structure and diversity (30). However, exploiting the full information 

49 can be challenging due to variable gene content and the complexity of interpreting the short reads 

50 produced by next generation sequencing. Notwithstanding this, some studies have attempted to 

51 overcome the limited discriminatory power of MLST in attribution studies by screening WGS data to 

52 identify elements (SNPs and genes) that segregate by host (31–33). Using these host segregating 

53 markers as input data has improved the resolution of existing attribution models, including 

54 STRUCTURE, and provided information about potential infection reservoirs and the UK and France. 

55 However, using bespoke marker selection approaches with software designed for MLST data does not 

56 maximize the potential of WGS data for source attribution. 

57

58 Here, we present a machine learning approach using WGS data to predict the source of human C. jejuni 

59 infection. This has two principal advantages over existing techniques. First, building on WGS-based 

60 machine learning source attribution approaches applied to Salmonella enterica and Escherichia coli 

61 (34,35), we take an agnostic approach to identify which machine learning tool performs best from a 

62 broad range of available algorithms. Second, we use a WGS input capture approach using data types 

63 deposited in public databases allowing the analysis of existing MLST, core-genome MLST and WGS 

64 datasets and the reuse of data for continuous updatable monitoring in a generalizable framework. 

65 Thus, we aimed to overcome limitations of the currently available methods and use the output to 

66 investigate the infective potential of C. jejuni strains.

67

68 Methods

69 Dataset acquisition

70 A total of 5,798 C. jejuni and C. coli genomes isolated from various sources and host species were 
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71 available on the public database for molecular typing and microbial genome diversity: PubMLST 

72 (https://pubmlst.org/) (S1 Table). WGS data corresponded to MLST ST and CC designations as well as 

73 core genome (cg) MLST classes. The dataset was divided into training (75%) and testing (25%) sets 

74 using phylogeny-aware sorting, wherein all members of one ST were sorted entirely into either training 

75 or testing sets (S1 Table). The ST based sorting accounts for the phylogenetic non-independence of 

76 samples (36). To allow for sufficient sample sizes per reservoir population (hereafter “class”), only the 

77 five most prevalent classes for MLST and cgMLST were used (chicken, cattle, sheep, wild bird and 

78 environment). For farm animals the classes “chicken” and “chicken offal or meat” were combined to 

79 “chicken” (likewise for sheep and cattle), whilst “environment”, “sand” and “river water” were 

80 combined into “environment”, consistent with previous studies (18,37). 

81  

82 Feature engineering

83 The allelic profiles of MLST and cgMLST were used directly. To potentially exploit the gradient of 

84 separation encoded in the sequences underlying the MLST allelic profiles, we downloaded the 

85 underlying allele sequences and encoded the nucleotides as dummy variables and k-mers (k=21) using 

86 DSK (38). DSK was also used for encoding the WGS as k-mers. Using k=21 led to a prohibitively large 

87 input vector due to the number of unique k-mers found in all genomes (109,675,176). We reduced the 

88 number of k-mers by applying a variance threshold where k-mers which were present or absent in 

89 more than 99% of the samples were discarded, reducing the numbers of unique k-mers to 7,285,583. 

90 Furthermore, we performed feature selection by testing the dependence of the source labels on every 

91 individual k-mer using the Chi-Square statistic. To avoid data-leakage we only performed the feature 

92 selection using the training data and labels to select the 100,000 k-mers with the highest score.

93
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94 Algorithm training

95 All machine learning and deep learning was performed in Python (for a list of all algorithms see Figure 

96 1). The xgboost library (39) was used for the gradient boosting classifiers with all other machine 

97 learners implemented in scikit-learn (40). The hyper-parameters for each classifier were chosen using 

98 Cartesian grid search on five-fold cross-validation of the training set. The Keras library 

99 (https://github.com/keras-team/keras) was used to construct deep learning algorithms aimed at 

100 supplying a wide range of commonly used architectures. We found this to work best, empirically, given 

101 that there is no principled means of architecture selection for such models. Specifically: (i) A recurrent 

102 neural network consisting of a layer with 64 gated recurrent units, a 50% dropout layer and Rectified 

103 Linear Unit (ReLU) activation layer; (ii) A  1-dimensional convolutional network with two convolutional 

104 layers of kernel size 3 and 5 respectively and 30 filters, both followed by 50% dropout layers and a 

105 ReLU layer; (iii) A Long short-term memory network consisting of one LSTM layer with 64 units and a 

106 50% dropout layer; (iv) A Shallow dense network with one dense layer with 64 units followed by a 50% 

107 dropout layer and a ReLU activation layer; (v) A Deep dense network with 6 dense layers starting with 

108 128 units and halving units with each successive layer. All individual dense layers are followed by a 

109 50% dropout layer and a ReLU layer. 

110

111 To all deep learning architectures, we added an output layer comprising a dense layer with soft-max 

112 activation with one unit for every class. We encoded the labels as dummy variables and used 

113 categorical cross-entropy as a loss function together with the Adam optimiser (41). Cyclical learning 

114 rates were used with a maximum learning rate of 0.1 and a minimum learning rate of 0.0001 to 

115 overcome local minima. The accuracy on the test set was measured at every epoch and the overall 

116 best performing weights were stored as a checkpoint. The data was deployed in batches of 128 

117 samples with every batch randomly undersampled so that each class was represented in equal 
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118 proportions. The training was run for 500 generations with early stopping after 50 generations. 

119

120 Algorithm testing

121 Both machine learning and deep learning were tested on the same 25% test set. The original data were 

122 skewed in source composition by ratios which did not necessarily reflect source origin of infection. We 

123 therefore used two methods to rebalance the classes in testing. The first test set featured an even 

124 distribution of classes, whereas the second undersampled the over-abundant chicken-origin genomes 

125 to emulate relative contribution to human disease. We used the ratios predicted by Wilson et al. (12), 

126 where Campylobacter genomes from chickens were 1.61 times more common than those from cattle. 

127 In both methods, rebalancing the classes was achieved by undersampling, which we repeated 200 

128 times with replacement and averaged the accuracy over all iterations whilst also recording the 

129 variance. For performance metrics we registered accuracy, precision (positive predictive value), recall 

130 (sensitivity), F1, negative predictive value, specificity and speed. Speed was measured relative to other 

131 classifiers where a scale was defined with 0 being the slowest classifier and 1 being the quickest and 

132 all intermediate values being normalised within these confines. For comparison to previous methods, 

133 iSource was applied to the test dataset (17). Having established that XGBoost on cgMLST was the best 

134 performing source attribution method, we retrained the classifier with both training and testing data 

135 and applied it to all 15,988 human cgMLST samples available on the PubMLST database. The prediction 

136 took 892 milliseconds on a Dell OptiPlex 7060 desktop using ten threads on an Intel Core i7-8700 CPU 

137 and 16 GB RAM.

138

139 Phylogenetic analysis

140 We defined the generalist index as the number of sources the ST was found in across all isolates in the 
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141 dataset, which included additional samples for which only MLST data was available (S1 Table). We 

142 built a phylogeny of CC21 genomes from both source-associated and human isolates using Neighbour 

143 Joining, based on pairwise hamming distances of k-mer presence/absence in the WGS dataset, as 

144 described by Hedge and Wilson (42). We used TreeBreaker to infer the evolution of phenotypes across 

145 the phylogenetic tree of ST-21 and the most closely related sequence types. The known labels of the 

146 source-associated samples were used as phenotypic information for input into TreeBreaker (43) 

147 together with the phylogeny of CC21. TreeBreaker was run for 5,500,000 iterations with 500,000 

148 iterations as burn-in and 1000 iterations between sampling. The phylogenetic trees were visualised 

149 with Microreact (44) and arranged alongside the results of TreeBreaker in Inkscape.

150

151 Results and Discussion

152 Machine learning outperforms popular attribution models for MLST data

153 In order to anchor our source attribution performance to previous efforts, we compared results using 

154 the machine learning classifiers to source probabilities estimated using the asymmetric island model 

155 implemented in iSource, which is based on MLST and the most commonly used source attribution 

156 method to date (45). The best performing machine learner on the MLST allelic profile was a random 

157 forest (61.9%/68.5% balanced/unbalanced) which performed slightly better than iSource (61%/64%) 

158 (Figure 1). Since loci within allelic profiles are deemed either to match or not, and underlying 

159 nucleotides sequences are ignored, we investigated whether exploiting the gradient of nucleotide 

160 differentiation would lead to better attribution. We used dummy variables and generated k-mers from 

161 the sequences underlying the MLST allele labels. The additional feature encodings boosted the top 

162 achieving accuracies on MLST to 67.9%/70.7% from dummy variables and 63%/67.5% from k-mers, 

163 showing the value of the additional nucleotide-level information.
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164

165 Figure 1:  A heatmap showing classifier performance on the class balanced (A) and imbalanced (B) test 

166 set. The individual cells are coloured according to the average accuracy on 200 rounds of resampling 

167 with replacement with the variance noted next to the average accuracy. The averages of accuracy per 

168 classifiers are shown in the rightmost column, whereas the bottom column shows the averages per 

169 data type.

170

171 Core genome and WGS datasets increase the power of source attribution 

172 models

173 Having established the competitiveness of machine learning approaches for source attribution using 

174 MLST data, we turned our attention to whole genome datasets. Gene-by-gene approaches to 

175 cataloguing genomic variation in Campylobacter (46) and other species are a logical extension of 

176 seven-locus MLST in response to the increasing availability of large WGS datasets. Formalizing this 
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177 approach to derive an approximation of the core genome for C. jejuni  allowed the implementation of 

178 a cgMLST scheme containing 1,343 genes, that are present in the majority (>95%) of C. jejuni genomes 

179 (47). This has potential to increase the power of attribution models to discriminate the source of 

180 Campylobacter isolates based on host segregating genetic variation within the genome (37). The 

181 strong performance of tree-based ensemble classifiers continued when using cgMLST data where the 

182 XGBoost classifier achieved 81.3%/84.6% accuracy, the highest accuracy over all data types and 

183 classifiers.

184 q

185 Next, we assessed the relative performance of machine learners when applied to k-mers produced 

186 from WGS, where the average attribution performance was the highest among all datasets. The best-

187 performing algorithm was a 1-D convolutional neural net (75.0/78.3%), performing better than the 

188 top-achieving classifier on MLST but worse than the best classifier on cgMLST despite WGS encoding 

189 more genomic information. This may be explained by the feature selection used to limit the input 

190 vector to 100,000 k-mers. Beyond comparing classifier performance on different data types, we also 

191 wanted to investigate what led to the difference in performance.

192

193 The comparison of average accuracy across all data types reveals that with an increase in encoded 

194 variation the average performance across all algorithms improves. This is especially apparent in MLST 

195 where, although capturing the same 0.3% of the genome in all isolates, the additional variation in the 

196 underlying sequences can be leveraged for better performance. When comparing the average 

197 accuracy between classifiers we observed that decision-tree based ensemble learners performed well 

198 across all datasets, with random forests performing best on average. The excellent performance of 

199 ensemble tree learners on genomic data has been reported on genomic data (48–50) and is linked to 

200 their ability to handle correlation as well as interaction of features which is an inherent feature of 
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201 genomic data (50). 

202

203 Amongst simple learners the K-nearest neighbour algorithm (KNN) performed best, probably owing to 

204 the hereditary nature of the phenotypic trait used as classes here. Host association is inherited both 

205 genetically, in the ability to colonise different hosts, and environmentally, in the colocation of parent 

206 and offspring cells. These patterns of inheritance result in more closely related sequences being more 

207 likely to be associated with the same phenotype. Heritability could explain the success of the KNN 

208 algorithm which is based on proximity in hyperdimensional feature space (51), which in our case is 

209 genetic similarity which is a proxy for relatedness. 

210

211 The deep learners generally improved in performance with higher dimensionality of the input data - 

212 from MLST to WGS data. Among all deep learning architectures, the RNN and LSTM performed best, 

213 which was to be expected as DNA is transcribed, and mRNA translated, sequentially 5′ to 3′. Both RNNs 

214 and LSTMs process input data sequentially and input weights are also adjusted sequentially in back-

215 propagation as opposed to the dense or convolutional architectures where input weights are tweaked 

216 concurrently. Having investigated trends across all datasets and algorithms we focused on the best-

217 achieving classifier for a more thorough analysis of how classification performance was driven by 

218 different factors within the underlying data.

219

220 Host transition imposes a biological limit on source attribution models 

221 To better understand the limitations of attribution algorithms we investigated the factors driving 

222 misclassification in the different models with different datasets. The XGBoost implementation of 

223 gradient boosted decision trees, using the cgMLST dataset, was the overall best-performing classifier 

224 in our analyses. Consequently, this was used to investigate attribution performance further (Figure 2). 
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225 Among all source populations the most frequent misclassification was found between sheep and 

226 cattle, which is a common source of errors in source attribution (17) owing to strongly overlapping 

227 gene pools stemming from frequent cross-species transmission that may reflect commonalities in 

228 physiological features of the ruminant gastrointestinal tracts (52). We also looked at factors besides 

229 source reservoir of the sample, as circumstances like geographical origin of the isolate (56) and the 

230 season in which they were sampled (57) have been shown to influence source attribution. We 

231 therefore stratified classification accuracy by continent, year, generalist index and Campylobacter 

232 species using the full non-undersampled Test dataset (Figure 3, S1 Table).

233

234 Figure 2: XGBoost Classifier performance on cgMLST: A) Misclassification matrix per source. The 
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235 diagonal represents correct classification and off-diagonal fields are misclassifications. The 

236 percentages are calculated per row. B) Misclassification matrix as depicted in a flow diagram. C) 

237 Classifier performance on the unbalanced test set according to four different metrics per source 

238 population. D) Radar plot showing the classifier performance on the unbalanced test by seven metrics 

239 averaged over 200 rounds of resampling with replacement. The variation is depicted as a shaded 

240 surface underneath the black line representing the average. 

241

242 Investigating the accuracy of the XGBoost classifier per sample size revealed that the low number of 

243 wild bird samples (212 samples; 84% accuracy) did not impede classification performance when 

244 compared to more abundant source samples like cattle (716 samples; 84% accuracy) and sheep (584 

245 samples; 57% accuracy), presumably because wild bird STs tend to be atypical compared to the other 

246 reservoirs (46). To investigate how the ability to colonise multiple hosts affected performance, we 

247 defined a ‘generalist index’ as the number of hosts in which an ST was found across all PubMLST 

248 samples (S1 Table). The performance across generalist indices showed that strains restricted to fewer 

249 hosts were predicted with higher accuracy. This is likely due to host switching blurring the source-

250 specific genetic signal, as previously reported (29). Consistent with this, 58% of all wild bird samples 

251 belonged to STs only found in this niche, compared to 41% in environment, 9% in cattle, 3% in sheep 

252 and 32% in chicken. Besides C. jejuni, an estimated 10% of campylobacteriosis cases are caused by 

253 Campylobacter coli (53). Consistent with previous studies, we found improved accuracy over 

254 attribution of C. jejuni, potentially reflecting more pronounced strain segregation by host (29), as well 

255 as a higher proportion of environmental and sheep associated strains in human infection (11,54,55) 

256 (Figure 3). 

257
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259 Figure 3: Source attribution per source, continent, year generalist index and Campylobacter species. 

260 A) Sample sizes across different factors in the imbalanced training set. B) Prediction accuracy on the 

261 full test dataset divided by different factors. C) Source attribution stratified into varying factors

262

263 Having analysed the classification accuracy within the dataset, the machine learning method was 

264 compared to previous source attribution studies (Figure 4). Attribution of cases to chicken was 

265 consistent with higher estimates from previous studies, resulting in less attribution to all other 

266 sources, with environment identified as the source of just 0.4% of human infections. This differences 

267 in our prediction to previous studies could reflect the greater discriminatory power of cgMLST data 

268 over MLST.

269

270

271

272
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273 Figure 4: Comparison of our source attribution to previously published studies

274

275 The fine-grained structure of source attribution can be identified with 

276 machine learning

277 Attribution predictions are inferred from the observed frequencies of genotypes in host reservoirs 

278 assessed through sampling. However, the relative source composition observed in sampling does not 

279 necessarily correspond to host contributions to human infection as some strains that are found at low 

280 frequency in the host could be more infectious to humans. For example, some C. jejuni strains increase 

281 in relative frequency through different stages of the poultry slaughter and production chain because 

282 they have genes that promote survival outside of the host (58). There is also evidence that there is a 

283 genetic bottleneck at the point of human infection that promotes colonization by strains that have 

284 specific genes conferring human niche tropism (59). Analysis of WGS or cgMLST data can potentially 

285 allow for changes in relative frequency and provide finer-grained source attribution, potentially at the 

286 level of the individual genome. 

287

288 To identify evidence of differential host affinities, we applied treeBreaker (43) to trace the evolution 

289 of a host association along the phylogeny of CC-21, the most commonly found clonal complex in 

290 human infection (27). CC-21 frequently colonizes all host sources analysed in this study and is 

291 therefore considered a generalist strain, potentially complicating accurate attribution. TreeBreaker 

292 detected a change in host association on a branch that groups together a cattle-associated ST-21 

293 subgroup with the cattle-associated lineages ST-982 and ST-806 (Figure 5A). The source composition 

294 in this clade (asterisked in Figure 5A) differed from the rest of CC-21, which were predominantly 

295 composed of chicken and sheep isolates. Moreover, the asterisked clade differed in its propensity for 

296 transmission to humans. Overall, CC-21 was over-represented among human infections, perhaps 
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297 reflecting its generalist affinities. Yet the asterisked clade was over-represented only 1.7 to 3.6-fold, 

298 compared to 5.5 to 6.2-fold for the rest of CC-21 (Figure 5B).

299
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300

301 Figure 5: Phylogeny of clonal complex 21 of host animal associated samples (A) and bar charts showing 

302 the known source distribution and human samples (B) alongside the predicted source distribution. The 
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303 phylogeny is based on Neighbour joining using hamming distance of the k-mers drawn from WGS. The 

304 connecting lines show the increase in frequency of the clades in human samples and the size of the 

305 grey circles show the posterior probability of a change in phenotypic distribution along the branches 

306 of the tree.

307

308 As the host association changed within CC-21, the ability to transmit to humans appears to have 

309 changed as well. This in turn induced a change in the source composition of CC-21 sampled from 

310 human infections compared to CC-21 sampled from animals. Previous studies analysing source 

311 attribution based on MLST would have overlooked these shifts.

312 Outlook and conclusions

313 The increasing availability of large pathogen genome datasets, algorithms and resources for 

314 analysing them, has created possibilities for investigating the transmission of zoonotic diseases that 

315 are incompletely understood. It is clear from the data presented here that tree-based ensemble 

316 methods for machine learning classification using bacterial genomic data provide considerable utility 

317 for improving the accuracy host source attribution for human campylobacteriosis. Key to the 

318 effectiveness of this approach is leveraging the full gradient of genomic differentiation afforded by 

319 WGS or cgMLST analysis. Host associated genetic variation can be observed in both core and 

320 accessory genes (60) but using these data presents practical considerations. With more 

321 computational resources available, it may be possible to analyse all k-mers present in the WGS 

322 samples (here 109,675,176 unique kmers) with multiple algorithms accompanied by cross-validation 

323 and bootstrap replication. 

324

325 Beyond simple attribution to host source, resolving the fine-grained structure of genomic signatures 
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326 of association has considerable potential to account for differences in the relative frequency of sub-

327 lineages in samples taken from reservoir hosts and human disease. This can provide important clues 

328 about the propensity of strains to survive outside of the host for long enough to transmit to humans 

329 as well as the capacity to colonize the human gut given the opportunity (58,59). This of course leads 

330 to questions about the genomic basis of bacterial adaptation, specifically the extent to which 

331 ‘associated’ genetic elements represent adaptations and whether the same genes and alleles enable 

332 colonisation of different host animals. 

333

334 Improving on the approaches described here, better sampling and incremental training of the XGBoost 

335 classifier has considerable potential. The classifier’s low computational requirements and high 

336 prediction speed make it an excellent tool for analysing large genome datasets. Furthermore, by using 

337 phylogeny-aware train/test splitting for measuring performance, prediction remains accurate when 

338 new genetic variants are introduced because the algorithm can be incrementally trained with new 

339 data. This has considerable potential for developing automated and continuous disease surveillance 

340 systems to reduce campylobacteriosis that remains one of the most common food-borne illness in the 

341 world.

342

343

344 Acknowledgments
345 N. A. is a recipient of a BBSRC scholarship and thus supported by funding from the Biotechnology and 
346 Biological Sciences Research Council (BBSRC) (grant number BB/M011224/1). SKS was supported by 
347 Wellcome Trust (088786/C/09/Z) and Medical Research Council (MR/M501608/1 and 
348 MR/L015080/1) grants. D. J. W. is supported by a Sir Henry Dale Fellowship jointly funded by the 
349 Wellcome Trust and the Royal Society (grant number: 101237/Z/13/B) and by the Robertson 
350 Foundation. The research was supported by the National Institute for Health Research (NIHR) Oxford 
351 Biomedical Research Centre (BRC). The views expressed are those of the author(s) and not 
352 necessarily those of the NHS, the NIHR or the Department of Health.

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 23, 2021. ; https://doi.org/10.1101/2021.02.23.432443doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.23.432443
http://creativecommons.org/licenses/by/4.0/


21

353 N.A. would like to thank David Eyre, Christophe Fraser and Alexandra Casey for insightful comments.

354 Computation used the Oxford Biomedical Research Computing (BMRC) facility, a joint development 
355 between the Wellcome Centre for Human Genetics and the Big Data Institute supported by Health 
356 Data Research UK and the NIHR Oxford Biomedical Research Centre. The views expressed are those 
357 of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health.

358

359 Conflicts of interest
360 DAC declares grants from GlaxoSmithKline and personal fees from Oxford University Innovation, 
361 BioBeats, and Sensyne Health, in areas unrelated to this work

362

363  Supporting information
364   

365 S1 Table. Metadata of all Campylobacter isolates used in this study. Contains the accession numbers, 
366 year and country of isolation, source label, generalist index, ST, CC ,prediction by our classifier, 
367 Campylobacter species and whether the samples were used in training or testing.

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 23, 2021. ; https://doi.org/10.1101/2021.02.23.432443doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.23.432443
http://creativecommons.org/licenses/by/4.0/


22

368

369 References
370

371 1. The European Union One Health 2018 Zoonoses Report. EFSA J. 2019;17(12):e05926. 

372 2. Kaakoush NO, Castaño-Rodríguez N, Mitchell HM, Man SM. Global Epidemiology of 
373 Campylobacter Infection. Clin Microbiol Rev. 2015 Jul;28(3):687–720. 

374 3. Sheppard SK, Colles FM, McCARTHY ND, Strachan NJC, Ogden ID, Forbes KJ, et al. Niche 
375 segregation and genetic structure of Campylobacter jejuni populations from wild and 
376 agricultural host species. Mol Ecol. 2011;20(16):3484–90. 

377 4. Sheppard SK, Colles F, Richardson J, Cody AJ, Elson R, Lawson A, et al. Host Association of 
378 Campylobacter Genotypes Transcends Geographic Variation. Appl Environ Microbiol. 2010 
379 Aug;76(15):5269–77. 

380 5. Nachamkin I, Allos BM, Ho T. Campylobacter Species and Guillain-Barré Syndrome. Clin 
381 Microbiol Rev. 1998 Jul;11(3):555–67. 

382 6. Nielsen LN, Sheppard SK, McCarthy ND, Maiden MCJ, Ingmer H, Krogfelt KA. MLST clustering of 
383 Campylobacter jejuni isolates from patients with gastroenteritis, reactive arthritis and Guillain–
384 Barré syndrome. J Appl Microbiol. 2010 Feb;108(2):591–9. 

385 7. Altekruse SF, Stern NJ, Fields PI, Swerdlow DL. Campylobacter jejuni—An Emerging Foodborne 
386 Pathogen. Emerg Infect Dis. 1999;5(1):28–35. 

387 8. Gilbert MJ, Miller WG, Yee E, Zomer AL, van der Graaf-van Bloois L, Fitzgerald C, et al. 
388 Comparative Genomics of Campylobacter fetus from Reptiles and Mammals Reveals Divergent 
389 Evolution in Host-Associated Lineages. Genome Biol Evol. 2016 Jul 2;8(6):2006–19. 

390 9. Kirk KF, Méric G, Nielsen HL, Pascoe B, Sheppard SK, Thorlacius-Ussing O, et al. Molecular 
391 epidemiology and comparative genomics of Campylobacter concisus strains from saliva, faeces 
392 and gut mucosal biopsies in inflammatory bowel disease. Sci Rep. 2018 Jan 30;8(1):1902. 

393 10. Sheppard SK, Dallas JF, Wilson DJ, Strachan NJC, McCarthy ND, Jolley KA, et al. Evolution of an 
394 Agriculture-Associated Disease Causing Campylobacter coli Clade: Evidence from National 
395 Surveillance Data in Scotland. PLOS ONE. 2010 Dec 15;5(12):e15708. 

396 11. Ogden ID, Dallas JF, MacRae M, Rotariu O, Reay KW, Leitch M, et al. Campylobacter excreted 
397 into the environment by animal sources: prevalence, concentration shed, and host association. 
398 Foodborne Pathog Dis. 2009 Dec;6(10):1161–70. 

399 12. Institute of Environmental Science and Research Ltd. Notifiable and other diseases in New 
400 Zealand: Annual Report 2006. Porirua NZ Inst. 2007; 

401 13. Sheppard SK, Dallas JF, MacRae M, McCarthy ND, Sproston EL, Gormley FJ, et al. 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 23, 2021. ; https://doi.org/10.1101/2021.02.23.432443doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.23.432443
http://creativecommons.org/licenses/by/4.0/


23

402 Campylobacter genotypes from food animals, environmental sources and clinical disease in 
403 Scotland 2005/6. Int J Food Microbiol. 2009 Aug 31;134(1–2):96–103. 

404 14. Nichols GL, Richardson JF, Sheppard SK, Lane C, Sarran C. Campylobacter epidemiology: a 
405 descriptive study reviewing 1 million cases in England and Wales between 1989 and 2011. BMJ 
406 Open. 2012 Jan 1;2(4):e001179. 

407 15. Sears A, Baker MG, Wilson N, Marshall J, Muellner P, Campbell DM, et al. Marked 
408 Campylobacteriosis Decline after Interventions Aimed at Poultry, New Zealand. Emerg Infect 
409 Dis. 2011 Jun;17(6):1007–15. 

410 16. Nohra A, Grinberg A, Marshall JC, Midwinter AC, Collins-Emerson JM, French NP. Shifts in the 
411 Molecular Epidemiology of Campylobacter jejuni Infections in a Sentinel Region of New 
412 Zealand following Implementation of Food Safety Interventions by the Poultry Industry. Appl 
413 Environ Microbiol [Internet]. 2020 Feb 18 [cited 2021 Jan 6];86(5). Available from: 
414 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7028974/

415 17. Wilson DJ, Gabriel E, Leatherbarrow AJH, Cheesbrough J, Gee S, Bolton E, et al. Tracing the 
416 Source of Campylobacteriosis. PLOS Genet. 2008 Sep;4(9):e1000203. 

417 18. Sheppard SK, Dallas JF, Strachan NJC, MacRae M, McCarthy ND, Wilson DJ, et al. 
418 Campylobacter Genotyping to Determine the Source of Human Infection. Clin Infect Dis. 2009 
419 Apr;48(8):1072–8. 

420 19. Maiden MCJ, Bygraves JA, Feil E, Morelli G, Russell JE, Urwin R, et al. Multilocus sequence 
421 typing: A portable approach to the identification of clones within populations of pathogenic 
422 microorganisms. Proc Natl Acad Sci U S A. 1998 Mar;95(6):3140–5. 

423 20. Dingle KE, Colles FM, Wareing DR, Ure R, Fox AJ, Bolton FE, et al. Multilocus sequence typing 
424 system for Campylobacter jejuni. J Clin Microbiol. 2001 Jan;39(1):14–23. 

425 21. Pritchard JK, Stephens M, Donnelly P. Inference of Population Structure Using Multilocus 
426 Genotype Data. Genetics. 2000 Jun;155(2):945–59. 

427 22. Mullner P, Spencer SEF, Wilson DJ, Jones G, Noble AD, Midwinter AC, et al. Assigning the 
428 source of human campylobacteriosis in New Zealand: A comparative genetic and 
429 epidemiological approach. Infect Genet Evol. 2009 Dec;9(6):1311–9. 

430 23. Boysen L, Rosenquist H, Larsson JT, Nielsen EM, Sørensen G, Nordentoft S, et al. Source 
431 attribution of human campylobacteriosis in Denmark. Epidemiol Infect. 2014 Aug;142(8):1599–
432 608. 

433 24. Di Giannatale E, Garofolo G, Alessiani A, Di Donato G, Candeloro L, Vencia W, et al. Tracing Back 
434 Clinical Campylobacter jejuni in the Northwest of Italy and Assessing Their Potential Source. 
435 Front Microbiol [Internet]. 2016 Jun 13 [cited 2021 Feb 3];7. Available from: 
436 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4904018/

437 25. Kittl S, Heckel G, Korczak BM, Kuhnert P. Source Attribution of Human Campylobacter Isolates 
438 by MLST and Fla-Typing and Association of Genotypes with Quinolone Resistance. PLOS ONE. 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 23, 2021. ; https://doi.org/10.1101/2021.02.23.432443doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.23.432443
http://creativecommons.org/licenses/by/4.0/


24

439 2013 Nov;8(11):e81796. 

440 26. Mourkas E, Taylor AJ, Méric G, Bayliss SC, Pascoe B, Mageiros L, et al. Agricultural 
441 intensification and the evolution of host specialism in the enteric pathogen Campylobacter 
442 jejuni. Proc Natl Acad Sci. 2020 May 19;117(20):11018–28. 

443 27. Sheppard SK, Cheng L, Méric G, Haan CPA de, Llarena A-K, Marttinen P, et al. Cryptic ecology 
444 among host generalist Campylobacter jejuni in domestic animals. Mol Ecol. 2014;23(10):2442–
445 51. 

446 28. Woodcock DJ, Krusche P, Strachan NJC, Forbes KJ, Cohan FM, Méric G, et al. Genomic plasticity 
447 and rapid host switching can promote the evolution of generalism: a case study in the zoonotic 
448 pathogen Campylobacter. Sci Rep. 2017 Aug;7(1):1–13. 

449 29. Dearlove BL, Cody AJ, Pascoe B, Méric G, Wilson DJ, Sheppard SK. Rapid host switching in 
450 generalist Campylobacter strains erodes the signal for tracing human infections. ISME J. 2016 
451 Mar;10(3):721–9. 

452 30. Sheppard SK, Guttman DS, Fitzgerald JR. Population genomics of bacterial host adaptation. Nat 
453 Rev Genet. 2018 Sep;19(9):549–65. 

454 31. Thépault A, Rose V, Quesne S, Poezevara T, Béven V, Hirchaud E, et al. Ruminant and chicken: 
455 important sources of campylobacteriosis in France despite a variation of source attribution in 
456 2009 and 2015. Sci Rep. 2018 Jun;8(1):9305. 

457 32. Jehanne Q, Pascoe B, Bénéjat L, Ducournau A, Buissonnière A, Mourkas E, et al. Genome-Wide 
458 Identification of Host-Segregating Single-Nucleotide Polymorphisms for Source Attribution of 
459 Clinical Campylobacter coli Isolates. Appl Environ Microbiol [Internet]. 2020 Nov 24 [cited 2021 
460 Feb 3];86(24). Available from: https://aem.asm.org/content/86/24/e01787-20

461 33. Berthenet E, Thépault A, Chemaly M, Rivoal K, Ducournau A, Buissonnière A, et al. Source 
462 attribution of Campylobacter jejuni shows variable importance of chicken and ruminants 
463 reservoirs in non-invasive and invasive French clinical isolates. Sci Rep. 2019 May 30;9(1):8098. 

464 34. Zhang S, Li S, Gu W, den Bakker H, Boxrud D, Taylor A, et al. Zoonotic Source Attribution of 
465 Salmonella enterica Serotype Typhimurium Using Genomic Surveillance Data, United States. 
466 Emerg Infect Dis. 2019;25(1):82–91. 

467 35. Lupolova N, Dallman TJ, Holden NJ, Gally DL. Patchy promiscuity: machine learning applied to 
468 predict the host specificity of Salmonella enterica and Escherichia coli. Microb Genomics 
469 [Internet]. 2017 Oct [cited 2019 Sep 16];3(10). Available from: 
470 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5695212/

471 36. Lees JA, Mai TT, Galardini M, Wheeler NE, Horsfield ST, Parkhill J, et al. Improved Prediction of 
472 Bacterial Genotype-Phenotype Associations Using Interpretable Pangenome-Spanning 
473 Regressions. mBio [Internet]. 2020 Aug 25 [cited 2021 Feb 3];11(4). Available from: 
474 https://mbio.asm.org/content/11/4/e01344-20

475 37. Thépault A, Méric G, Rivoal K, Pascoe B, Mageiros L, Touzain F, et al. Genome-Wide 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 23, 2021. ; https://doi.org/10.1101/2021.02.23.432443doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.23.432443
http://creativecommons.org/licenses/by/4.0/


25

476 Identification of Host-Segregating Epidemiological Markers for Source Attribution in 
477 Campylobacter jejuni. Appl Environ Microbiol. 2017 Apr 1;83(7). 

478 38. Rizk G, Lavenier D, Chikhi R. DSK: k-mer counting with very low memory usage. Bioinformatics. 
479 2013 Mar;29(5):652–3. 

480 39. Chen T, Guestrin C. XGBoost: A Scalable Tree Boosting System. In: Proceedings of the 22Nd 
481 ACM SIGKDD International Conference on Knowledge Discovery and Data Mining [Internet]. 
482 New York, NY, USA: ACM; 2016 [cited 2019 Sep 17]. p. 785–94. (KDD ’16). Available from: 
483 http://doi.acm.org/10.1145/2939672.2939785

484 40. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: 
485 Machine Learning in Python. J Mach Learn Res. 2011;12:2825–30. 

486 41. Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. ArXiv14126980 Cs [Internet]. 
487 2014 Dec [cited 2019 Sep 17]; Available from: http://arxiv.org/abs/1412.6980

488 42. Hedge J, Wilson DJ. Bacterial Phylogenetic Reconstruction from Whole Genomes Is Robust to 
489 Recombination but Demographic Inference Is Not. mBio [Internet]. 2014 Dec 31 [cited 2020 
490 Nov 18];5(6). Available from: https://mbio.asm.org/content/5/6/e02158-14

491 43. Ansari MA, Didelot X. Bayesian Inference of the Evolution of a Phenotype Distribution on a 
492 Phylogenetic Tree. Genetics. 2016 Sep 1;204(1):89–98. 

493 44. Argimón S, Abudahab K, Goater RJE, Fedosejev A, Bhai J, Glasner C, et al. Microreact: visualizing 
494 and sharing data for genomic epidemiology and phylogeography. Microb Genomics. 
495 2016;2(11):e000093. 

496 45. Cody AJ, Maiden MC, Strachan NJ, McCarthy ND. A systematic review of source attribution of 
497 human campylobacteriosis using multilocus sequence typing. Eurosurveillance [Internet]. 2019 
498 Oct [cited 2020 Jan 27];24(43). Available from: 
499 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6820127/

500 46. Sheppard SK, Jolley KA, Maiden MCJ. A Gene-By-Gene Approach to Bacterial Population 
501 Genomics: Whole Genome MLST of Campylobacter. Genes. 2012 Apr 12;3(2):261–77. 

502 47. Cody AJ, Bray JE, Jolley KA, McCarthy ND, Maiden MCJ. Core Genome Multilocus Sequence 
503 Typing Scheme for Stable, Comparative Analyses of Campylobacter jejuni and C. coli Human 
504 Disease Isolates. J Clin Microbiol. 2017 Jul;55(7):2086–97. 

505 48. Austerlitz F, David O, Schaeffer B, Bleakley K, Olteanu M, Leblois R, et al. DNA barcode analysis: 
506 a comparison of phylogenetic and statistical classification methods. BMC Bioinformatics. 2009 
507 Nov;10(14):S10. 

508 49. Deneke C, Rentzsch R, Renard BY. PaPrBaG: A machine learning approach for the detection of 
509 novel pathogens from NGS data. Sci Rep. 2017 Jan;7:39194. 

510 50. Chen X, Ishwaran H. Random Forests for Genomic Data Analysis. Genomics. 2012 
511 Jun;99(6):323–9. 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 23, 2021. ; https://doi.org/10.1101/2021.02.23.432443doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.23.432443
http://creativecommons.org/licenses/by/4.0/


26

512 51. Kotsiantis SB, Zaharakis ID, Pintelas PE. Machine learning: a review of classification and 
513 combining techniques. Artif Intell Rev. 2006 Nov;26(3):159–90. 

514 52. Kwan PSL, Birtles A, Bolton FJ, French NP, Robinson SE, Newbold LS, et al. Longitudinal Study of 
515 the Molecular Epidemiology of Campylobacter jejuni in Cattle on Dairy Farms. Appl Environ 
516 Microbiol. 2008 Jun;74(12):3626–33. 

517 53. Sheppard SK, Maiden MCJ. The Evolution of Campylobacter jejuni and Campylobacter coli. Cold 
518 Spring Harb Perspect Biol [Internet]. 2015 Aug [cited 2019 Sep 3];7(8). Available from: 
519 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4526750/

520 54. Roux F, Sproston E, Rotariu O, MacRae M, Sheppard SK, Bessell P, et al. Elucidating the 
521 Aetiology of Human Campylobacter coli Infections. PLoS ONE [Internet]. 2013 May [cited 2020 
522 Feb 14];8(5). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3667194/

523 55. Strachan NJC, Gormley FJ, Rotariu O, Ogden ID, Miller G, Dunn GM, et al. Attribution of 
524 Campylobacter Infections in Northeast Scotland to Specific Sources by Use of Multilocus 
525 Sequence Typing. J Infect Dis. 2009 Apr;199(8):1205–8. 

526 56. Pérez-Reche FJ, Rotariu O, Lopes BS, Forbes KJ, Strachan NJC. Mining whole genome sequence 
527 data to efficiently attribute individuals to source populations. Sci Rep. 2020 Jul 22;10(1):12124. 

528 57. STRACHAN NJC, ROTARIU O, SMITH-PALMER A, COWDEN J, SHEPPARD SK, O’BRIEN SJ, et al. 
529 Identifying the seasonal origins of human campylobacteriosis. Epidemiol Infect. 2013 
530 Jun;141(6):1267–75. 

531 58. Yahara K, Méric G, Taylor AJ, Vries SPW de, Murray S, Pascoe B, et al. Genome-wide association 
532 of functional traits linked with Campylobacter jejuni survival from farm to fork. Environ 
533 Microbiol. 2017;19(1):361–80. 

534 59. Méric G, McNally A, Pessia A, Mourkas E, Pascoe B, Mageiros L, et al. Convergent Amino Acid 
535 Signatures in Polyphyletic Campylobacter jejuni Subpopulations Suggest Human Niche Tropism. 
536 Genome Biol Evol. 2018 Mar 1;10(3):763–74. 

537 60. Sheppard SK, Didelot X, Meric G, Torralbo A, Jolley KA, Kelly DJ, et al. Genome-wide association 
538 study identifies vitamin B5 biosynthesis as a host specificity factor in Campylobacter. Proc Natl 
539 Acad Sci. 2013 Jul;110(29):11923–7. 

540

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 23, 2021. ; https://doi.org/10.1101/2021.02.23.432443doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.23.432443
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 23, 2021. ; https://doi.org/10.1101/2021.02.23.432443doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.23.432443
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 23, 2021. ; https://doi.org/10.1101/2021.02.23.432443doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.23.432443
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 23, 2021. ; https://doi.org/10.1101/2021.02.23.432443doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.23.432443
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 23, 2021. ; https://doi.org/10.1101/2021.02.23.432443doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.23.432443
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 23, 2021. ; https://doi.org/10.1101/2021.02.23.432443doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.23.432443
http://creativecommons.org/licenses/by/4.0/

