
 
 

 

Title: 3D viscoelastic drag forces drive changes to cell shapes during organogenesis in the 
zebrafish embryo 
 
Authors: Paula C. Sanematsu1, Gonca Erdemci-Tandogan1,2, Himani Patel3, Emma M. Retzlaff3, 
Jeffrey D. Amack1,3, M. Lisa Manning*,1 

 
1Department of Physics and BioInspired Syracuse: Institute for Material and Living Systems, 
Syracuse University, Syracuse, NY, USA. 
2Current appointment: Institute of Biomaterials and Biomedical Engineering, University of 
Toronto, Canada. 
3Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY, USA. 
*Corresponding author, Department of Physics, Physics Bldg. 229B, Syracuse University, 
Syracuse, New York 13244. Email: mmanning@syr.edu. 

Highlights 
• new physics-based simulation method allows study of dynamic tissue structures in 3D 
• movement of an organ through tissue generates viscoelastic drag forces on the organ 
• these drag forces can generate precisely the cell shape changes seen in experiment 
• PIV analysis of experimental data matches simulations and probes tissue mechanics 

Graphical abstract 
 

 

Keywords 
Left-right asymmetry, cell shape, vertex model, tissue mechanics, Particle Image Velocimetry, 
organogenesis 
 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 23, 2021. ; https://doi.org/10.1101/2021.02.23.432503doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.23.432503
http://creativecommons.org/licenses/by-nd/4.0/


 
 

 

Abstract 
 
The left-right organizer in zebrafish embryos, Kupffer’s Vesicle (KV), is a simple organ that 
undergoes programmed asymmetric cell shape changes that are necessary to establish the left-
right axis of the embryo. We use simulations and experiments to investigate whether 3D 
mechanical drag forces generated by the posteriorly-directed motion of the KV through the 
tailbud tissue are sufficient to drive such shape changes. We develop a fully 3D vertex-like 
(Voronoi) model for the tissue architecture, and demonstrate that the tissue can generate drag 
forces and drive cell shape changes. Furthermore, we find that tailbud tissue presents a shear-
thinning, viscoelastic behavior consistent with those observed in published experiments. We 
then perform live imaging experiments and particle image velocimetry analysis to quantify the 
precise tissue velocity gradients around KV as a function of developmental time. We observe 
robust velocity gradients around the KV, indicating that mechanical drag forces must be exerted 
on the KV by the tailbud tissue. We demonstrate that experimentally observed velocity fields 
are consistent with the viscoelastic response seen in simulations. This work also suggests that 
3D viscoelastic drag forces could be a generic mechanism for cell shape change in other 
biological processes. 

1. Introduction 
 
During the early stages of vertebrate embryonic development, the correct establishment of the 
left-right (LR) body axis is crucial for patterning, positioning, and morphogenesis of several 
internal organs. When this process is defective, congenital diseases can occur [1] and, in 
extreme cases, become fatal to the embryo.  
 
Many vertebrate embryos develop a specialized ciliated organ that organizes LR patterning, 
such as the ventral node in mice, the gastrocoel roof plate in frogs, and Kupffer’s vesicle (KV) in 
zebrafish [2]. Therefore, an important open problem is identifying the mechanisms that drive 
the correct formation of these simple organs, and describing how such mechanisms break 
down in congenital disease. 
 
Here, we focus on the KV, the zebrafish LR organizer [3, 4], as zebrafish are an excellent model 
organism: they reproduce rapidly and externally, are optically transparent for microscopy, and 
are amenable to many genetic and mechanical perturbations. The KV is a transient spheroid, 
rosette-like organ, located in the tailbud of the zebrafish embryo (Figure 1A,B), and is 
composed of ~50 monociliated epithelial cells that enclose a fluid-filled lumen [3, 5]. The 
nascent lumen is visible at 10.5 h postfertilization (hpf) at the 2 somite stage (ss) when dorsal-
ventral (DV) and anterior-posterior (AP) axes are already established. As the KV travels through 
the tailbud tissue from 2 ss to 8 ss (a period of 3 h), the lumen expands, cilia elongate, and KV 
cells undergo asymmetric cell shape changes along the AP axis. This is best observed in the 
middle plane of the organ where cells in the anterior region become thin and elongated, and 
posterior KV cells become flattened and wide [6, 7] (Figure 1C).  
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Figure 1: Zebrafish KV cell shape changes during organogenesis between 2 and 8 ss. (A) KV (green) in the zebrafish 
embryo is located at the posterior end of the notochord in the tailbud seen in the (left) lateral view and (right) 
dorsal view (scalebar = 200 𝜇𝑚). Dotted lines outline the approximate boundary of the tailbud. (B,C) Confocal 
microscope images (scalebar = 20 𝜇𝑚) of the KV dorsal side at (left) 2 ss with symmetric cells shapes and (right) 8 
ss with asymmetric cell shapes along the AP axis (note: because the confocal microscope captures mirror images, 
the left-right axis is flipped). (B) 3D projection of the KV. (C) Middle plane projection. (D) Schematic of KV middle 
plane cells and cilia (left) at 2 ss when they are AP symmetric and (right) at 8 ss with more ciliated cells on the 
anterior side that create directional fluid flow to establish LR asymmetry. A=anterior, P=posterior, L=left, R=right. 

These programmed changes to cell shape have been shown to be necessary for proper KV 
function. Specifically, they ensure that there are more ciliated cells packed into the anterior 
hemisphere compared to the posterior [7]. This asymmetric distribution of monociliated cells 
then generates a directional right-to-left flow across the KV anterior region that develops 
between 4 to 6 ss and results in stronger forces on the left side and weaker forces on the right 
side [7, 8] (Figure 1D, right). It has been proposed that stronger mechanical forces on the left 
side of the KV are sensed by immotile cilia and/or other mechanosensory mechanisms that 
then biases expression of the southpaw gene, which encodes a Nodal signaling molecule, in the 
left lateral plate mesoderm by 10-12 ss. This asymmetric Nodal signaling is thought to guide 
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subsequent visceral organ morphogenesis [3, 4, 9]. Previous work indicates that the higher 
density of cilia on the anterior region of the KV is necessary to generate sufficient flow strength 
for the downstream LR readout [8, 10]. 
 
Although programmed shape changes in the KV have been identified as an upstream driver of 
directional fluid flow and subsequent LR patterning [7, 8, 11], the precise mechanisms that 
drive KV cell shape changes remain unclear. Previous work has demonstrated cell shape 
changes depend on an asymmetric accumulation of extracellular matrix at the anterior pole 
[12], and occur independent of lumen expansion [6]. Additional work indicates shape changes 
require non-muscle myosin II activity, which regulates actomyosin-based contractility [11]. 
However, signals upstream of myosin II activity that drive differential shape changes remain 
unknown, as no morphogen or other biochemical gradient has been implicated. 
  
For this reason, some of us Erdemci-Tandogan, Clark [13] proposed that perhaps a mechanical 
signal, generated by the KV traveling through tailbud tissue toward the posterior end of the 
embryo, could directly trigger shape changes. Specifically, a 2D model demonstrated that drag 
forces from tailbud tissue are a plausible generator of AP asymmetry in the KV. In experiments, 
we also demonstrated that the average velocity of the KV is higher than the surrounding tailbud 
tissue, indicating that the KV has a velocity relative to tailbud tissue. However, there was no 
direct evidence of drag forces from experimental data, as that work did not quantify the 
velocity gradients that are responsible for drag.  
 
Moreover, that work focused entirely on a 2D model, but drag forces in 2D are inherently 
different than 3D at low Reynolds number (𝑅𝑒 ≪ 1) [14]. This corresponds to flow regimes 
where viscous forces dominate over inertial forces, also called Stokes or creeping flow. 
Therefore, a 3D model for the system would be valuable, though technical challenges have, for 
the most part, inhibited the development 3D models, especially in confluent systems with 
multiple tissue types.   
 
Such a 3D model would allow us, for the first time, to quantitatively test our hypothesis that 
tissue flow and drag forces around the roughly spherical KV resemble those of Stokes flow 
around a solid sphere. Figure 2 shows a 2D cross-section of the analytic solution for Stokes flow 
around a 3D sphere, illustrating the streamlines (lines of constant velocity in the surrounding 
fluid, blue lines), mechanical shear stresses at the boundary (black arrows), and pressure on the 
sphere (colored ring). Gradients in the strain rate (which are perpendicular to the blue lines) 
generate drag forces that result in pressures (pushing inward on the sphere at the leading edge 
and outward on the sphere at the trailing edge) and shear stresses (maximum on the sides of 
the sphere – left and right sides in this representation), that could potentially alter the global 
shape of the sphere as well as individual cell shapes that comprise the sphere. 
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Figure 2: Analytical solution of Stokes flow around a sphere. The colored ring represents the pressure exerted by 
the fluid on the sphere, with positive pressure (pushing inward) at the bottom of the sphere, upstream of the flow, 
and negative pressure (pulling outward) at the top of the sphere, downstream of the flow. Arrows represent the 
shear stress acting tangentially on the KV (the arrow length represents the magnitude, and the location of the 
shear stress is at the tail of the arrow). 

Simultaneously, evidence has emerged that the mechanical response, or rheology, of zebrafish 
tailbud tissue is quite complex. Therefore, a second open modeling challenge is characterizing 
the rheology of the tailbud and investigating drag forces in this complex tailbud “material”. 
Recent experimental work has shed some light on the issue. Mongera, Rowghanian [15] 
demonstrated that there is a strong gradient in the zebrafish tailbud tissue mechanics, ranging 
from the more anteriorly located presomitic mesoderm, which is solid-like, to the posteriorly 
located progenitor zone, which is fluid-like.  
 
To explain the physiological relevance of this transition, Banavar, Carn [16] developed a 
computational model showing that a fluid-to-solid transition is necessary for proper 
morphogenesis. They used a coarse-grained continuum approach to model zebrafish body axis 
elongation with and without a fluid-solid transition of the tissue and demonstrated that 
unidirectional body elongation occurs only when a fluid-solid transition exists.  
 
While valuable, such large-scale continuum models specify the solid-like or fluid-like locations in 
a tissue a priori, and they are disconnected from experimental observations. In contrast, other 
cell- and particle-based models have been developed which also exhibit a fluid-solid transition 
as a function of model parameters, but these model parameters are at the scale of a cell and 
can be inferred directly from experiments. For example, vertex and Voronoi models for 
confluent tissues undergo a phase transition as a function of the dimensionless cell surface area 
parameter 𝑠!, defined as the ratio of cell area to cell volume, 𝑠! ≡ 𝑆!/𝑉!

"/$ (see details in 
Methods), exhibiting a solid-like phase when 𝑠! < 5.413 and liquid-like phase for 𝑠!	above this 
value [17]. Particle-based or foam-like models [18, 19] show similar transitions as a function of 
packing fraction or number density. 
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Regardless of whether a vertex-based, particle-based, or continuum-based model (such as in 
[16]) best describes the tailbud tissue, it is important to systematically understand the effect of 
tailbud tissue rheology on drag forces [20, 21]. Although previous experimental work measured 
local rheology of the tailbud tissue by generating small perturbations to cell-scale droplets [22], 
there are no experimental estimates of the effective rheology of the tailbud tissue caused by 
large-scale perturbations that might be produced, for example, by an organ moving through the 
tissue. It is well-established that the large-scale effective rheology of a material can be quite 
different from the rheology measured at small scales [23]. 
 
These questions are important beyond just the question of KV in zebrafish development. In 
many developmental processes, groups of cells must migrate through other tissues to reach a 
destination and perform a function. If such migratory behavior and corresponding drag forces 
do generate robust cell shape changes, such shape changes could play an important role in 
shaping organs in many other contexts. More broadly, such mechanical signaling provides a 
plausible mechanism by which organisms can transduce molecule-scale information and use it 
to organize structure on the scale of tissues, and conversely allow tissue-scale mechanics to 
drive shape changes at the level of single cells, creating a feedback loop across length scales.  
 
In this work, we develop a novel 3D model of confluent tissues to simulate KV morphogenesis, 
which represent a significant advance from previously studied 2D models. We use these 3D 
simulations in combination with particle image velocimetry (PIV) analyses of live images of KV 
development in zebrafish embryos as shown in Supplementary Video S1. We demonstrate that 
the KV experiences drag forces as it moves through the tailbud tissue and quantify how these 
mechanical forces contribute to KV cell shape changes. In addition to characterizing velocity 
fields of tailbud tissue flow around the KV, we use the moving KV as a probe to characterize the 
effective tissue rheology of the model, for various values of model parameters. Finally, we 
compare simulation and experimental velocity gradients to place bounds on the model 
parameter regimes that appropriately capture KV dynamics and mechanics in the zebrafish 
embryo.  

2. Methods 
 
2.1 Zebrafish embryo imaging 
 
In this study we used the Tg(sox17:GFP-CAAX)sny101 transgenic strain of zebrafish that expresses 
membrane-localized GFP in KV cells [6]. To simultaneously visualize KV and the nuclei of 
surrounding tailbud cells, Tg(sox17:GFP-CAAX) embryos were injected between the 1 and 2-cell 
stage with 10 pg of synthetic mRNA that encodes mCherry with a nuclear localization sequence 
(nls-mCherry). The nls-mCherry mRNA was synthesized using a mMessage mMachine SP6 
Polymerase kit (Thermo Fisher Scientific). Injected embryos were incubated at 31oC until early 
somite stages of development, and then manually dechorionated and mounted in 1% low-
melting-point agarose in glass-bottomed dishes (MatTek). Successfully mounted embryos were 
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then imaged starting between 2 and 7 ss using a 10 or 20X objective on a Perkin-Elmer 
UltraVIEW Vox spinning disk confocal microscope (Perkin Elmer) while maintained at 32oC. 
Under these conditions, we found that embryos developed one new somite pair every 25 min. 
KV in the tailbud was imaged from the dorsal side, but our confocal microscope captures mirror 
images such that left-right axis is flipped. Images were captured every 2 or 4 min for different 
durations as shown in Figure 3, which depended on how long the KV and tailbud cells remained 
in focus (refer to Supplementary Table S1 for imaging details of each embryo). ImageJ software 
(NIH) was used to create maximum projections for each timepoint. We set 𝑡 = 0 at 2 ss. All 
experiments using zebrafish were approved by the Institutional Animal Care and Use 
Committee at SUNY Upstate Medical University. Embryos were staged as described in Kimmel, 
Ballard [24]. 
 

 
Figure 3: Developmental stage in which embryos images were acquired 

2.2 Particle image velocimetry (PIV) analysis 
 
To quantify the flows in the tailbud tissue surrounding the KV, we use standard particle image 
velocimetry (PIV) [25] implemented in the MATLAB PIVlab software package [26]. Additional 
details are provided in Appendix A. 
 
For the purpose of comparing embryo behavior between different developmental stages, we 
calculate the average of the AP-directed (or 𝑧-) component velocity (𝑉-%&'!

()*+(,) as a function of 
the distance from the KV along the LR (or 𝑥-) axis. This velocity profile is computed 
independently across multiple embryos between 2 to 4 ss, 4 to 6 ss, and 6 to 8 ss, which we will 
call the somite average velocity profile. Because embryos span different ranges in the 𝑥-axis, 
we only average data points that contained at least two embryos. As a way to measure and 
compare rates of shearing strain (i.e. velocity gradients: Δ𝑣/Δ𝑥 = 𝛾̇ s-1; for more details on 
strain rates, see 3D mathematical model Section 2.3) between various embryos, we translate 
the data point at the KV surface to the origin and fit a linear profile within error bars using 
Deming regression [27] implemented by Browaeys [28]. The linear regression only included 
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points within ~50 𝜇m away from the KV surface because we would like to measure rate of 
shearing strain close to the KV. 
 
2.3 3D mathematical model 
 
We use a 3D self-propelled Voronoi (SPV) model [17] to study the movement of the KV through 
the tailbud tissue. The Voronoi model is a vertex-like model where the degrees of freedom are 
the cell centers, and cell geometry is defined by a Voronoi tessellation – whereas in vertex 
models the degrees of freedom are the cell vertices. Both models use an energy functional to 
obtain the preferred geometry of the cells in the system. In 3D SPV model, the energy of a 
confluent tissue with 𝑁-  cells is: 
 

	
𝐸 =78	𝐾':𝑉. − 𝑉!"<

" + 𝐾/:𝑆. − 𝑆!"<
">

0#

.

+7𝛾.1𝐴.1

0#

.21

 (1)	

 
where the first term of the right-hand side (RHS) represents the volume compressibility of a cell 
with 𝑉.  and 𝑉!"  representing actual and preferred volume, respectively. The second term 
models the actual surface area of a cell, 𝑆., given the preferred surface area 𝑆!". This term 
represents the mechanical forces generated by the competition between cell-cell adhesion 
molecules and actomyosin in the cytoskeleton localized near the cell cortex. 𝐾' > 0 and 𝐾/ > 0 
are elastic moduli related to the deviations from the preferred cell volume and surface area, 
respectively.  
 
Finally, the last term on the RHS, which does not appear in the model reported in [17], 
represents an additional surface tension, 𝛾.1, between cells 𝑖 and 𝑗	of different cell types that 
share a surface area 𝐴.1  [29, 30]. Here, we used the heterotypic surface tension  𝛾.1  to create a 
mechanical boundary between two tissue types. This new term allows us to dynamically 
simulate coherent tissue structures, such as the KV organ. 
 
The cell dynamics are determined by an over-damped equation with the added self-propulsion 
velocity, 𝑣!: 
 

	 𝑑𝒓.
𝑑𝑡 = 𝜂𝑭. + 𝑣!𝒛L.  

(2)	

 
where 𝒓.  is the position of cell 𝑖, 𝜂 is the mobility coefficient (inverse microscopic frictional 
drag), 𝒛L.  is the direction of the self-propulsion velocity, and 𝑭 is the mechanical force on each 
cell 𝑖	: 
 

	 𝑭. = −∇.𝐸. (3)	

The self-propulsion velocity 𝑣! in equation (2), which is a self-propulsion force times a mobility, 
is the simplest way to incorporate our observation that the KV moves through the tailbud. It is 
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meant to approximate possible mechanisms that drive this motion. For example, during 
embryonic development, convergence and extension (CE) movements elongate the notochord 
[31]. This elongation has been observed in our live imaging and suggests that the notochord 
“pushes” the KV in the posterior direction through the tailbud cells [13]. Another process that 
may generate forces on the KV is the active movement of KV posterior cells crawling on tailbud 
cells and “pulling” the entire KV towards the posterior direction [32]. As we expect that the 
mechanism that drives KV motion does not strongly affect drag forces that result from such 
motion, we focus on the simplest self-propulsion model here – investigating other mechanisms 
would be an interesting avenue for future work. 
 
Our simulations are performed under periodic boundary conditions on a fixed cube with side 
length 𝐿. The energy functional is nondimensionalized by the energy unit 𝐾/𝑉!

3/$, time is 
nondimensionalized by the natural time unit 𝜏 = 1/:𝜂𝐾/𝑉!

"/$<, and length is 
nondimensionalized by 𝑙 = 𝑉!

4/$. These generate the effective shape index 𝑠! = 𝑆!/𝑉!
"/$. Given 

these definitions, all simulation results are presented in natural units. As discussed in the 
introduction, previous work has demonstrated that tissue fluidity is controlled by the shape 
index. In the limit of low active fluctuations, smaller values of 𝑠! <	5.413 correspond to solid-
like tissues, and increasing 𝑠! above this value generates fluid-like tissues [17]. Since the tailbud 
cells are not self-propelled, we will therefore refer to tailbud tissue as “solid-like” when the 
shape parameter is lower than that critical value, and “fluid-like” when the shape parameter is 
higher. However, the motion of the KV through the tailbud could generate interesting dynamic 
viscoelastic rheological responses in both fluid and solid phases.  The exact dynamics remain 
unknown, as a detailed study of 3D SPV model rheology has never been performed. 
 
In this work, we define three cell types as shown in Figure 4A: external tailbud cells (gray), KV 
cells (red and blue), and lumen “cells” (yellow). In the zebrafish embryo, the lumen is a fluid-
filled vesicle, and in our model, we represent that roughly spherical volume with Voronoi cells 
(Figure 4A,C). KV is composed of ~50 epithelial cells that surround the lumen [6]. Thus, as 
illustrated in Figure 4A,B, we used 25 KV anterior and 25 KV posterior cells that are labeled 
differently solely for post-processing analysis purposes. KV anterior and posterior cells have the 
same characteristics (i.e., simulation parameters), which means that we do not introduce any 
innate preferred asymmetry in the simulations. The initial positions of the KV cells are 
distributed as a spherical monolayer surrounding the lumen. Additional details of the model 
implementation are provided in Appendix B. 
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Figure 4: Initial configuration of the 3D SPV model after the system converges to a state of minimal energy and 
before self-propulsion is introduced. The system contains 2048 external cells, 50 KV cells, and 17 lumen cells. (A) A 
cutout of the entire computational domain through the center of the KV as shown in the inset. (B,C) Initial 
spherical shape of the (B) KV and (C) lumen. (D) Increasing values of observed cell shape parameter 𝑠$ with solid-
like cells (𝑠$ < 5.413) more compact and spherical and liquid-like cells (𝑠$ > 5.413) more elongated. 

In previous work by some of us [6, 11, 13], asymmetry between anterior and posterior cells in 
the KV was quantified using the anterior-posterior parameter (𝐴𝑃𝐴), which is the difference 
between the length to width ratio (𝐿𝑊𝑅) of anterior and posterior cells (𝐴𝑃𝐴 = 𝐿𝑊𝑅56* −
𝐿𝑊𝑅789*) from a 2D cross section. While defining 𝐴𝑃𝐴 from a 2D cross section is 
straightforward, there are several different choices for how to define 𝐴𝑃𝐴 when one has access 
to the full 3D shape [6, 13], and we find that such measurements are generally less robust. 
Therefore, we turn to a different measurement here.  𝐴𝑃𝐴 readout is directly related to the 
ratio of anterior to posterior cells (𝑛5/𝑛7): when the KV is symmetric at 2 ss, all KV cells have 
similar shape and each hemisphere has half of KV cells; at 8 ss, anterior cells are thin and 
elongated whereas posterior cells are wide and flattened, and this results in more cells being 
located on the anterior than on the posterior side. As the cell distribution readout is more 
robust in our 3D simulations, and has been shown to drive the lumen asymmetric fluid flows 
and LR symmetry breaking, we will use 𝑛5/𝑛7 as the primary readout parameter for KV 
asymmetry, though we also show data for 𝐴𝑃𝐴 in Supplementary Figure S1. 
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In addition to predicting motion, an additional benefit of physical models is that they can be 
used to predict forces and stresses. Here, we can use Equation (1) to analyze forces exerted by 
tailbud tissue on KV cells. Specifically, using Equation (3), we obtain the force 𝑭.1  of an external 
cell 𝑖 on a KV cell 𝑗 and then calculate the traction on each KV cell: 
 

	
𝑻𝒌 =

𝑭.1 ∙ 𝒌Z
𝐴.1

 
(4)	

 
where 𝐴.1 is the area of the facet shared between cells 𝑖 and 𝑗, 𝒌Z is the unit vector normal (𝒏]) or 
tangential (𝒕L) to 𝐴.1. We define 𝒏] to point out from 𝐴.1  and 𝒕L is the vector tangential to 𝐴.1  that 
gives the maximum tangential traction. These tractions can then be used along with velocity 
gradients to quantify the rheology of the tailbud tissue next to the KV and probe how the drag 
forces generated by tailbud tissue are stretching and moving cells within the KV. Additional 
details for how the streamlines and forces are averaged over the unstructured grid in Voronoi 
models are given in Appendix C. 
 
To better understand the rheology of external cells, we analyze how strain (𝜏9 = ‖𝑻𝒕<‖) and rate 
of shearing strain,  𝛾̇, are related for different tailbud tissue fluidity and KV initial velocity. The 
rate of shearing strain is calculated using the gradient of the two velocity vectors closest to the 
KV. On the 𝑥𝑧-plane: 
 

	 𝛾̇ =
𝜕𝑣=
𝜕𝑥 +

𝜕𝑣)
𝜕𝑧 ≈

𝑣=,4 − 𝑣=,!
𝑥4 − 𝑥!

+
𝑣),4 − 𝑣),!
𝑧4 − 𝑧!

 
(5)	

 
where the index of 𝑣 indicates the velocity components. At the Equator, 𝑣) is negligible and 
Equation (5) can be simplified to  𝛾̇ ≈ :𝑣=,4 − 𝑣=,!</(𝑥4 − 𝑥!).  

3. Results 
 
3.1 Simulations 
 
We use 3D modeling to assess how KV cell distribution varies for a range of values of tailbud 
tissue fluidity (𝑆!) and KV initial velocity (𝑣!?'). Since we hypothesize that fluid-like drag forces 
generated by KV motion alters cell shape, we first focus on quantifying the motion of the KV 
through the tissue as a function of model parameters. Figure 5E illustrates the observed KV 
steady-state speed 𝑣//!

?'  as a function of input KV self-propulsion 𝑣!?'  and tailbud tissue 
mechanics (parameterized by the shape parameter 𝑆!). There is a solid-like regime in the 
bottom left corner of the phase diagram at low magnitudes of self-propulsion and compact cell 
shapes, where the KV steady state velocity (𝑣//!

?' ) is approximately zero; the self-propulsion is 
not sufficient to overcome the solid-like tailbud tissue that occur when cell shape indices are 
small.   
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Figure 5: (A,B) Examples of different 𝑛%/𝑛& (A) low (𝑆$ = 5.5 and 𝑣$'( = 0.0275), and (B) high 𝑛%/𝑛& (𝑆$ = 5.5 
and 𝑣$'( = 0.09625). (C,D) Different cell shapes for the KV of panel B: (C) elongated and narrow anterior cell and 
(D) flattened and wide posterior cell. (E,F) Sweeps in parameter space of tailbud tissue fluidity (𝑆$) and KV initial 
velocity (𝑣$'( = 0.01375, 0.0275, 0.04125, 0.055, 0.06875, 0.0825, 0.09625, and 0.11 labeled for simplicity as 1.4, 
2.8, 4.1, 5.5, 6.9, 8.3, 9.6, 11 × 10-2): (E) KV steady state velocity (𝑣𝑆𝑆𝑧

𝐾𝑉 ) and (F) ratio of number of anterior to 
posterior cells (𝑛%/𝑛&). 

In contrast, in the upper right-hand corner of the figure, corresponding to higher rates of KV 
self-propulsion and elongated cell shapes that fluidize the tissue, the KV is able to move quickly 
through the tissue and 𝑣//!

?'  is large. Between these extremes, we observe a smooth gradient in 
steady state KV speed as a function of model parameters. 
 
Next, we ask how this observed KV motion correlates with anterior-posterior (AP) asymmetric 
cell shapes changes and distribution of ciliated cells.  In contrast to previous results from 2D 
modeling [13], we observe that the cell shapes defined by the 2D length-to-width ratio (𝐿𝑊𝑅) 
are not as robust in 3D simulations. We hypothesize that perhaps the 2D 𝐴𝑃𝐴 = 𝐿𝑊𝑅56* −
𝐿𝑊𝑅789* is not good at capturing the full 3D cell shape highlighted in Figure 5C,D (we include 
data and analyses of the 3D 𝐴𝑃𝐴 in Supplementary Figure S1). Since the asymmetric AP 
distribution of ciliated cells is thought to be the important downstream readout of these shape 
changes for LR patterning [3], we next investigate whether cells are AP asymmetric, using the 
ratio of the number of anterior and posterior cells  𝑛5/𝑛7.  In Figure 5E,F, we see that the 
distribution of cells in KV remains symmetric (𝑛5/𝑛7 ≈ 1) (Figure 5A is an example of 
symmetric distribution of KV cells) when its steady state speed is approximately zero. This is 
important, as it confirms that self-propulsion forces alone are not sufficient to generate AP 
cellular asymmetry; the KV has to move through the tailbud to generate this asymmetry in our 
model. 
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In addition, at the slowest self-propulsion speeds, the KV moves so slowly that AP asymmetry is 
not generated. In the remaining regions of parameter space, the AP asymmetries can become 
quite large (as exemplified by Figure 5B), and there is a range of parameter values (𝑆! ≥ 5.4 and 
𝑣!?' ≥ 0.055) that generate asymmetries similar to published experiments (𝑛5/𝑛7 = 1.77) [11] 
(a simulation in this range is shown in Supplementary Video S2). Interestingly, this panel also 
highlights an important difference between 2D and 3D simulations: while 2D results [13] 
showed a monotonic increase of 𝑛5/𝑛7 as the fluidity of the tailbud increases, the 3D results 
behave differently, with an enhanced asymmetry when the cell shape index is close to the value 
for the fluid-solid transition in the limit of low fluctuations (𝑆! = 5.4). 
 
Next, we characterize the external cells movement relative to the KV as a fluid flow field and 
compare it with a known solution of flow around a sphere. In continuous fluid mechanics, a 
flow is roughly categorized into different regimes according to the Reynolds number, which 
represents the ratio of inertial to viscous forces: 𝑅𝑒 = 𝜌𝑈𝐿+(/𝜇, where 𝜌 is the fluid density, 𝑈 
is the flow speed, 𝐿+( is a characteristic length scale, and 𝜇 is the fluid dynamic viscosity. When 
viscous forces are dominant (i.e. 𝑅𝑒 ≪ 1),	by either having flow at very small scales (e.g. 
microfluidics), very low velocities, and/or very high dynamic viscosity, inertial forces can be 
neglected, which simplifies the problem to Stokes (or creeping) flow. Given that the KV moves 
at very slow speeds [13] and its dimensions are in the order of micrometers, we expect that 
𝑅𝑒 ≪ 1 in our simulations and compare our simulations to the analytical solution of Stokes flow 
around a sphere (Figure 2). 
 
To further understand the mechanisms causing the observed enhanced AP asymmetry near the 
fluid-solid transition (𝑆! = 5.4 and 5.5) as well as asymmetries in the region of parameter space 
where this tissue is ostensibly fluid-like (𝑆! = 5.7), we compute streamlines from the velocity 
field of externals cells and also calculate shear and pressure acting on the KV. First, we compare 
results of the fluid-like regime with expected streamlines, shear, and pressure of Stokes flow 
around a sphere (Figure 2). The streamlines in Stokes flow are symmetric both about the 𝑥 and 
𝑧 axes, while shear is symmetric about the 𝑧-axis and its direction is tangent to the streamlines 
with maximum value at the sphere Equator (𝑧 =	0). The pressure is also symmetric about the 𝑧-
axis, with positive (pushing inward) upstream pressure (𝑧 < 0) on the sphere and negative 
(pulling outward) downstream pressure (𝑧 > 0).  
 
When the tailbud tissue is fluid-like (𝑆! = 5.7) and velocities are intermediate (𝑣!?' = 0.055), 
Figure 6F shows the results of SPV model simulations are remarkably similar to that of Stokes 
flow shown in Figure 2. This demonstrates our hypothesis is plausible for 3D flows: tissue 
motion surrounding KV can act as a flowing fluid and exert drag forces on the KV via fluid-
structure interactions.  
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Figure 6: Streamlines, pressure, and shear for various tailbud tissue fluidities 𝑆$ and initial KV velocities 𝑣$'(. Each 
row is the result of a fixed 𝑣$'( value whereas each column is the result for a given 𝑆$. The colored ring represents 
the pressure exerted by the external cell fluid flow on the sphere, with positive pressure (pushing inward, yellow- 
ranged colors) negative pressure (pulling outward, purple-ranged colors). Arrows represent the shear stress acting 
tangentially on the KV (the arrow length represents the magnitude, and the location of the shear stress is at the 
tail of the arrow). 𝑥 and 𝑧 axes are normalized the KV radius, 𝑟'( (for more details on this normalization, refer to 
Appendix C).  

With increased velocity (𝑣!?' > 0.055) in the fluid-like regime (𝑆! = 5.7, shown in Figure 6C), 
we find that although the pressure was still similar to Stokes’ pressure, streamlines are no 
longer symmetric about the 𝑥-axis and shear stresses on the anterior side of KV (𝑧 > 0) are not 
tangent to streamlines. The effect of increasing KV velocity on streamline asymmetry can be 
further seen in Supplementary Figure S2, in which asymmetry about the 𝑥-axis gradually 
becomes more pronounced for increasing 𝑣!?'  and 𝑣!?' > 0.055. These behaviors that deviate 
from Stokes flow indicate that the rheology of the tailbud tissue in this parameter regime 
departs from a Newtonian fluid.  
 
Finally, for weakly solid-like tissues (Figure 6, panels A, D, G) – corresponding to values of the 
tailbud shape index just below the fluid-solid transition (𝑆! = 5.4) – streamlines indicate that 
external cells do flow around the KV and generate drag forces. However, their behavior greatly 
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differs from Stokes flow as both pressure and shear do not follow patterns seen in Stokes flow 
(Figure 2). Pressure is negative both upstream and downstream of the KV and shear does not 
have an apparent pattern.  
 
A related observation is that for almost all simulation parameters, the velocity of streamlines 
far away from the KV appears to plateau to a constant value (data points in Figure 7), which is 
not observed in Stokes flow (thick purple line in Figure 7) in which viscous effects generated by 
the sphere extend to the far-field external flow. This plateau indicates there are two distinct 
regions in the external cells surrounding the KV: (1) a yielded region close to the KV and (2) a 
non-yielded region far from the KV. 
 
In summary, we observed the following non-Newtonian behaviors: (a) in the solid-like regime 
(𝑆! = 5.4), KV needs a minimal self-propulsion velocity to overcome forces of external cells 
otherwise the KV does not move, (b) in the fluid-like regime (𝑆! = 5.5 and 5.7) streamline 
asymmetry about the 𝑥 axis for 𝑣!?' > 0.055, and (c) a non-yielding region in the external cells.  
 
This leads us to hypothesize that in our Voronoi simulations, external cells may behave as a 
viscoelastic fluid, such as a Bingham or Herschel-Bulkley plastic. In these non-Newtonian 
materials, a sphere needs a minimal velocity to overcome the materials’ yield stress and start 
moving [33]. When a sphere moves through Bingham plastic, it creates a yielded (fluidized) 
region surrounding the sphere and far from it, the fluid remains as a solid [33]. Herschel-Bulkley 
plastics, in addition to having a minimum yield stress, are also shear thinning so that the 
material appear less viscous as the rate of deformation increases [34]. 
 
We investigate whether external tissues in the simulations have the effective rheology of a 
viscoelastic material, by analyzing the profiles of external cells velocity relative to the KV 
(𝑣̅=()*+(,) at the KV Equator (𝑧 = 0) and along the 𝑥 axis (Figure 7). In order to compare our 
simulation results with results from flow around a sphere, we normalize the simulation velocity 
(𝑣̅=()*+(,) by the absolute value of the KV steady state velocity i𝑣//!

?' i, which corresponds to the 
standard normalization in continuum fluid dynamics. This allows us to study the shape of strain 
gradients, rather than the magnitude, as the shape can help us identify the most suitable 
viscoelastic model for the material rheology. 
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Figure 7: Simulation velocity profiles for different tailbud tissue fluidity (𝑆$) and KV self-propulsion velocity 
(𝑣$'(). 𝑦-axis is the external cells 𝑧-component of velocity relative to the KV, 𝑣,-./0-1, normalized by the KV SS 
velocity, 8𝑣22"

'( 8. 𝑥-axis represents the distance from KV center normalized the KV radius, 𝑟'(. Profiles include 
regular domains of ~3.5𝑟'( = 𝑙. and larger domain of 2𝑙. at the Equator as indicated in the inset (see Appendix B 
for details on 𝑙.).  

In the analytic solution to Stokes flow around a sphere, the velocity increases monotonically as 
a function of distance from the sphere and approaches unity at large distances ( lim

)→A
𝑣= → 1). In 

contrast, in experiments of creeping flow of Bingham plastic around a sphere [35], velocity 
profiles are characterized by (a) a steeper velocity gradient than Stokes flow, often with an 
overshoot above unity; and (b) a plateau in the solid region corresponding to unyielded 
material. 
 
For the velocity profiles corresponding to 𝑆! = 5.7 in Figure 7, we observe characteristics very 
similar to that of Bingham plastics, and clearly distinct from a Newtonian fluid. In addition, 
tissues that would be solid-like in the absence of driving forces (𝑆! = 5.4, 5.5) also exhibit 
Bingham plastic-like features when the KV moves through it, although there is no minimal 
velocity overshoot.  
 
For computational efficiency most of our simulations are performed for the smallest system 
size that does not affect the steady-state KV velocity (𝑁()* = 2048). Figure 7, however, 
demonstrates that for fluid-like tissues, the velocity profile does not yet attain its plateau value 
at the edge of the simulation box. Therefore, for 𝑆! = 5.7, we also simulated larger system sizes 
(2𝑙)) to demonstrate that the system does in fact attain a plateau. We note that the velocity 
profiles for different system sizes do not match because there is a shift in normalization for the 
smallest system size. 
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In addition to the velocity profiles at the equator, the velocity profiles of 𝑣̅=()*+(,  at the two 
poles and along the 𝑧-axis, called wake profiles, are frequently used to investigate non-
Newtonian behavior. In Stokes flow, the upstream and downstream wakes are symmetric, 
whereas in viscoelastic regimes the wakes are not symmetric with the downstream wake trails 
extending over ten sphere radii away from the sphere [36]. We observed a trend of this 
asymmetry (Supplementary Figure S3), but we do not completely capture the trailing wake due 
to the simulation domain size of ~3.5 𝑟?'  away from the KV center in the 𝑧-direction. 
 
In addition to flow patterns, we take advantage of the fact that Voronoi models predict physical 
forces, and analyze the shear stress 𝜏9 acting at the interface between the KV and external cells, 
as well as the rate of shearing strain 𝛾̇  (i.e. velocity gradients) at the KV-external cell interface, 
for different model parameters. In Newtonian fluids, the shear stress and the rate of shearing 
strain have a linear relationship, and the ratio gives the dynamic viscosity of the fluid: 𝜏9/𝛾̇ = 𝜇. 
Non-Newtonian fluids, on the other hand, exhibit a non-linear relation between 𝜏9 and 𝛾̇, as 
illustrated in Figure 8A.  
 
Figure 8B presents the relationship between shear stress and strain rate at the equator of the 
interface of KV and external cells. We see that shear stress generally increases with strain rate, 
with a non-linear relationship that is clearly distinct from Newtonian flow, and indicates a shear 
thinning behavior. Although our simulation data is similar to the behavior of epithelial cells 
monolayer moving around a circular cylinder[37], it is not sufficient to distinguish between 
various shear-thinning models (e.g. Herschel-Bulkley, Bingham), and this is reserved for future 
work. 
 

  
Figure 8: Shear stress (𝜏3) as a function of rate of shearing strain (𝛾̇, velocity gradients). (A) Curves that represent 
different viscosity models (adapted from Steffe [34]), where Newtonian fluids are characterized with a linear 
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profile. (B) Curves for two fluid-like tailbud tissue fluidity, 𝑆$ = 5.5 (blue) and 5.7 (black), and increasing 𝑣$'( (two 
largest value excluded) indicate a non-Newtonian behavior, possibly shear-thinning. 

3.2 Zebrafish embryos particle image velocimetry (PIV) analysis 
 
To analyze the collective behavior of tailbud tissue in vivo and determine whether this tissue 
acts as fluid flow around the KV such that drag forces are exerted on the KV during 
morphogenesis, we imaged live zebrafish embryos between 2 and 8 ss (Supplementary Video 
S1) when KV cells change shape from symmetric to asymmetric along the AP axis [6, 7]. We 
used Tg(sox17:GFP-CAAX) embryos that express green by fluorescent proteins in KV cells and 
labeled external cell nuclei by expressing nuclear-localized mCherry proteins. We use PIV [25] to 
quantify the velocity field of the tailbud tissue and KV cells (𝒗%&'). This movement, however, is 
relative to the lab frame and we need to quantify the tailbud (or external) cells movement 
relative to the KV. Thus, we subtract the KV average velocity from the velocity field (𝒗%&'()*+(, =
𝒗%&' − 𝒗%&'?' ) and fix the KV as the reference frame. In Supplementary Video S3, where each 
frame has been translated in space so that the KV position remains fixed as a reference object, 
it becomes clear that the tailbud tissue moves around the KV similarly to flow around a sphere. 
 
In Figure 9A, we present the averaged velocity field (𝒗p%&'()*+(,) obtained by PIV analysis between 
4 and 6 ss of Embryo 10 (Supplementary Video S4). Streamlines of this velocity field (Figure 9B) 
are remarkably similar to flow around a sphere indicating that drag forces of tailbud tissue are 
exerted on the KV, which is especially remarkable considering this is tissue moving during 
embryonic development rather than a well-controlled fluid dynamics experiment. Furthermore, 
the velocity profile (𝑣̅%&'!

()*+(,) along the LR axis and KV equator (Figure 9C) shows increasing 
velocity of tailbud cells within ~50 𝜇m away from the KV surface, a clear velocity gradient, after 
which the velocity stabilizes similarly to the behavior seen in viscoelastic flows around a sphere. 
 

 
Figure 9: PIV analysis of zebrafish Embryo 10 from 4 to 6 ss with scalebar corresponding to 50 𝜇m. (A) Averaged 
velocity field. (B) Streamlines that correspond to the velocity field of panel A. (C) Velocity profile of 𝑣̅45(-./0-1 in 
microns/min along the left-right axis that would pass through the KV centroid as indicated by the red line in panel 
B.  

Due to large variations in biological data, we image 14 zebrafish embryos and evaluate their 
velocity profiles (𝑣̅%&'!

()*+(,) averaged over 2-ss intervals (Figure 10). As expected, embryos’ 
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velocity profiles exhibit variations, though quite a few profiles exhibit the “leveling off” in 
velocity expected of a viscoelastic material.   
 
Most importantly, we see an undeniable trend of velocity gradients surrounding the KV, which 
confirms that drag forces are indeed acting on the KV. Moreover, despite relatively large 
variations in KV size from embryo to embryo[3], the average velocity gradients are remarkably 
similar across all embryos, and consistent with previously reported results [13]. This robustness 
lends credence to the idea that the embryos are utilizing these gradients as a mechanical signal, 
via drag forces. 
 
The overall trend as a function of somite stage can be determined by first quantifying the 
average velocity profile over all embryos (𝑉-%&'!

()*+(,) in a given somite stage, illustrated by the 
black lines in Figure 10A-C, which we term somite average velocity profiles and are shown 
together in Figure 10D to emphasize their differences.  
 

 
Figure 10: Velocity profiles at the Equator of the KV along the 𝑥-axis of all embryos over two somite stages. (A-C) 
Individual embryos (colored lines, where the color represents embryos defined in Figure 3) and the somite average 
profiles represented by the thick black line. (A) 2-4 ss. (B) 4-6 ss. (C) 6-8 ss. (D) Somite average velocity profiles at 
each 2 ss interval. (E) Somite average fitted rate of shear strain (𝛾̇67/), where right profile is multiplied by -1 to 
facilitate comparison. 

We observe two unexpected but thought-provoking trends in the velocity profiles of Figure 
10D: (1) different velocities gradients occur at different somite stages and (2) we see hints of a 
difference between left and right profiles, with the right-side fluid flow exhibiting stronger 
velocity gradients (i.e. steeper curves) and generating stronger drag forces. 
 
To quantify these observations, we fit a linear profile to the somite averages [27, 28] 
(Supplementary Figure S4). The slope of the linear fit is the rate of shearing strain (Δ𝑣=/Δ𝑥 = 𝛾̇ 
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s-1) and should be proportional to the drag forces exerted by tailbud tissue on the KV. Because 
we are interested in the drag forces near the KV, the fit only includes points within ~50 𝜇m 
from the KV surface. Figure 10E shows the fitted rate of shearing strain (𝛾̇B.*) at different somite 
stages. Both left and right profiles are shown, and negative slopes of the right profiles are 
multiplied by -1 to facilitate the comparison. We first note that the order of magnitude of 𝛾̇B.* is 
in agreement with published results that investigate rate of shearing strain between moving 
cells [38, 39]. In addition, we observe that overall magnitude of the right gradient (red circle 
markers) is smaller in the 2-4 ss stage than either the 4-6 or 6-8 ss. This suggests that perhaps 
drag forces are smaller at that stage as well, which would correlate with previous observations 
that shape changes take place between 4 and 8 ss. 
 
In addition, we notice increasingly higher drag forces only on the right side whereas the left 
stays fairly constant. This is a striking result considering that, between 2 and 8 ss, it is believed 
that LR asymmetry has not yet been established. Unfortunately, our data is only suggestive of 
this new type of LR asymmetry, as velocities profiles are sufficiently noisy that a fluctuation 
could cause the observed discrepancy. However, this is a very interesting avenue for future 
research. 
 
Lastly, we would also like to understand whether these velocity profiles provide any insight into 
the rheology of the tailbud tissue. As discussed earlier in the results Section 3, this can often be 
determined by studying the shape of the velocity distribution after normalization. In 
experiments of flow around a sphere, results are typically normalized by the sphere steady-
state velocity as done for the velocity profiles of our simulations. For the embryo images, 
however, the KV moves relative to the tailbud cells as well as relative to the yolk/external 
reference frame. Thus, PIV analysis gives the KV velocity relative to the external reference 
frame instead of the tailbud cells. The external cells velocity relative to the KV (𝑣%&'()*+(,) 
removes the movement of the embryo relative to the external reference frame, and we 
therefore use the far field value of the velocity profile (𝑣̅%&'!,9

()*+(,) for normalization because the 
cells furthest away from KV are the least affected by the KV motion – similarly to the far field 
velocity of Stokes flow or an unyielded region of viscoelastic flows. Additionally, due to 
different behavior between the left and right profiles (explained below), we use their respective 
far field values to normalize the left and right profiles separately. 
 
Figure 11 compares experimental and simulation results by plotting the embryos’ normalized 
velocity profiles between 4 and 6 ss (thin colored lines) on the same axes as profiles from our 
numerical simulations of the Voronoi model (thick black and gray lines). Natural units of the 
simulations are converted into microns by using the tailbud average diameter ~10 𝜇𝑚. The 
simulation profiles we include here are the ones with the highest (𝑆! = 5.7, 𝑣!?'= 0.055) and 
the lowest velocity gradients (𝑆! = 5.7, 𝑣!?'= 0.11) over simulations presented in Figure 7. We 
also include the larger domain size, 2𝑙), (gray lines) which better represents the experimental 
domain size. This region between velocity gradient extremes encompasses the range of 
parameter space with enhanced 𝑛5/𝑛7 asymmetry: the fluid-solid transition (𝑆! = 5.4 and 5.5) 
as well as the region in which the tissue is clearly fluid-like (𝑆! = 5.7).  
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Figure 11: Normalized velocity profiles with embryos represented by colored lines (each color represents embryos 
defined in Figure 3), thick black and grey lines correspond to 1𝑙. and 2𝑙. domain sizes (see Appendix B for details 
on 𝑙.). Triangles represent highest (𝑆$ = 5.7, 𝑣$'(= 0.055) velocity gradients and squares represent lowest velocity 
gradients (𝑆$ = 5.7, 𝑣$'(= 0.11) of the enhanced drag region presented in Figure 7. 

The fact that the data from embryo experiments is fairly comparable to the curves resulting 
from our simulations suggest that our simulations are able to capture a range of velocity 
gradients that are similar to those found in vivo. Clearly, our experimental data is insufficient to 
pinpoint a specific rheology, although it is consistent with shear thinning behavior and 
obviously distinct from shear thickening behavior. 
 
The similarities between normalized experimental and numerical velocity gradients indicate 
that the rheologies of the materials are similar. In contrast, the overall magnitudes of forces – 
such as those generated by shear stresses and pressure – are proportional to the large-scale 
effective viscosity of the tailbud, which is a parameter in the simulations that is unknown from 
experiments. If this viscosity is sufficiently large in experiments, our results predict that drag 
forces resulting from the observed PIV profiles would generate precisely the cell shape changes 
observed in experiments. 

4. Discussion and conclusions 
 
In this work, we develop a technically challenging 3D self-propelled Voronoi model with 
heterotypic surface tension to simulate confluent tissues.  With this simulation code, we are 
able to use a physics-based model for individual cell shapes to efficiently simulate and predict 
the dynamic behavior of large groups of cells in 3D, including the temporal evolution of organ-
scale structures. To our knowledge, this is the first time confluent tissue modeling on this scale 
has been attempted in three dimensions. 
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We model the motion of the zebrafish KV through the tailbud tissue for a range of tailbud tissue 
fluidities (𝑆!) and KV initial velocities (𝑣!?') to understand how those parameters influence the 
AP distribution of KV cells (𝑛5/𝑛7). We find two regions in the parameter space in which the KV 
remains symmetric: (1) when the tailbud tissue is solid-like, the KV self-propulsion force is not 
strong enough to overcome forces imposed by the solid-like tailbud cells, and the KV does not 
move (𝑣//!

?' ≈ 0); (2) when external cells are fluid-like, but the KV moves at such low speeds that 
forces on the KV remain very small. In the remaining parameter space (𝑣!?' ≥ 0.055 and 𝑆! > 
5.2) we found KV cell distribution values comparable to those found in experiments [11]: 
𝑛5/𝑛7 = 1.77. The parameter scan allows us to focus the analysis on the region with enhanced 
asymmetry at the fluid-solid transition (𝑆! = 5.4 and 5.5) as well as an ostensibly fluid-like 
(𝑆! = 5.7) at various 𝑣!?'.  
 
We characterize streamlines of external cells around the spherical KV, along with pressure and 
shear stress exerted on the KV by external cells. Comparing our simulation results to the 
analytical solution of Stokes flow around a sphere, we identify dynamics that are similar to 
Newtonian flows as well as features indicative of non-Newtonian regimes. In the fluid-like 
regime (𝑆! = 5.5 and 5.7), streamlines, shear, and pressure behave similarly to Stokes flow, 
except at high 𝑣!?'. In the solid-like regime (𝑆! = 5.4), shear stresses and pressures are very 
different from Stokes predictions, indicating that more complex interactions occur.  
 
Particle image velocimetry analysis of zebrafish embryos revealed a very robust velocity 
gradient around the KV, which indicates that mechanical forces must be exerted on the KV by 
the tailbud tissue. Smaller gradients are observed on the right side in the 2-4 ss compared to 
later stages, suggesting the forces are smaller at earlier stages. Furthermore, our data hinted 
that there may be stronger drag forces from tailbud tissue to the right of the KV compared to 
the left, though more experiments will be needed to gain statistical confidence in this result. If 
this preliminary observation is confirmed, it is very exciting, as it suggests that LR asymmetry 
may exist at the tissue level upstream of all previously identified LR signals, including KV cell 
shape changes and directional flow inside the lumen.  
 
Obviously, future work should focus on this possibility. It could be that the tailbud tissue of the 
right side is more viscous than the left side, possibly due to differing expression levels of myosin 
II. This is intriguing, because the higher viscosity would generate higher drag forces on the right 
side of the KV, which could potentially be sensed by mechano-sensory cilia. This process could 
work in parallel with the well-explained lumen directional flow that also triggers mechano-
sensory cilia inside the KV to ensure that LR asymmetry is established. One possible set of 
future experiments to probe this hypothesis would be to optically excite caged Rho kinase 
inhibitors [40] to dynamically alter myosin II activity in a region of interest. This would allow 
one to alter the effective viscosity of tailbud cells on the left and right sides of the KV and 
determine whether such perturbations affect LR patterning. Such changes could also be 
implemented in simulations as a change to 𝑆!. 
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Another important conclusion of our work is that the KV motion acts as a probe of the tailbud 
tissue rheology. In simulations, we analyze the profiles of external cells velocity relative to the 
KV. We find that the simulation velocity profiles are not Newtonian and instead behave 
similarly to viscoelastic flow around a sphere. An analysis of shear stress vs. rate of shear strain 
indicates that the external cells behave as shear-thinning viscoelastic fluid. We demonstrate 
that embryos’ normalized velocity profiles are comparable to those in simulations and 
consistent with shear thinning rheology. This means that the mechanical forces observed in our 
simulations are also present in the zebrafish embryo and would generate the observed KV cell 
shape changes if the effective viscosity of tailbud tissue is sufficiently large. 
 
One obvious implication of this work is that a direct measurement of the effective viscosity of 
zebrafish tailbud tissue, in response to large-scale perturbations, would be particularly valuable. 
The challenge is that existing methods [11, 12] focus on relatively small-scale perturbations to 
embedded droplets, which means that they do not probe the effective viscosity generated by 
many cell neighbor exchanges in the presence of large flows or perturbations. Previous work on 
materials such as foams, emulsions [23], and even mucus [41], suggest that these microscopic 
and macroscopic rheology measurements often generate very different results. 
 
Another important question is whether our results are sensitive to the type of model we 
simulated. In this manuscript, we focused on a confluent model for tailbud tissue, although 
recent work has demonstrated that there are small gaps between cells in the tailbud, and even 
suggested that particle-based models for cell packings may better capture the nature of the 
fluid-solid transition in that region [15]. Importantly, the drag forces that we find here are likely 
to be quite generic across models, as both Voronoi and particle-based foam models [42] are 
shear thinning and are close to a fluid-solid transition in the parameter regime relevant for 
tailbud tissue. Therefore, flows in any of these models – consistent with the experimentally 
observed streamlines – will generate similar drag forces up to an overall scaling factor related 
to the effective viscosity. Moreover, the epithelial nature of KV cells suggests that a confluent 
model will best capture how drag forces affect cell shapes within the KV. 
 
Another related consideration is that the model presented here possesses highly simplified 
shapes – the lumen and KV layer were initially spherical, and we do not represent other 
structures such as the notochord, yolk, or tailbud boundary. We made this choice to focus on 
how the rheology of the full 3D Voronoi model (which represents each individual cell) generates 
drag. However, now that we have demonstrated the Voronoi model rheology is relatively well-
captured by relatively simple viscoelastic constitutive laws, this opens the door to a different 
type of simulation that can account for the complicated geometry of the tailbud. Future work 
could focus on a computational fluid dynamics (CFD) approach, where the external cells are 
modeled as a continuum fluid and the KV is modeled as a roughly spherical deformable elastic 
object. In this context, we could investigate how different rheology models for the tailbud 
tissue, as well as the presence of boundaries generated by the yolk and tailbud boundary, affect 
the overall shape of the KV and the AP asymmetry of cell shapes. 
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Finally, this work has significant implications beyond the simple KV organ we study here. The 
computational tools we have developed can be immediately applied to predict the dynamics of 
other 3D structures during development and disease processes with cellular resolution. In 
particular, we have demonstrated that PIV analysis of experimental data to extract streamlines 
combined with computational modeling can help provide a strong indication of when dynamic, 
fluid-like forces are acting to shape organs during development. To our knowledge, such 
dynamic forces have been rarely studied [13, 20, 43], but they are likely to be important in 
other processes where groups of cells migrate across a tissue. 

Appendix A. Additional details for PIV analysis of experimental data 
 
In our Particle Image Velocimetry processing, each image is divided into subregions 
(interrogation areas) and correlation functions determine the displacement of subregions 
between consecutive frames. To reduce errors, we iterate this procedure with decreasing 
interrogation area [44]. Displacements are then converted to velocity fields using the known 
frame rate (frame/minute) and pixel-to-micron ratio. Due to the different experimental setups 
between embryos, e.g. varying frame rates and objectives, the size of interrogation areas and 
number passes were optimized for each embryo. For all embryos, the smallest interrogation 
area is about the size of a tailbud cell nucleus (e.g. 32 pixels for 20X objective). After velocity 
fields (𝒗%&') are obtained, very few data points are deemed outliers (𝑣%&': , 𝑣%&'! ≥	10 𝜇m/min), 
which are interpolated using the “vector validation” tool of PIVlab [26]. 
 
We determine KV velocity, in each frame, from the PIV analysis (𝒗%&'?' ) by averaging velocity 
vectors (𝒗%&') within the KV area. The KV area is manually determined in each frame using 
ImageJ’s [45] tools “oval” and “ROI Manager”. Then, tailbud cells velocity relative to KV is 
calculated for each frame: 𝒗%&'()*+(, = 𝒗%&' − 𝒗%&'?' . 
 
In order to average velocity fields over multiple frames, we use the KV at the mid-frame (center 
frame of 𝑛BC5D(9) as the KV reference frame and subtracted KV centroid from the position of 
velocity vectors in all frames. The centroid is obtained by using the center of the KV areas as 
described above. Then, velocity fields of all frames are averaged over the complete 50-minute 
time window (Figure 3) – we used 𝑛BC5D(9 that corresponds ~50 min (or 2 ss in our laboratory 
conditions). With each embryo’s averaged velocity field (𝒗p%&'()*+(,) on a regular grid, streamlines 
for 2 ss are calculated using MATLAB’s [46] function “streamslice.” Velocity profiles are 
obtained by interpolating the averaged velocity field (𝒗p%&'()*+(,)	at points along the left-right axis 
(deemed 𝑥-axis) that passes through the KV centroid and analyzing the 𝑧-component of velocity 
(𝑣̅%&'!
()*+(,)	along the 𝑥-axis. 

Appendix B. Additional details for the 3D SPV simulations 
 
As the fluid-filled lumen is expected to be incompressible, the lumen volume elasticity (𝐾') is 
set higher than those of other cell types, i.e. lumen cells were less compressible than other cell 
types and their volume remained fairly constant during simulations. Although the lumen 
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expands during embryonic development, volume expansion has been experimentally 
demonstrated to be irrelevant for changes in shape of KV cells [6] and so we avoid that 
complication in our simulations. To avoid rearrangements between lumen and KV cells, the 
preferred shape index of KV cells is set to be in the solid regime. A surface tension, 𝛾, was 
added along the interface between different cell types: 𝛾KV-external=1, 𝛾KV-lumen=1, 
𝛾lumen-external=100. We choose to place a very high interfacial tension between lumen and 
external cells (a) to ensure that they do not mix and (b) to retain the lumen spherical shape as 
observed in experiments. The preferred surface area of external cells (𝑆!) varies from 5.0 to 6.0 
(Figure 4D) to represent the various tissue fluidities. Table B1 summarizes the parameters used 
in the simulations.  
 
Table B1: Simulation parameters in natural units 

 N Volume 
elasticity 𝐾!  (-) 

Preferred 
volume 𝑉" (𝑙#) 

Surface elasticity 
𝐾$ (-) 

Preferred surface 
𝑆" (𝑙%) 

External 2048 1 1 1 5.0-6.0 
Lumen 17 10 1 1 5.0 
KV anterior 25 1 1 1 5.0 
KV posterior 25 1 1 1 5.0 

 
Each simulation consists of two stages: First, Equation (2) is integrated in the absence of any 
self-propulsion (𝑣	! = 0) using Euler’s method (𝑑𝑡 = 0.01𝜏) until the system converges to a 
state of minimal energy (we define convergence by defining the maximum energy of an 
individual cell in an iteration and then calculating the average maximum cell energy for five 
consecutive iterations; convergence is achieved when the difference between averages is less 
than 10-5). Second, a fixed self-propulsion speed 𝑣	! = 𝑣!?', along a fixed direction 𝒛L is 
introduced to every cell in the KV (i.e. KV and lumen cells), and Equation (2) is integrated using 
Euler’s method (𝑑𝑡 = 0.001𝜏) for all cells in the simulation. The self-propulsion forces on the 
KV causes the entire KV to move through the surrounding tissue, and we measure the resulting 
speed of the KV centroid (𝑣	?'), which is slower than 𝑣!?'  due to interactions with the tailbud. 
We define the simulation as being in steady state (SS) when the observed KV instantaneous 
speed (𝑣=,*;

?' ) has converged, so that differences in observed speed between simulation time 
points drop below a threshold of 5×10-7. KV instantaneous speed is the difference between the 
KV centroid 𝑧-position (𝑝=?') at two consecutive time steps (:𝑝=,*;	

?' − 𝑝=,*;<=	
?' </Δ𝑡). We observed 

that when the external cells are clearly solid-like (𝑆! < 5.4), SS occurs after about 100,000 
iterations and in the fluid-to-solid transition as well as fluid-like regime, SS occurs after about 
200,000 iterations (Supplementary Figure S5 of steady-state velocity convergence). To ensure 
we record significant data beyond the start of steady state dynamics, we run simulations for 
200,000 iterations when 𝑆! < 5.4 and 400,000 iterations when 𝑆! ≥ 5.4. 
 
In zebrafish embryos, the tailbud tissue does not move along with the KV, most likely because 
the tailbud tissue at the boundary of the tailbud does not move relative to the edge of the 
embryo, known as a no-slip boundary condition in fluid dynamics. It is also possible that more 
complicated pinning at the yolk interface or with other structures occurs. To mimic this effect in 
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our simulations and prevent the entire system from translating in the direction of the self-
propulsion velocity 𝒛L, 2% external cells farthest from the center of the KV and parallel to 𝒛L were 
pinned by fixing their position at every time step (only when 𝑣! is added). In the fluid-like 
regime, we have checked that the precise density (1, 2, or 4%) of pinned cells does not 
significantly impact the results in the fluid-like regime. In the small region of phase space where 
the tissue response is viscoelastic (discussed in the results Section 3.1), the pinning density does 
alter the quantitative results, although the qualitative response remains similar independently 
of pinning density. This is not surprising, given long-range elastic interactions in viscoelastic 
materials, and is an interesting avenue for future work. For simplicity we fix the pinning density 
at 2% in viscoelastic simulations, as that is sufficient to prevent the tailbud from translating 
along with the KV. 
 
Simulations of 3D cells are substantially more computationally expensive than 2D. Thus, to 
avoid unnecessary use of computing resources, we determine the smallest domain that would 
allow simulations where the periodic copies would not affect the macroscopic KV motion. We 
test three cubic domain sizes with increasing number of external cells (𝑁()* = 1028, 2048, and 
4096), compared KV traveled distance, and concluded that 𝑁()* = 2048 is sufficiently large such 
that the box size does not interfere in the KV traveled distance. We denote this domain the 
“regular” domain size with side of length 𝑙). In a few instances, we also simulate larger system 
sizes (by increasing 𝑁()* such that the 𝑥 and 𝑦 dimensions doubles, but 𝑧 dimension remains 
the same), which we denote the larger domain size as 2𝑙) . Data presented in this paper reflect 
the average of ~30 simulations with different initial conditions for each pair of parameters (𝑆! 
and 𝑣!?'). In very few instances, simulations were discarded when a Voronoi tessellation could 
not be determined by the voro++ library [47] due to a degenerate higher-fold coordinated 
vertex that is incompatible with our data structure, which generates a run-time error. 

Appendix C. Streamline calculations in the Voronoi model simulations 
 
In order to obtain streamlines of external cells around KV (and eventually velocity gradients), 
several calculations are performed. First, we calculate the velocity of individual external cells 𝑖 
between simulation frames (𝒗.,RS+()* ) with a frame rate Δ𝐹𝑅 of 5,000 iterations (here, frame rate 
refers to how often output files are generated). Second, we compute the KV centroid as the 
average position of lumen cells, and its velocity between simulation frames 𝒗RTU?' . Third, we 
obtain the velocity of individual external cells relative to the KV velocity (𝒗.,RS+()*+(, = 𝒗.,RS+()* −
𝒗RTU?' ), which generates an unstructured velocity field. Fourth, to average velocity fields of 
multiple simulations, we create a structured spherical grid with length scale normalized by KV 
radius (𝑟?'), i.e., KV is represented as a unit sphere. Figure C1B shows the spherical structured 
grid with polar angle: 0 < 𝜃 < 𝜋 and Δ𝜃 = 𝜋/12; azimuth angle: 0 < 𝜙 < 2𝜋 and Δ𝜙 = 𝜋/24; 
and radial axis: 1 ≤ 𝑟 < 3.5 𝑟?'  and Δ𝑟 ≈ 0.25 with spherical coordinates defined in Figure C1A. 
We obtain the KV radius by calculating the KV total volume and approximating it as a sphere to 
find its radius. Fifth, the unstructured velocity field of external cells (𝒗.,RS+()*+(,) is interpolated to 
the structured spherical grid. At this stage, we have (1) fixed the KV as a unit sphere with center 
at the origin and (2) placed external cells velocity relative to the KV on a structured spherical 
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grid. Sixth, for each simulation, we calculate the average velocity field for 10 frames after 
steady state is reached. Finally, we average ~30 simulations per ensemble to calculate the 
averaged structured velocity field of external cells per ensemble (Figure C1D). 
 

 
Figure C1: Structured spherical grid used to generate 2D streamlines for ease of analysis. (A) Spherical coordinate 
system with radial distance 𝑟, polar angle 𝜃 (latitude), and azimuth angle 𝜙 (longitude). (B) Black dots are the 
points on the 3D spherical structured grid with KV represented as a unit sphere. (C) Red dots represent points that 
are rotated around the azimuth angle 𝜙 that lay on the red 2D plane (𝑥𝑧 plane, 𝑦 = 0). (D) Calculated streamlines, 
pressure and shear on the 2D plane. 

In this simulation geometry the flow is axisymmetric [14, 48, 49], and so we simplify our 
analysis to 2D by rotating velocity vectors along the azimuth (𝜙) to the 𝑥𝑧-plane and averaging 
vectors that belong to the same position (Figure C1C). Then, we calculate the projection of 3D 
velocity vectors onto the 𝑥𝑧-plane to obtain 2D vectors. At this final stage, we have averaged 10 
frames per simulation; ~30 simulations per ensemble; and 12 angles around the azimuth. For 
simplicity, we denote 𝒗p()*+(,  this final average of external cells velocity relative to the KV on 
the structured grid. Finally, streamlines shown in Figure C1D are calculated using Matplotlib 
[50] function streamplot. The procedures just described for transforming 3D unstructured 
velocity field onto the final 2D plane of Figure C1D were also performed for the pressure and 
shear, which are represented by the circular rim and arrows, respectively. Velocity profiles are 
obtained by using the 𝑧-component of external cell velocity (𝑣̅=()*+(,) at the KV equator line 
(𝜃 = 𝜋/2) and at KV poles (𝜃 = 0, 𝜋). In order to compare simulations of different parameters,  
𝑣̅=()*+(,  is normalized by the absolute value of the 𝑧-component of the KV steady-state 
velocity,i𝑣//!

?' i. To compare velocity profiles of simulations and experimental results, we use the 
embryo tailbud cell diameter of ~10 𝜇𝑚 to convert the average size of an external cell in the 
simulation in natural units. 
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