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 2 

ABSTRACT 20 

Cervical cancer is an important health concern worldwide and is one of the leading causes of 21 

deaths in Mexican women. Previous studies have shown changes in the female genital tract 22 

microbe community related to Human Papillomavirus (HPV) infection and cervical cancer, yet 23 

this link remains unexplored in many human populations. This study evaluated the vaginal 24 

bacterial community among Mexican women with pre-cancerous Squamous Intraepithelial 25 

Lesions (SIL). We sequenced the V3 region of the 16S rRNA gene (Illumina Miseq) in cervical 26 

samples from 300 Mexican women, including 157 patients with SIL, most of which were HPV 27 

positive, and 143 healthy women without HPV infection or SIL. Beta-diversity analysis showed 28 

that 14.6% of the variance in vaginal bacterial community structure is related to the presence of 29 

SIL.  Presence of SIL was also associated with a higher species richness (Chao 1). MaAsLiN 30 

analysis yielded independent associations between SIL/HPV status and an increase in the relative 31 

abundance Brachybacterium conglomeratum, as well as a decrease in Sphingobium yanoikuyae 32 

and Lactobacillus spp. We also identified independent associations between HPV-16, the most 33 

common HPV subtype linked to SIL, and Brachybacterium conglomeratum. Our work indicates 34 

that the presence of SIL and HPV infection is associated with important changes in the vaginal 35 

microbiome, some of which may be specific to this human population. 36 

IMPORTANCE 37 

HPV plays a critical role in cervical carcinogenesis but is not sufficient for cervical cancer 38 

development, indicating involvement of other factors. Vaginal microbiota is an important factor 39 

in controlling infections caused by HPV and depending on its composition it can modulate the 40 

microenvironment in vaginal mucosa against viral infection. Ethnic and sociodemographic 41 

factors influence differences in vaginal microbiome composition, which underlies the dysbiotic 42 
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patterns linked to HPV infection and cervical cancer across different women populations. Here, 43 

we provide evidence for associations between vaginal microbiota patterns and HPV infection, 44 

linked to ethnic and sociodemographic factor. To our knowledge, this is the first report of 45 

Brevibacterium aureum and Brachybacterium conglomeratum species linked to HPV infection or 46 

SIL. 47 

 48 

INTRODUCTION 49 

Cervical cancer is one of the most common cancers and one of the leading causes of deaths in 50 

women worldwide (1, 2). Cervical cancer is causally related with Human Papillomavirus (HPV) 51 

infection, an oncogenic virus actively involved in cervical epithelium transformation (3, 4). After 52 

HPV infection and persistency, squamous intraepithelial lesions (SIL) development may occur, 53 

which may heal or persist and evolve to cancer (1). Despite overwhelming evidence that certain 54 

subtypes of HPV are the main causative agents of SIL development and progression to cervical 55 

cancer, it is also well-established that HPV alone is not sufficient to induce cervical malignant 56 

transformation (4–7). Many factors have been associated with the appearance SIL such as, 57 

intermenstrual bleeding, multiparity, use of contraceptives, multiple sexual partners, and 58 

smoking (8). 59 

In addition to these variables, it has been proposed that the vaginal microbiota plays an important 60 

role in the development of HPV infection leading to cervical neoplasm (9). This is aligned with 61 

the endorsed concept in infection biology, in which successful pathogen colonization and 62 

infection embodies dynamic interactions between the infecting microbes, host factors and the 63 

microbiome (10). The vaginal microbiota is a complex microbial ecosystem influenced by 64 
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environmental and host factors, as well as ethnic background (11). The vaginal microbiota in 65 

healthy women consists of over 200 bacterial species, but this ecosystem is generally dominated 66 

by Lactobacillus spp. Lactobacilli provide broad spectrum protection by producing lactic acid, 67 

bacteriocins and biosurfactants, and by adhering to the mucosa that forms barriers against 68 

pathogenic infections in the vaginal microenvironment (2, 12). Upon imbalance of this defense 69 

system, physicochemical changes arise, inducing histological alterations of the vaginal mucosa 70 

and the cervical epithelium, all of which put a selective pressure on the microbiota (13–15). 71 

Some vaginal microorganisms, such as Gardnerella, Fusobacteria, Bacillus cohnii, Dialister, 72 

Prevotella and Mycoplasma, as well as a decrease in the proportion of Lactobacillus spp., have 73 

been linked to dysbiosis that would generate an unstable microenvironment, which in turn could 74 

enable the effect of key risk factors in cervical cancer (16–19). Some of these changes are 75 

responsible for increasing the levels of mucin-degrading enzymes, which may play a role in the 76 

degradation of the mucous layer that covers the vaginal and cervical epithelium and endocervical 77 

mucus (20, 21). There is evidence of HPV evasion or infection mechanisms that support that 78 

microorganisms such as Sneathia, Anaerococcus, Fusobacterium and Gardnerella are implicated 79 

with higher frequency and severity of disease, potentially resulting in pre-cancerous and 80 

cancerous cervical lesions (22)  81 

However, these findings are not uniform across studied populations, because, despite the fact that 82 

Latin American countries have a high prevalence of HPV and cervical cancer are one of the main 83 

causes of death in women in these areas (3, 23–25), including Mexico (7, 9), most of the studies 84 

have been conducted in developed countries (26). Likewise, the projected demographic changes 85 

in Latin America imply that the current burden of new cervical cancer cases will increase in the 86 

next 20 years (2, 27). The evidence observed so far suggests that the ethnic and 87 
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sociodemographic factors that influence difference in vaginal microbiome composition may also 88 

underlie dysbiotic patterns linked to HPV infection and cervical cancer across different Latin 89 

America women populations (3, 7, 9, 23–25). Therefore, there is a growing need for more 90 

evidence in Latin America to demonstrate the association between vaginal microbiota patterns 91 

and HPV infection and its relationship with the progression of SIL to cervical cancer.  92 

Very little is known about vaginal microbiome differences linked to HPV infection and cervical 93 

cancer risk in Latin American women. In this work, we compared the vaginal microbiota in 300 94 

Mexican women with precancerous SIL to healthy controls, while taking into consideration the 95 

confounding effect of clinical, behavioral and HPV infection-related variables, and its 96 

association with the above-mentioned categorical variables and the condition of HVP infection 97 

considering the type of premalignant lesion of cervix and the genetic variants of the virus.  98 

 99 

MATERIAL AND METHODS 100 

Study design 101 

Healthy women and women infected with HPV regardless of the degree of cervical squamous 102 

lesion, over 25 years of age, attending the Instituto Mexicano del Seguro Social (IMSS) in 103 

Mexico City were invited to participate as volunteers in this study. Written informed consent was 104 

obtained from all volunteers after providing them with detailed information about the study and 105 

its characteristics. The clinical research protocol and letter of informed consent were evaluated 106 

and approved by the Comité Local de Investigación y de Bioética de la División de Educación e 107 

Investigación Médica de la Unidad de Alta Especialidad Médica Pediatría del Instituto Mexicano 108 

del Seguro Social (IMSS). All participants completed a study questionnaire that was used to 109 
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obtain the sociodemographic and risk factor information.  Data were registered in a secured 110 

database for subsequent statistical analysis.  111 

A total of 300 Mexican women over 25 years old who attended the IMSS from December 2003 112 

to July 2006 were included in this study. These women were divided in two groups: a healthy 113 

control group of 143 women with a mean age of 42 years (± 0.65) with three previous 114 

Papanicolaou (Pap) tests negative for HPV infection for three consecutive years (a fourth 115 

negative Pap result occurred at the time participants were invited to join the study), and 116 

diagnosed without SIL, with normal cytology and colposcopy results by the treating 117 

gynecologist. The second group (cases) consist of 157 patients with a mean age of 36 years (± 118 

0.89) with different degrees of SIL and result positive for HPV infection based on cytology, 119 

histology, and colposcopy examination. This group included women diagnosed with cervical 120 

intraepithelial neoplasia from 1 to 3 (CIN1, CIN2 and CIN3) according to the Bethesda 121 

classification (28). Participants who had received treatment for vaginal or urinary infections 122 

currently, who were pregnant or up to 2 months postpartum, with a history of hysterectomy, or 123 

with a severe chronic disease were excluded from the study. 124 

Samples of vaginal exudate 125 

Samples of vaginal exudate were taken by swabbing the mucosa using sterile Teflon swabs that 126 

were placed in a sterile 15 ml conical plastic tube with sterile 0.9 % sodium chloride (Baxter 127 

physiological saline solution), the sample was kept at -20 °C until its use for microbiome 128 

sequencing analysis. 129 

Cervical DNA extraction and HPV detection and typing 130 
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Cervical DNA was extracted directly from a cervical brushing of each patient. The sample was 131 

placed in 1 ml of saline solution at 4 ° C for transport and immediately processed for DNA 132 

extraction. DNA was obtained using the proteinase K-SDS lysis technique (29) and was frozen at 133 

-20 ° C until use. HPV was detected via PCR, using two sets of oligonucleotides MY09 / MY11 134 

(30) and GP5 / GP6 (31). Cycling conditions were used as previously described for the detection 135 

of HPV DNA in cervical cells (30–32). HPV DNA obtained from HeLa cell cultures containing 136 

10 to 50 copies of the HPV-18 ORF L1 was used as a positive control (33). All positive samples 137 

for HPV were subsequently typed with the HPVFast 2.0 kit (Pharma Gen SA, Madrid, Spain) 138 

according to the manufacturer's instructions. 139 

16S mRNA gene Sequencing 140 

From vaginal DNA samples, the 16S rRNA gene was amplified by PCR in triplicate using bar-141 

coded primer pairs flanking the V3 region as previously described (34). Each 50 ml of PCR 142 

mixture contained 22 ml of water, 25 mil of TopTaq master mix, 0.5 ml of each forward and 143 

reverse bar-coded primer, and 2 ml of template DNA. The PCR program consisted of an initial 144 

DNA denaturation step at 95°C (5 min), 25 cycles of DNA denaturation at 95°C (1 min), an 145 

annealing step at 50°C (1 min), an elongation step at 72°C (1 min), and a final elongation step at 146 

72°C (7min). Controls without template DNA were included to ensure that no contamination 147 

occurred. Amplicons were run on a 2% agarose gel to ensure adequate amplification. Amplicons 148 

displaying bands at ~160 pb were purified using the illustra GFX PCR DNA purification kit. 149 

Purified samples were diluted 1:50 and quantified using PicoGreen (Invitrogen) in the Tecan 150 

M200 plate reader (excitation at 480 nm and emission at 520 nm). 151 

For 16S rRNA gene sequencing, each PCR pool was analyzed on the Agilent Bioanalyzer using 152 

the high-sensitivity double-stranded DNA (dsDNA) assay to determine approximate library 153 
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fragment size and verify library integrity. Pooled-library concentrations were determined using 154 

the TruSeq DNA sample preparation kit, version 2 (Illumina). Library pools were diluted to 4 155 

nM and denatured into single strands using fresh 0.2 N NaOH. The final library loading 156 

concentration was 8 pM, with an additional PhiX spike-in of 20 %. Sequencing was carried out 157 

using a Hi-Seq 2000 bidirectional Illumina sequencing and cluster kit, version 4 (Macrogen, 158 

Inc.). PCR products were visualized on E-gels, quantified using Invitrogen Qubit with 159 

PicoGreen, and pooled at equal concentrations, according to a previous report (35). 160 

Bioinformatic analysis of 16S rRNA gene sequences  161 

All sequences were processed using Mothur according to the standard operating procedure as 162 

previously described (36). Quality sequences were obtained by removing sequences with 163 

ambiguous bases, a low-quality read length and/or chimeras identified using chimera uchime. 164 

Quality sequences were aligned and compared to the SILVA bacterial references alignment and 165 

OTUs were generated using a dissimilarity cutoff of 0.03. The sequences were classified using 166 

the classify seqs command. 167 

Statistical Analysis  168 

Differences in frequencies for categorical variables between cases and controls were evaluated 169 

using the chi squared. Risk was estimated and expressed as an odds ratio (OR) and a 95% 170 

confidence interval (CI). For numerical variables the Mann-Whitney or Student t tests were used 171 

based on the D´Agostino & Pearson normality test. We assessed the vaginal microbial diversity 172 

and the relative abundance of bacterial taxa using Phyloseq (37) along with additional R-based 173 

computational tools in R-studio (R-Studio, Boston, MA). Principal components analysis (PCA) 174 

was conducted using Phyloseq and statistically confirmed by PERMANOVA (Adonis test). The 175 
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Chao 1 and Shannon diversity indices were calculated using Phyloseq and statistically confirmed 176 

by Mann-Whitney (GraphPad Prism software, version 5c, San Diego, CA). Lefse analysis (38, 177 

39) was used to evaluate OTU-level microbiome differences between cases and controls. 178 

Multivariate association with linear models (MaAsLin, (38)) were used to calculate differentially 179 

abundant OTUs between the cases and controls, including several other study variables available 180 

from the metadata. The following covariates were fitted into the MaAsLin model based on 181 

previously reported associations with HPV infection or with microbiome shifts: SIL grade, HPV 182 

infection, HPV type, smoking, intermenstrual bleeding, sexual activity status, use of 183 

contraceptives, type of contraceptive, genital hygiene, age, age of sexual debut, number of sexual 184 

partners, number of sexual partners by age, number of pregnancies, number of births and number 185 

of miscarriages. The random forest classifier in R was applied to determine if differential 186 

microbiome taxa would be discriminant between cases and controls. 187 

 188 

RESULTS 189 

Study participants characteristics: Cases vs. controls 190 

A total of 300 samples were analyzed, 143 controls 157 cases. Of the 157 cases, 112 were 191 

diagnosed with low squamous intraepithelial lesion (LSIL) (women diagnosed with HPV 192 

infection and cervical intraepithelial neoplasia 1 (CIN 1), and 45 were diagnosed with HPV 193 

infection and high squamous intraepithelial lesion (HSIL) (women diagnosed with CIN 2 or CIN 194 

3). All women were cancer free. For the selection of participants, HPV infection was determined 195 

by positive cytological, histological and colposcopy analysis.  196 
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However, by molecular analysis, within cases, the frequency of positivity to HPV infection 197 

detected was 90.45%, of which HPV-16, -58 and -18 types were the most frequently detected 198 

with 49.04%, 14.65% and 10.83%, respectively. Most of the women in both groups did not 199 

smoke (75.16% -cases vs 70.63% controls), had a regular menstrual period (70.70% cases vs 200 

69.23% controls), and most do not have intermenstrual bleeding (82.80% cases vs 89.51% 201 

controls). Statistically significant differences between groups were detected in relation with 202 

active sexual life at the time of the study (75.16% cases vs 92.31% controls), use of 203 

contraceptives (66.24% cases vs 53.15% controls) in the control group (P = 0.021), and genital 204 

hygiene, recorded by the frequency of vaginal douching (83.44% cases group vs 53.85% control 205 

group) and such differences were statistically significant (P ˂ 0.0001). More details of the 206 

characteristics of each group are described in Table 1. When comparing continuous variables, 207 

cases and controls differed by age (36.3±0.9 cases vs 42.9±0.7 controls), number of sexual 208 

partners by age (0.0038 cases vs 0.028 controls) and number of miscarriages (0.01 cases vs. 209 

0.014 controls; Table 2). 210 

Associations between the Vaginal Microbiota SIL status 211 

We determined the bacterial community by amplification and sequencing of the 16S rRNA gene 212 

(V3 region). The presence of SIL was associated with changes in bacterial alpha and beta 213 

diversity (Figure 1), with notable compositional differences at the family and genus level (Figure 214 

2). Beta-diversity analysis, measured by Principal Component Analysis (PCoA; Bray Curtis 215 

distance, Figure 1A) indicated that cervical SIL explain 14.6% of the variation in vaginal 216 

bacterial community structure (N=300; Adonis P>0.001). Presence of SIL was also associated 217 

with significantly higher species richness than women without SIL (Chao1; P=2.78e-07; Fig. 218 

1B). Only a trend for an increase in alpha diversity (Shannon index) was observed in SIL-219 
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positive participants, suggesting that the broadest diversity change is explained by bacterial 220 

community richness. 221 

We utilized Lefse to identify OTU-level difference between SIL positive and negative groups. In 222 

this model, features are first tested to determine if they are differentially distributed. Microbial 223 

features violating the null hypothesis are further analyzed in a secondary analysis, in which a 224 

Latent Dirichlet Allocation (LDA) model is built to detect and rank microbiome feature 225 

differences among groups. Lefse identified a greater abundance of 12 OTUs in SIL-positive 226 

women, with OTU 14 (S_Brevibacterium_aureum), OTU 117 (F_Veillonellaceae), OTU 28 227 

(S_Brachybacterium_conglomeratum), and OTU 101 (Lactobacillus iners) as the most 228 

differentially abundant features (Figure 3). In contrast, OTU 62 (Sphingobium yanoikuyae), OTU 229 

129 (Zoogloea sp.) and OTU 80 (Sphingobium sp.) were detected in higher abundance in the 230 

control samples (Figure 3). Among these, Brevibacterium aureum was exclusively detected in 231 

cases (Figure 4A), whereas Zoogloea sp. was exclusively detected in controls (Figure 4B). Other 232 

taxa that reached almost exclusive detection in either group include Brachybacterium 233 

conglomeratum and Prevotella sp. (Figure 4). Given this, we evaluated if any of these features 234 

could be used to predict SIL status by applying Random Forest analysis, which showed that none 235 

of the features can accurately classify a participant in the SIL positive or negative groups (overall 236 

error rate=0.67). 237 

Given the importance to control for potential confounding variables, including several collected 238 

in this study that could explain or correlate with the detected associations between SIL status and 239 

the microbiota, we utilized MaAsLin. MaAsLin is a multivariate linear modeling tool with 240 

boosting that tests for associations between specific microbial taxa and continuous and/or 241 

Boolean metadata. This method reduces the total amount of correlations to be tested, therefore 242 
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allowing for improvements in the robustness of the additive general linear models. With 243 

MaAsLin, we found significant independent associations between SIL positive status and  244 

Branchybacterium conglomeratum, as well as between SIL negative status and Lactobacillus sp. 245 

and Sphingobium yanoikuyae. This indicates that no other variable explained the taxonomic 246 

differences observed SIL status and these bacterial taxa. Interestingly, other independent 247 

associations were also detected between HPV subtypes or contraception use and several bacterial 248 

taxa (Table 3). 249 

 250 

DISCUSSION  251 

Several factors are known to play a role in cervical carcinogenesis, with HPV infection being one 252 

of the most important in the development of the disease (1). There are more than 100 types of 253 

HPV, of which at least 14 high-risk HPV types have been defined as carcinogenic (40). In this 254 

study we found that more than 90% of the group of cases were HPV positive and that almost 255 

50% of HPV infections are caused by the HPV-16 type, followed by HPV-58 and -18, all of 256 

them considered as high-risk HPVs worldwide (41). This predominance of the HPV-16 type was 257 

expected since it is generally accepted that HPV-16 is the major high-risk genotype in Mexico 258 

and in the world (42, 43). We also found HPV-58 as the second most prevalent genotype, in 259 

14.65% of the cases, aligned with has been reported in Asia (14.36 – 15.90 %) (42, 43).  260 

Our study also revealed several other factors associated with SIL status, some of which reaffirm 261 

previously reported links (44). Factors positively associated with SIL included younger age, 262 

HPV infection, younger age of sexual debut, number of sexual partners by age, number of 263 

pregnancies and births by age, and the use of contraceptives, with the biggest difference 264 

explained by IUD use. In contrast, being sexually active at the time of the study, vaginal 265 
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douching and number of miscarriages were linked to a reduced risk to SIL in this group of 266 

women.  267 

Regarding contraceptive use, our result differs from that reported by Cortessis et al. (45), in 268 

which they indicated that invasive cervical cancer can be approximately 30% less frequent in 269 

women who have used IUD. Likewise, Agenjo et al. (46) described an inverse relationship 270 

between IUD use and cervical cancer risk, with women using IUD reporting half the risk of 271 

developing this type of cancer. Our contrasting results, however, are in line with previous 272 

microbiome correlations with cervical cancer. We found significant correlations with IUD use 273 

and the presence of Acinetobacter lwoffii, which has been previously reported in HPV-positive 274 

women (47). In addition, we detected an independent positive correlation with the use of IUD 275 

and Fusobacterium sp. and a taxon of the Tissierellaceae family. Fusobacterium has been 276 

studied as a possible diagnostic biomarker of cervical cancer since it is positively correlated with 277 

tumor differentiation (48). Furthermore, both Tissierellaceae and Fusobacteriaceae have been 278 

reported as the most abundant microorganisms in cervical carcinoma (49). Thus, while the 279 

relationship between IUD use and cervical cancer remains varied across studies, our results 280 

support that IUD use is linked to vaginal bacteria previously detected in greater abundance in 281 

cervical cancer. The fact that we detected a link between contraception and SIL for IUD only, 282 

and not for other forms of hormonal or physical contraception methods may suggest that the use 283 

of IUD could favor the growth of specific bacterial species that may either induce changes in the 284 

cervical microenvironment that could favor HPV infection, or alternatively, facilitate HPV 285 

infection via microbial interactions. It is also possible that these bacterial changes are a 286 

consequence of the anatomical and immune changes associated with SIL and cervical cancer. 287 

Future work should study host-microbe interactions involving these bacterial species and HPV in 288 
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experimental models of cervical cancer, as well as microbiome features associated with IUD use 289 

in healthy women. This mode of contraception is widely used by women across the world; thus, 290 

it is important to further elucidate if microbial species linked to IUD use could be causally linked 291 

to HPV infection and cervical cancer risk.   292 

While it is unclear why younger age was linked to SIL in our study, it is likely that it relates to 293 

the common age of onset of SIL, which occurs between 25-35 years of age (50, 51). In contrast, 294 

healthy women would be less likely to visit the IMSS for a routine gynecological visit. Our 295 

microbiome results did not find any differences associated with age, suggesting that age did not 296 

confound our results. Several study variables linked sexual activity with SIL, included younger 297 

age of sexual debut and number of sexual partners per age. These and other related sexual 298 

behavioral factors have been previously linked with SIL, HPV infection and cervical cancer risk 299 

(52). Interestingly, our study revealed that vaginal douching was linked to a reduced risk of SIL 300 

(OR 0.23 CI 0.14-0.39). Studies on cervical cancer and vaginal douching have reported positive, 301 

negative and no associations (53). Although it is unlikely that SIL would lead to symptoms that 302 

would motivate genital douching, this practice is more common among women with other risk 303 

factors linked to sexually transmitted infections, which are a common cause of symptoms. 304 

Among the predominant components of a healthy vaginal microbiome are Lactobacillus species, 305 

including L. crispatus, L. iners, L. jensenii, and L. gasseri (17, 54), which results in reduced 306 

community diversity. Indeed, bacterial richness increases as Lactobacillus spp. levels are 307 

reduced in association with precursor lesions of cervical cancer (17) and with HPV infection 308 

itself (2, 55, 56). In support to this, our results showed higher species richness in cases as well as 309 

shifts on beta-diversity. Compositional differences involved several taxa, including lactobacilli. 310 

While one L. iners OTU had greater relative abundance in positive cases, two other significantly 311 
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more predominant Lactobacillus OTUs were decreased in women with SIL, explaining on 312 

overall reduction in lactobacilli (Figure 2). L. iners has been previously associated with a 313 

dysbiotic community and displays a series of characteristics that make this species different from 314 

other known vaginal lactobacilli (57–59). For instance, L. iners is a lower producer of D-lactic 315 

acid and induces IL-8 secretion causing pro-inflammatory activity in the cervix, which may 316 

influence the progression of cervical intraepithelial neoplasia (15). In other studies, the 317 

dominance of L. iners and interactions with other vaginal anaerobic microorganisms alters the 318 

balance of the vaginal microbiota in association with cervical intraepithelial neoplasia (13). 319 

The most discriminant microbial differences between cases and controls involved 320 

Brevibacterium aureum and Brachybacterium conglomeratum (increased in cases), as well as 321 

Zoogloea sp. and Prevotella sp. (increased in controls; Figure 4). While these differences were 322 

very significant, these species were not uniformly present among either group suggesting that 323 

interindividual compositional differences may prevent to identify microbiota species with 324 

biomarker potential for HPV infection or SIL. However, our study identified Brachybacterium 325 

conglomeratum as independently associated with SIL and with HPV-16, the most common 326 

subtype detected in our study. This prompts for future investigation on the link of this bacterial 327 

species with SIL risk associated with this specific HPV subtype and raises the possibility that 328 

microbiome links with HPV infection are subtype specific. To our knowledge, this is the first 329 

time this species is linked to HPV infection or SIL. B. conglomeratum has not been readily 330 

reported in vaginal microbiome studies either, which have mainly surveyed North American and 331 

European populations (60–62). This finding underlines the importance to consider ethnicity and 332 

geography-driven differences in human microbiome studies, as dysbiotic patterns may be 333 

population-specific.  334 
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Table 1. Characteristics of Study Population. Categorical Variables. 536 

Variable Subcategory 
With SILs 

(N=157) 

Without SILs 

(N=143) 
P OR CI 

SILs Grade 
Low grade 112 0 

N/A N/A N/A 
High grade 45 0 

HPV 
Positive 142 (90.45%) 0  

<0.0001 ∞ 355.4 

to ∞ Negative 15 (9.55%) 143 (100%) 

HPV type 

HPV-16 77(49.04%) 0 

N/A N/A N/A 

HPV-58 23(14.65%) 0 

HPV-18 17(10.83%) 0 

HPV-31 7(4.46%) 0 

HPV-11 4(2.55%) 0 

Other 14(8.92%) 0 

HPV Neg 15(9.55%) 143(100%) 

Smoking 

Yes 39(24.84%) 42(29.37%) 

0.38 0.79 

0.47 

to 

1.32 No 118(75.16%) 101(70.63%) 

Menstrual period 

Regular 111(70.70%) 99(69.23%) 

0.78 1.07 

0.66 

to 

1.73 Irregular 46(29.30%) 44(30.77%) 

Intermenstrual 

bleeding 

Yes 27(17.20%) 15(10.49%) 

0.095 1.77 

0.89 

to 

3.41 No 130(82.80%) 128(89.51%) 

Sexually active (at 

study assessment) 

Yes 118(75.16%) 132(92.31%) 

<0.0001 0.25 

0.12 

to 

0.51 No 39(24.84%) 11(7.69%) 

Use of 

contraceptive(s) 

Yes 104(66.24%) 76(53.15%) 

0.021 0.58 

0.37 

to 

0.93 No 53(33.76%) 67(46.85%) 

Contraceptive type 

IUD 39(24.84%) 17(11.89%) 

0.0001 N/A N/A Tubal ligation 27(17.20%) 21(14.69%) 

Hormonal 20(12.74%) 13(9.09%) 
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Condom 10(6.37%) 3(2.10%) 

IUD+Tubal 

Ligation 
2(1.27%) 0 

Other 6(3.82%) 10(6.99%) 

Did not specify 0 13(9.09%) 

None 53(33.76) 66(46.15%) 

Vaginal douching 

Yes 26(16.56%) 66(46.15%) 

<0.0001 0.23 

0.14 

to 

0.39 No 131(83.44%) 77(53.85%) 

P values in bold denote statistical significance (P>0.05) 537 

 538 

  539 
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Table 2. Characteristics of Study Population. Numerical variables. 540 

Variable With SILs (157) 
Without SILs 

(143) 

Normality 

test 

(D'Agostino & 

Pearson) 

P 

Age 36.29 ± 0.89 42.86 ± 0.65 Yes <0.0001 

Age since sexually active 18 20 No <0.0001 

Number of sexual partners 1 1 No 0.39 

Number of sexual partners by 

age 
0.038 0.028 No 0.0003 

Number of pregnancies 3 3 No 0.75 

Number of births 2 2 No 0.22 

Number of miscarriages 0.010 0.014 No 0.0082 

Mean ±SD or median values based on D’Agostino & Pearson normality test. P values in bold denote 541 

statistical significance (P>0.05) 542 

  543 
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Table 3. Differential OTUs in relation to study variables (MaAsLiN). Features organized in ascending order 544 

of adjusted P values 545 

Variable Feature Value P.value Q.value 

Contraception G_Fusobacterium_Otu105 IUD 2.4E-110 7.8E-106 

HPV_type G_Mycoplasma_Otu46 HPV-90 3.2E-39 4.2E-35 

Contraception S_Acinetobacter_lwoffii_Otu127 IUD 7.3E-31 8.1E-27 

Contraception F_Tissierellaceae_Otu174 IUD 3.8E-15 3.2E-11 

Contraception S_Brevundimonas_diminuta_Otu106 IUD 2.5E-13 1.7E-09 

Contraception F_Micrococcaceae|_Otu49 IUD 3.9E-12 2.2E-08 

SILs F_Brachybacterium_conglomeratum_Otu28 POS 6.5E-11 3.1E-07 

SILs G_Lactobacillus_Otu6 NEG 1.2E-08 3.3E-05 

SILs S_Sphingobium_yanoikuyae_Otu62 NEG 2.0E-07 3.1E-03 

Contraception O_BD7-3_Otu216 IUD 5.70E-07 1.6E-04 

SILs G_Lactobacillus_Otu23 NEG 2.42E-06 4.14E-04 

HPV_type S_Brachybacterium_conglomeratum_Otu28 HPV-16 1.02E-05 1.93E-02 

HPV_type S_Lactobacillus_iners_Otu101 HPV-83 1.69E-05 2.8E-02 

Age S_Streptococcus_anginosus_Otu33 Age 1.71E-04 2.5E-02 

 546 

 547 

 548 

 549 

  550 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 25, 2021. ; https://doi.org/10.1101/2021.02.23.432613doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.23.432613
http://creativecommons.org/licenses/by-nc/4.0/


 29 

 551 

FIGURE 1. (A) Principal component analysis (PCoA) ordination of variation in beta-diversity of human 552 

cervical bacterial communities in adult Mexican women based on Bray-Curtis dissimilarities. Color and 553 

shape represent presence of squamous cervical intraepithelial lesions (SIL); blue circles represent 554 

absence of SIL and red squares represent presence of SIL. PERMANOVAs indicate the SIL represent 555 

14.6% of the variation in vaginal bacterial community structure (N=300; Adonis P>0.001). Arrows 556 

represent loading plot coordinates for the three most abundant OTU features in the dataset. Variation in 557 

(B) species richness (Chao1) and (C) alpha-diversity (Shannon index) of vaginal bacterial communities 558 

between women with (POS) and without (NEG) SIL. Stars denote statistical significance (N=300; Kruskal-559 

Wallis test; Chao1 P=2.78e-07).  560 
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FIGURE 2. Variation in taxonomic composition of vaginal bacterial communities at the family (A) and genus 564 

(B) levels between women with and without cervical SIL (N=300). 565 

  566 
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 567 

 568 

 569 

FIGURE 3. Differentially abundant taxa (OTU-level) in women with (green) or without (red) cervical SIL, 570 

identified by linear discriminant analysis (LDA). Only taxa meeting an LDA significant threshold >2 are 571 

shown (N=300; Lefse (39)).  572 
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 578 

FIGURE 4. Histogram of most discriminant increased (A) or decreased (B) OTUs in women with (POS) and 579 

without (NEG) cervical SIL. Five features were chosen per category, based on effect size calculated by 580 

LDA (N=300; Lefse (39)). Red lines indicate relative abundance for each sample, and horizontal black line 581 

denotes median value.  582 
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