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 2 

Abstract 24 

Several efforts have been made to valorize keratinous materials, an abundant and renewable 25 

resource. Despite these attempts to valorize products generated from keratin hydrolysate, either 26 

via chemical or microbial conversion, they generally remain with an overall low value. In this 27 

study, a promising keratinolytic strain from the genus Chryseobacterium (Chryseobacterium sp. 28 

KMC2) was investigated using comparative genomic tools against publicly available reference 29 

genomes to reveal the metabolic potential for biosynthesis of valuable secondary metabolites. 30 

Genome and metabolic features of four species were compared, shows different gene numbers 31 

but similar functional categories. We successfully mined eleven different secondary metabolite 32 

gene clusters of interest from the four genomes, including five common ones shared across all 33 

genomes. Among the common metabolites, we identified gene clusters involved in biosynthesis 34 

of flexirubin-type pigment, microviridin, and siderophore, all showing remarkable conservation 35 

across the four genomes. Unique secondary metabolite gene clusters were also discovered, for 36 

example, ladderane from Chryseobacterium sp. KMC2. Additionally, this study provides a more 37 

comprehensive understanding of the potential metabolic pathways of keratin utilization in 38 

Chryseobacterium sp. KMC2, with the involvement of amino acid metabolism, TCA cycle, 39 

glycolysis/gluconeogenesis, propanoate metabolism, and sulfate reduction. This work uncovers 40 

the biosynthesis of secondary metabolite gene clusters from four keratinolytic Chryseobacterium 41 

spp. and shades lights on the keratinolytic potential of Chryseobacterium sp. KMC2 from a 42 

genome-mining perspective, providing alternatives to valorize keratinous materials into high-43 

value natural products. 44 

 45 

 46 
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Importance 47 

Keratin is an abundant and renewable resource from slaughterhouses or the poultry industry. 48 

Low-value products such as animal feed and fertilizer were generated from these feedstocks 49 

based on conventional processing like chemical conversion. In fact, microorganisms possess the 50 

potential to synthesize valuable natural products. In this work, we explored the metabolic 51 

potential of Chryseobacterium sp. KMC2, which was isolated with efficient keratinolytic 52 

capacity from a previous study. Comparative genomics analysis displayed similar functional 53 

categories against three publicly available reference genomes of keratin-54 

degrading Chryseobacterium spp.. Eleven different secondary metabolite gene clusters of interest 55 

were mined among four genomes, including five common and unique ones. Furthermore, we 56 

provide a more comprehensive understanding of metabolic pathways on keratin utilization 57 

in Chryseobacterium sp. KMC2, with the involvement of amino acid assimilation and sulfate 58 

reduction. These findings contribute to expanding the application of Chryseobacterium sp. 59 

KMC2 on the valorization of keratinous materials. 60 

 61 

Keywords: keratinous materials, metabolic potential, genome mining, gene clusters, 62 

degradation pathways 63 

 64 

 65 

 66 

 67 

 68 

 69 
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Introduction 70 

Keratin is the most abundant proteins in epithelial cells, constituting the bulk of epidermal 71 

appendages such as hair and feather (1, 2). Keratinous materials represent an abundant protein 72 

source, particularly originating from the commercial slaughterhouses or poultry farms (3). They 73 

contain peptides and amino acids, which are renewable natural resources with great potential in 74 

sustainable development (4). However, keratin is an insoluble protein with highly cross-linked 75 

disulfide bonds giving it a tough and recalcitrant structure (5). Many attempts have been made to 76 

hydrolysis keratinous materials in terms of physicochemical treatment, enzymatic hydrolysis, 77 

and microbial conversion (6, 7). The hydrolysis products of keratinous materials have been used 78 

for animal feed (8) and fertilizer (6, 9)  based on conventional processing.  79 

 80 

Microorganisms represent one of the most important natural sources, which have the potential to 81 

generate bioactive compounds such as antibiotics, biofuels, and natural pigments derived from 82 

cellular metabolites (10, 11). For example, Yarrowia lipolytica has been used to convert different 83 

renewable feedstocks to high-value metabolites (12). Similarly, Escherichia coli has become one 84 

of the best cell reactors to produce alcohols, organic acids, biodiesel, even hydrogen by utilizing 85 

renewable resources (13). Other bacteria such as Bacillus subtilis (14), Caldicellulosiruptor 86 

bescii (15), Corynebacterium glutamicum (16), and Ruminococcaceae bacterium (17) were 87 

identified and evaluated with the capacity to generate different products by converting renewable 88 

carbon sources. Notably, some microorganisms were reported to degrade keratinous waste 89 

effectively (18). Exploring keratinolytic potential of these microbes to generate high value-added 90 

products is an important step to recycle and valorize keratinous materials. 91 

 92 
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Molecular mechanisms of microbial keratin degradation are still not fully understood, while 93 

genome sequencing offers possibilities to reveal the metabolic potential behind efficient 94 

microbial degradation (19). Novel keratinolytic enzymes were identified from the genome of 95 

Bacillus pumilus 8A6, an efficient keratin degrader (20). Furthermore, going beyond the 96 

degradation reaction itself, genomes can also be minded for valuable accessory functions of 97 

interest, adding more values to the microbial conversion processes. For instance, gene clusters 98 

and biosynthesis pathways of secondary metabolites could be disclosed from genomes via 99 

adequate analysis tools (21, 22). A total of 104 putative biosynthetic gene clusters (BGCs) for 100 

secondary metabolites were predicted from nine Ktedonobacteria genomes (23). Secondary 101 

metabolites were identified and linked to gene clusters based on the comparison and mining of 102 

six genomes belonging to diverse Aspergillus species, successfully fueling industrial 103 

biotechnology initiatives and medical research (24). Therefore, using the genomes of 104 

keratinolytic microbial species in a similar way would represent a promising approach to 105 

discover biosynthetic gene clusters of secondary metabolites of interest, excavating the full 106 

application potential of these microbes. 107 

 108 

Recently, several studies based on different environments have revealed the remarkable potential 109 

of representative taxa from the Chryseobacterium genus for keratin degradation using isolation, 110 

activity tests and genome sequencing (25, 26). In this study, a novel strain Chryseobacterium sp. 111 

KMC2 was previously obtained from an enrichment procedure, displaying a potent capacity of 112 

keratin degradation (27). The genome of Chryseobacterium sp. KMC2 was analyzed and 113 

compared with publicly available genomes of other keratinolytic Chryseobacterium spp. to 114 

clarify the genomic basis of keratin degradation, and to unravel hidden biosynthetic gene clusters 115 
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of interest. Subsequently, the metabolic pathways associated with keratin degradation were 116 

constructed, providing deeper insight into the yet obscure keratinolytic processes. This work 117 

reveals the keratinolytic potential of Chryseobacterium spp. and mined potential accessory gene 118 

clusters of secondary metabolites, which could i) contribute to optimizing the processes of 119 

keratin degradation and ii) broaden the perspective to generate added-value products from 120 

keratin hydrolysate. 121 

 122 

 123 

Results and discussion 124 

 125 

Genome feature comparison of four keratinolytic Chryseobacterium strains 126 

Chryseobacterium sp. KMC2 originated from a river-bank soil sample, and displayed a potent 127 

degradation ability toward milled pig bristle and hooves (27, 28). The genome of 128 

Chryseobacterium sp. KMC2 was sequenced and compared to three reference genomes of 129 

Chryseobacterium spp. Including: i) Chryseobacterium camelliae Dolsongi-HT,  isolated from 130 

green tea leaves (29); ii) Chryseobacterium gallinarum strain DSM 27622, isolated from chicken 131 

(30); and iii) Chryseobacterium sp. strain P1-3 isolated from poultry waste (31), which all 132 

display keratinolytic capacity (Table 1). Chryseobacterium sp. KMC2 showed distinct genome 133 

feature from the other known keratinolytic strains. The genome size of Chryseobacterium sp. 134 

KMC2 is 5.28 Mbp, larger than the other three genomes, which ranged from 4.38 Mbp to 4.63 135 

Mbp. A total of 4,773 genes were predicted from Chryseobacterium sp. KMC2 genome, and 136 

about 4,000 genes were annotated from the other three genomes. Besides, the GC content ranges 137 

from 36.33% to 41.80% in Chryseobacterium spp. genomes. Furthermore, the whole-genome 138 
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phylogenetic tree was constructed with other eight publically available Chryseobacterium spp. 139 

genomes (Fig. 1a), showing the highly similarity among Chryseobacterium gallinarum strain 140 

DSM 27622 and Chryseobacterium sp. strain P1-3. Notably, Chryseobacterium sp. KMC2 and 141 

Chryseobacterium camelliae Dolsongi-HT have closer evolutionary relationship with other 142 

Chryseobacterium species. Although the keratinolytic capacity within these eight strains is still 143 

not clear, more keratinolytic species are expected to be found in this genus according to the 144 

phylogenic tree analysis.  Four strains among this genus have documented with actual keratin 145 

degradation capability (29-31), while Chryseobacterium sp. KMC2 may possess different 146 

keratinolytic potential encoded in its larger genome compared to three other Chryseobacterium 147 

strains.  148 

 149 

Metabolic potential comparison of four keratinolytic Chryseobacterium genomes 150 

About 40% of the genes from the four genomes were classified into various functional categories 151 

based on the KEGG database. The vast majority of annotated genes belonged to metabolism, 152 

genetic information processing, environmental information processing, and cellular processes 153 

(Fig. 1b). The functional categories of the genomes were overall highly similar, with ~85% of 154 

annotated genes assigned to “metabolism” (category A) which included ~1.000 genes into the 155 

sub-category “global and overview maps”. Additionally, about 8% and 4% annotated genes from 156 

each genome were assigned to “genetic information processing” (category B) and 157 

“environmental information processing” (category C), respectively. The remaining annotated 158 

genes belonged to “cellular processes” (category D), which occupied 3% of the annotated 159 

genomes approximately. 160 

 161 
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Remarkably, each genome had more than 200 genes assigned into the "amino acid metabolism" 162 

sub-category. Keratin is mainly composed of amino acids (3), which is ultimately the operational 163 

carbon nutrient source exploited for microbial growth. Numerous amino acid metabolism-related 164 

enzymes were annotated, revealing the genetic potential of these Chryseobacterium strains for 165 

using keratin materials as energy sources. Of particular interest, several biosynthesis genes of 166 

secondary metabolites were detected from the genomes, of which more than 20 genes were 167 

annotated as “metabolism of terpenoids and polyketides” and around 40 genes were annotated as 168 

“biosynthesis of other secondary metabolites” sub-category (Fig. 1b). Terpenoids are a group of 169 

natural products with diverse commercial applications, which have been produced from 170 

microbial cell factories (32). Many polyketides are considered as significant natural products 171 

with broad applications in the agriculture and pharmaceutical industry (33). The metabolic 172 

pathways related to polyketides biosynthesis production are well understood in some 173 

microorganisms like Streptomyces which play a crucial role in industrial bioproduction (34). 174 

This result indicates that these Chryseobacterium strains could have the potential to synthesize 175 

high-value secondary metabolites such as terpenoids and polyketides from keratinous materials. 176 

 177 

Mining and comparing secondary metabolite gene clusters 178 

Genome mining is an effective approach to discover new natural products from microorganisms 179 

based on “signature genes” detection or searching for specific patterns in gene sequences (35). 180 

To explore the potential of producing high value chemicals from these four Chryseobacterium, 181 

secondary metabolite gene clusters were predicted by using antiSMASH 5.0 mining pipeline (Fig. 182 

2). In total, eleven different secondary metabolite gene clusters were identified. 183 

Chryseobacterium sp. KMC2 possesses the largest number (15), while Chryseobacterium 184 
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camelliae Dolsongi-HT1 has the fewest (8). Ten gene clusters were predicted from the other two 185 

strains. Five clusters are present in the four genomes, which are flexirubin-type pigment 186 

(resorcinol and arylpolyene), microviridin, lanthipeptide, NRPS-like, and siderophore. 187 

Remarkably, the flexirubin-type pigment is a typical metabolite produced from Flavobacterium 188 

(36). Several species from Chryseobacterium were previously designated and known 189 

as Flavobacterium owes to similar characteristics including the presence of yellow pigments (37). 190 

Flexirubin-type pigment was isolated and characterized from Chryseobacterium sp. UTM-3T 191 

(38). In addition, Chryseobacterium sp. KMC2 owns a unique gene cluster to produce ladderane. 192 

Another unique natural product is beta-lactone from Chryseobacterium camelliae Dolsongi-HT1. 193 

Ladderanes are hydrocarbon chains which were regarded as membrane lipid components 194 

produced by anammox (anaerobic ammonia-oxidizing) bacteria uniquely, but the production is 195 

not affordable due to their extremely low growth (39, 40). These results demonstrate that various 196 

secondary metabolite gene clusters including both expected and unusual candidates were 197 

discovered from Chryseobacterium genomes, which could turn into novel natural product 198 

sources. 199 

 200 

Synteny analysis and features of secondary metabolite gene clusters 201 

Comparative genomics can reveal unique cluster and distribution patterns of secondary 202 

metabolites in species (41). Five secondary metabolite gene clusters, predicted to be present in 203 

the four genomes, were selected to explore the evolutionary relationship among four 204 

Chryseobacterium strains. Three of them including flexirubin-type pigment, microviridin, and 205 

siderophore display a conserved gene cluster structure from synteny analysis (Fig. 3, 4, and 5), 206 

while the other two showed no evident synteny relation (Fig. S1 and S2). 207 
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 208 

Flexirubin-type pigment. Natural pigments have increasing applications in food, 209 

pharmaceutical, and textile industries,   owing to their advantages such as non-toxic, 210 

biodegradable, and low allergenic potential compared to synthetic pigments (42). In particular, 211 

flexirubin-type pigment has a potential antimicrobial and anti-tumoral activities (43). 212 

Biosynthesis gene clusters of flexirubin-type pigment are conserved across the four tested 213 

genomes, especially within Chryseobacterium gallinarum strain DSM 27622 and 214 

Chryseobacterium sp. strain P1-3 (Fig. 3a). A total of 61 biosynthesis-related genes of 215 

flexirubin-type pigment were predicted from Chryseobacterium sp. KMC2, including four core 216 

biosynthesis genes. One of the core biosynthesis genes was annotated as 3-oxoacyl-(acyl carrier 217 

protein) synthase III (Flex11), and the other three were annotated as Beta-ketoacyl synthases 218 

(Flex21, Flex24, and Flex40).  Besides, transport-related genes and regulatory genes were 219 

predicted from the gene cluster. A previous study identified the molecular structure of flexirubin-220 

type pigment isolated from a Chryseobacterium sp. UTM-3T (38). According to the products 221 

from core biosynthesis genes and their molecular structures, a proposition of biosynthesis 222 

pathway was established (Fig. 3b), where flexirubin-type pigment is generated from resorcinol 223 

and arylpolyene. Further transcriptomics and metabolomics analysis would be required to 224 

confirm the validity of this potential pathway discovery. 225 

 226 

Microviridin. Microviridins represent a group of ribosomally synthesized peptides under post‐227 

translational modifications, which have been mainly isolated from cyanobacteria and present 228 

potent serine-type protease inhibitory activities (44, 45). These properties could make 229 

microviridin serve as the natural antimicrobial agents for developing potential drugs. 230 
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Biosynthesis gene clusters of microviridin from four Chryseobacterium genomes show a highly 231 

conserved structure with a similarity greater than 71% from most gene synteny analysis (Fig. 4a). 232 

There are 23 biosynthesis genes of microviridin that were predicted from Chryseobacterium sp. 233 

KMC2. Two core biosynthetic genes (A and B) were identified from genomes and transport-234 

related genes were also been discovered. Besides, amino acid sequences of mvdA and mvdB 235 

were aligned, showing that multiple motifs from mvdA and mvdB are conserved (Fig. 4bc). 236 

Interestingly, many keratinases were reported to be classified as serine proteases, acting on the 237 

molecular structure of keratin (46). This suggests that microviridins may regulate keratinolytic 238 

activity, further characterizing and manipulating the microviridin synthetic pathway could 239 

contribute to improving the keratin degradation efficiency.  240 

 241 

Siderophore. Siderophores are ferric ion-specific chelators to scavenge iron from the 242 

extracellular environment, which play important roles in virulence and oxidative stress tolerance 243 

in microorganisms (47). It has been designed as a Trojan horse antibiotic to enter and kill 244 

pathogenic bacteria (48), and also has shown the potential to decrease the growth of cancerous 245 

cells (49). Biosynthesis gene cluster of siderophore shows a high synteny conservation among 246 

Chryseobacterium sp. KMC2 and Chryseobacterium camelliae Dolsongi-HT1, 247 

Chryseobacterium gallinarum strain DSM 27622 and Chryseobacterium sp. Strain P1-3, 248 

respectively (Fig. 5). A total of ten genes were predicted from siderophore biosynthesis cluster of 249 

Chryseobacterium sp. KMC2, and eight genes from the other three Chryseobacterium strains 250 

separately. Functional description of each gene related to siderophore biosynthesis in 251 

Chryseobacterium sp. KMC2 shows two core biosynthesis genes, and includes one regulatory 252 

gene and one transport-related gene. This further suggests that those siderophore are potentially 253 
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fully functional molecular features that can be regulated on-demand and exported outside the cell 254 

when needed.  255 

 256 

Metabolic pathways of keratin utilization in Chryseobacterium sp. KMC2 genome 257 

The main metabolic pathways related to keratin utilization in Chryseobacterium sp. KMC2 258 

genome were investigated. These pathways included amino acid metabolism, TCA cycle, 259 

glycolysis/gluconeogenesis, propanoate metabolism, and sulfate reduction (Fig. 6). A previous 260 

study suggested that abundant amino acids are released during microbial degradation and used as 261 

nutrient sources, such as leucine and aspartate (28). The metabolic pathways of amino acid 262 

utilization were mapped from the genome of Chryseobacterium sp. KMC2. Most of the amino 263 

acids are converted into intermediates of the TCA cycle. For instance, arginine can be converted 264 

to succinate, then enter to TCA cycle after a multiple-steps enzyme reaction. Aspartate, tyrosine, 265 

phenylalanine, and glutamate could serve as the substrates to generate fumarate, thus being part 266 

of the TCA cycle. Besides, isoleucine turns into the substrates of 2-methyl-acetoacetyl-CoA after 267 

several enzymatic steps, which is then converted into acetyl-CoA and propanoyl-CoA via acetyl-268 

CoA C-acyltransferase. Acetyl-CoA is an important intermediate, which can entry to the TCA 269 

cycle via citrate synthase (50). It is also the precursors of fatty acid and polyketides biosynthesis 270 

(51). Propanoyl-CoA serves as the critical substrate within propanoate metabolism and can also 271 

be used to make lipids (52, 53). On the other hand, methionine can be converted to 2-272 

oxobutanoate, which is also an intermediate of propanoate metabolism. Subsequently, the 273 

methylmalonyl-CoA generated in propanoate metabolism enters into the TCA cycle via succinyl-274 

CoA. Besides, the key enzymes of glycolysis/gluconeogenesis were found, indicating the 275 

potential to produce essential biomass components based on oxaloacetate from TCA cycle. 276 
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 277 

Evidence indicates that a source of redox is needed for complete keratin degradation with 278 

keratinases (54, 55). Several metabolites such as sulfite were revealed to be associated with 279 

efficient keratin degradation (56). Therefore, here the complete metabolic pathway of sulfate 280 

reduction was mapped in the genome, which shows that the potential to create a redox 281 

environment needed for keratinases is indeed present. Following the development of sequencing 282 

technologies, increasing genomes of keratinolytic species have been unveiled, which provide a 283 

genomic perspective to reveal the molecular keratinolytic mechanisms. For instance, metabolic 284 

pathways related to keratin degradation such as enzymolysis and reduction of disulfide bonds 285 

were clarified through uncovering the genetic basis of microbial genomes (57). The complex 286 

keratinolytic processes of Streptomyces sp. included protease secretion, iron uptake, spore 287 

formation, and resuscitation were recently revealed from a genome view (58). Our results are in 288 

line with the notion that a redox environment is indeed required for efficient keratinolytic 289 

activity to occur. It is expected that the integrated metabolic pathways associated with 290 

keratinolytic processes will be deciphered along with more genomes sequencing and biochemical 291 

studies of relevant metabolic pathways. 292 

 293 

Conclusion 294 

In this work, the genomes from four Chryseobacterium spp. with keratinolytic activity were 295 

analyzed. Common and unique secondary metabolite gene clusters were mined from 296 

Chryseobacterium spp. genomes, suggesting the potential to generate high value metabolites 297 

using keratin-rich wastes as the nutrient sources. Therefore, the use of these microorganisms 298 

could be an alternative way to valorize keratinous materials through microbial conversion. 299 
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Furthermore, the metabolic pathways of keratin degradation from Chryseobacterium sp. KMC2 300 

was studied from a genomic viewpoint. Nevertheless, there are still unknowns to link both 301 

metabolic pathways of keratinous utilization and the natural products biosynthesis. 302 

Understanding these connected pathways and their regulation will contribute to developing 303 

synthetic biology approaches to boost high value-added products from microbial keratin 304 

degradation.  305 

 306 

Materials and Methods 307 

 308 

DNA preparation 309 

Chryseobacterium sp. KMC2 was isolated and identified from a keratinolytic microbial 310 

consortium enriched from a soil sample (19, 27, 28). The keratinolytic capacity of 311 

Chryseobacterium sp. KMC2 was evaluated as the keystone strain among the microbial 312 

consortium, which was able to degrade keratin materials efficiently (27). Chryseobacterium sp. 313 

KMC2 was inoculated to LB medium, and cultured overnight (200 rpm, 30 °C). Two milliliters 314 

of the suspension were centrifuged and collected to prepare the DNA extraction, performed by 315 

using by FAST Soil DNA Kit (MP Biomedicals, United States) according to the manufacturer’s 316 

instructions.  317 

 318 

Genome sequencing, assembling, and functional annotation 319 

The genome sequencing was performed by an Illumina Miseq instrument at the University of 320 

Copenhagen by using DNA Library Preparation Kits v2 (2 × 250 bp), according to the 321 

manufacturer’s instructions. Raw reads were treated and assembled to contigs on CLC Genomic 322 
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Workbench 8.5.1. The obtained contigs were validated using QUAST 4.5 (59).  Genes were 323 

predicted from the contigs and further annotated with Prokka v1.14.5 (60). Predicted genes from 324 

contigs were submitted to eggNOG 5.0 database to obtain an integrated functional annotation 325 

and classification (61). 326 

 327 

Whole-genome phylogenetic analysis 328 

To determine the phylogenetic origin of Chryseobacterium sp. KMC2 in the Chryseobacterium 329 

genus, the whole-genome sequences of 11 publicly available Chryseobacterium spp. were 330 

downloaded from NCBI database to construct a phylogenetic tree. The whole-genome sequence-331 

based phylogenetic tree was inferred by using an online pipeline: The Reference sequence 332 

Alignment based Phylogeny builder (REALPHY 1.12) (62), based on the merge reference 333 

alignments. Then the visualization of the phylogenetic tree was generated by iTOL v5 (63). 334 

 335 

Secondary metabolite gene cluster detection and annotation 336 

Assembled contigs of four Chryseobacterium spp. were uploaded to antiSMASH 5.0 secondary 337 

metabolite genome mining web platform (21). Predicted secondary metabolites gene clusters 338 

from Chryseobacterium sp. KMC2 were compared with other keratinolytic Chryseobacterium 339 

strains. Gene annotation of each cluster from Chryseobacterium sp. KMC2 was performed by 340 

Prokka v1.14.5 (60) and BLASTP with the NCBI database. The best match sequencing ID was 341 

recorded for the annotated genes. Synteny and features of conservative secondary metabolite 342 

gene clusters were analyzed by using Easyfig 2.2.2, showing the similarity of gene sequences 343 

(64). Feature comparison of amino acid sequences and motifs from core synthetic genes were 344 
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analyzed by using Clustal Omega (65) to get the multiple sequence alignment and using 345 

Seq2logo to generate sequence logo (66). 346 

 347 

Metabolic networks construction 348 

The genomes of Chryseobacterium sp. KMC2 and other three Chryseobacterium spp. were 349 

submitted to GhostKOALA (67) to obtain the KO number for each gene, then genes were 350 

assigned to different metabolic pathways and functional categories. Following the metabolic 351 

networks construction of Chryseobacterium sp. KMC2 was achieved through mapping the 352 

annotated enzyme genes to KEGG (68) reference pathway and Biocyc database (69) manually. 353 

 354 

Data availability 355 

Reference genomes were downloaded from the NCBI database: Chryseobacterium camelliae 356 

strain Dolsongi-HT1 (GenBank: GCA_002770595.1), Chryseobacterium gallinarum strain DSM 357 

27622 (GenBank: GCA_001021975.1), Chryseobacterium sp. P1-3 (GenBank: 358 

GCA_000738495.1), Chryseobacterium gleum NCTC11432 (GenBank: GCA_900636535.1), 359 

Chryseobacterium bernardetii H4638 (GenBank: GCA_003815955.1), Chryseobacterium 360 

arthrosphaerae FDAAGOS 519 (GenBank: GCA_003812705.1), Chryseobacterium indologenes 361 

FDAARGOS 337 (GenBank: GCA_002208925.2), Chryseobacterium joostei DSM 16927 362 

(GenBank: GCA_003815775.1), Chryseobacterium glaciei IHBB 10212 (GenBank: 363 

GCA_001648155.1), Chryseobacterium carnipullorum F9942 (GenBank: GCA_003815855.1), 364 

and Chryseobacterium sp. SNU WT5 (GenBank: GCA_007362475.1). Raw sequencing data 365 

were deposited in the Sequence Read Archive (SRA) database under the BioProject number 366 

PRJNA686768 with an accession number SRR13278108. The assembled genome sequence 367 
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of Chryseobacterium sp. KMC2 has been deposited at DDBJ/ENA/GenBank under the accession 368 

JAESIT000000000.  369 
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 569 

Fig. 1. Analysis of the Chryseobacterium spp. genomes. (a). The whole-genome sequence-570 

based phylogenetic tree of Chryseobacterium spp., constructed by REALPHY 1.12 (62), based 571 

on the merge reference alignments of all genomes. Branch length represents divergence. (b). 572 

Comparison of KEGG function classification amongst four Chryseobacterium spp. genomes. 573 

Functional categories: Metabolism (A), Genetic information processing (B), Environmental 574 
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information processing (C), and Cellular processes (D). The stars show the sub-categories: 575 

Amino acid metabolism, metabolism of terpenoids and polyketides, and biosynthesis of other 576 

secondary metabolites. 577 
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             592 

Fig. 2. Composition of secondary metabolite gene clusters from four Chryseobacterium spp. 593 

genomes. 594 
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 605 

Fig. 3. Flexirubin-type pigment gene cluster from four Chryseobacterium spp. genomes. (a). 606 

Synteny analysis and features of flexirubin-type pigment gene cluster in Chryseobacterium spp. 607 

genomes. (b). The proposed biosynthetic reaction of flexirubin-type pigment. The detailed 608 

description of each gene can be found in Table S1.  609 
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 617 

Fig. 4. Microviridin gene cluster from four Chryseobacterium spp. genomes. (a). Synteny 618 

analysis and features of microviridin gene cluster in Chryseobacterium spp. genomes. (b). 619 

Amino acid sequence comparison of mdnA from four Chryseobacterium spp. genomes. (c). 620 

Amino acid sequence comparison of mdnB from four Chryseobacterium spp. genomes. The 621 

detailed description of each gene can be found in Table S2.  622 
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 627 

Fig.  5. Siderophore gene cluster from four Chryseobacterium spp. genomes. The detailed 628 

description of each gene can be found in Table S3.  629 
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 643 

Fig.  6. Metabolic pathways reconstruction of keratin utilization in Chryseobacterium sp. 644 

KMC2 genome. It includes amino acid metabolism, TCA cycle, glycolysis/gluconeogenesis 645 

propanoate metabolism, and sulfur metabolism. The number in the box represents the gene 646 

related to the metabolic pathway. The detailed description of each gene can be found in Table S7.  647 
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Table 1. Features comparison of four Chryseobacterium spp. genomes. 

 

Parameters 

Chryseobacterium  

sp. KMC2 

Chryseobacterium camelliae 

Dolsongi-HT1 

Chryseobacterium gallinarum 

strain DSM 27622 

Chryseobacterium  

sp. P1-3 

Total length (bp) 5.276.159 4.376.354 4.633.632 4.628.764 
Contigs 63 1 1 45 
N50 (bp) 231.784 4.376.354 4.633.632 342.512 
GC content (%) 36.33 41.80 37.30 37.02 
Gene 4.773 3.999 4.182 4.087 
CDS 4.692 3.881 4.033 3.119 
     


