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Abstract  35 

Lipoprotein subfractions are biomarkers for early diagnosis of cardiovascular diseases. The reference method, 36 

ultracentrifugation, for measuring lipoproteins is time consuming and there is a need to develop a rapid method 37 

for cohort screenings. Here we present partial least squares regression models developed using 1H-NMR spectra 38 

and concentrations of lipoproteins as measured by ultracentrifugation on 316 healthy Danes. Different regions of 39 

the 1H-NMR spectra representing signals of the lipoproteins and different lipid species were investigated to 40 

develop parsimonious, reliable and best performing prediction models. 65 LP main and subfractions were 41 

predictable with an accuracy Q2 of > 0.6 on test set samples. The models were tested on an independent cohort of 42 

290 healthy Swedes with predicted and reference values matching by up to 85-95%. The software was developed 43 

to predict lipoproteins in human blood using 1H-NMR spectra and made freely available to be applied for future 44 

cohort screenings.  45 
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Introduction 66 

Cardiovascular diseases (CVD) are still the leading cause of mortality and morbidity 1. Although the trend in CVD 67 

mortality has plateaued in many countries 1, ~18 million people die annually worldwide due to CVD 2. Blood 68 

lipids, including lipoproteins (LP), play an important role in the development of this pathology and serve as 69 

diagnostic markers. Total cholesterol (chol) in blood and the level of low density lipoprotein particles (LDLchol) 70 

have long been used as markers of risk of CVD 3-5. Previous studies have shown that ratios of chol or LDLchol to 71 

high density lipoprotein particles (HDLchol, “good” LP) are strongly associated with CVD risk 6,7. A recent study 72 

has shown that very low density lipoprotein (VLDL) and intermediate density lipoprotein (IDL) are also 73 

associated with CVD risk and should be integrated into clinical practice as secondary targets of lipid-lowering 74 

therapy 8. Moreover, an increase in LDLchol to HDLchol ratio has been suggested to be a sign of developing 75 

CVD, such as myocardial infarction, as well as being a predictor of CVD mortality 8,9.  76 

Lipoproteins are micellar-like particles, with heterogeneous density and size, made up primarily of lipids and 77 

proteins 10. The inside of the typical LP particle is composed of triglycerides (tg) and cholesterol esters (chole). 78 

The outer shell is composed of free cholesterols (fchol), phospholipids (phosl) and apolipoproteins (apoA and 79 

apoB). During fasting, LP in human blood can be divided into four main fractions based on density and size: 80 

VLDL, IDL, LDL and HDL. Very low density lipoproteins are the largest particles with the lowest density, and 81 

HDL are the smallest particles with the highest density. There are many analytical methods, including 82 

ultracentrifugation (UC), gel-electrophoresis, high-performance liquid chromatography (HPLC) and numerous 83 

assays, to determine these main fractions of LP particles and their subfractions in human blood plasma and serum. 84 

However, the definition of subfractions differs between the various separation techniques. The LP particles are 85 

not clearly distinct groups of particles, but rather form a distribution of particles differing in size and density, and 86 

in lipid and protein composition 11. For example, UC can separate seven subfractions of LDL, while HPLC can 87 

separate five subfractions, and these subfractions are not directly comparable. Ultracentrifugation has become the 88 

clinical reference method thanks to its capacity to better separate LP subfractions 10. However, not all aspects of 89 

density and/or size of all subfractions are fully determined, and their biochemical function and physiological roles 90 

in human metabolism are only partly understood. The usefulness of LP as biomarkers is a strong impetus for the 91 

development of a rapid and accurate quantification method.  92 

A promising analytical method for the rapid quantification of LP in human blood plasma is proton (1H) nuclear 93 

magnetic resonance (NMR) spectroscopy. In 1991-1992 Otvos et al. demonstrated that 1H NMR spectra and curve 94 

fitting of the plasma lipid methyl signal envelope (0.87-0.67 ppm) can be used to predict the distribution of the 95 

main LP fractions and subfractions 12,13. This seminal work was greatly expanded by Ala-Korpela et al., who 96 

investigated multiple NMR effects that can influence the quantification of LP, including spectral regions and time-97 

domain versus frequency domain solutions 14-16. In 2005 Petersen et al. applied a more pragmatic multivariate 98 

data analytical approach to this work. They applied more robust partial least squares (PLS) regression 17 for 99 

quantifying LP main and subfractions by regressing the reference values measured by UC against the lipid region 100 

(5.7-0.2 ppm) of the 1H NMR spectra (600 MHz) 18. This approach was soon applied by others and there are now 101 

more than 20 studies demonstrating LP quantification by combining 1H NMR spectroscopy with a reference 102 

measurement method, predominantly UC 10. More recently, it has become clear that optimization and 103 

standardization of the 1H NMR measurement protocols is of paramount importance if reliable, accurate and 104 
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comparable LP quantifications are to be obtained across different laboratories 19. Consensus regarding 105 

standardization is that high resolution, typically 600 MHz, NMR spectrometer be used for the measurement of 106 

one-dimensional (1D) nuclear Overhauser effect spectroscopy (NOESY) 1H NMR spectra of blood plasma or 107 

serum samples for quantification of LP.  108 

The main advantage of using the 1D NOESY pulse sequence is that it is fast, robust and simple, and thus suitable 109 

for standardization. Other more sophisticated NMR techniques, such as 2D Diffusion edited NMR (DOSY), which 110 

is sensitive to diffusion and can even recover the pure underlying NMR spectra of LP fractions using parallel 111 

factor analysis (PARAFAC) 20, are less suitable for standardization because of their longer acquisition times, and 112 

a more complex pulse sequence using field gradients. Reproducible and standardized measurement protocols 113 

allow data fusion of multiple cohorts for continued improvements of the calibration models, which continues 114 

accumulation of knowledge.  115 

This study shows the development and extensive validation of PLS models to predict concentrations of LP main 116 

and subfractions using blood plasma 1H NMR spectra and corresponding LP data measured by UC for 300+ 117 

volunteers. Furthermore, it provides an integrated software to predict LP from NMR spectra in future studies. The 118 

datasets and the software have been made freely available to the public. The 1H NMR spectra were measured 119 

using the most recent standard operating procedures (SOP) covering blood collection, sample handling, and NMR 120 

data acquisition, which have been published previously 19,21.  To the best of our knowledge, this study is the first 121 

to illustrate the prediction performances of PLS models for a wide range of LP subfractions, prediction model 122 

parameters and complexity, and provide open access datasets of 1H NMR spectra and corresponding LP data. The 123 

study investigated regression models using different parts of the entire range of 1H NMR spectra in order to 124 

identify the best regions representing signals of LP and different lipid species with an aim to develop the simplest, 125 

most robust and best performing PLS prediction models. The prediction of nearly 100 parameters from a single 126 

NMR spectrum raises concerns about the covariations amongst the independent variables (the reference 127 

parameters), and about the rank of the dependent variables (the spectra). This study therefore investigated the rank 128 

of the NMR and LP datasets to describe and understand the level of inter-correlations “cage of covariance” 129 

between the individual LP and the information content in the NMR spectra. Finally, the PLS models developed 130 

were validated by prediction of LP concentrations in an independent cohort of 290 healthy Swedes 22.  131 

 132 

Results 133 

Overview of the implemented workflow 134 

Figure 1 shows an overview of the workflow implemented to predict LP in human blood using 1H NMR spectra 135 

and UC data as response variables by applying PLS modelling. As described previously 19, the NMR spectra were 136 

scaled to the electronic reference to access in vivo concentrations (ERETIC) signal positioned at 15 ppm, 137 

equivalent to 10 mmol L-1 protons and aligned towards the doublet of alanine’s methyl group (1.507-1.494 ppm) 138 

using icoshift  23. Scaling the NMR spectra according to the area of the ERETIC signal minimizes variations 139 

originating from the NMR experiment and allows for inter-laboratory data comparisons. Unlike urine NMR 140 

spectra 24, shifting of the entire 1H NMR spectra of blood plasma samples towards the doublet of alanine is 141 

sufficient to eliminate minor misalignments present in the spectra due to small differences in pH and/or 142 
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experimental error (e.g. plasma to buffer ratio, small fluctuations on spectrum acquisition temperature). It should 143 

be noted that any additional spectral alignment shifting affecting the methyl (0.92-0.8 ppm) and methylene (1.4-144 

1.2 ppm) regions will impair the quantification of LP, as it is the small shifts of the lipid signals that are modelled 145 

by PLS. 1D 1H NMR spectra of human blood plasma contain ~13 unique spectral regions representing signals of 146 

the blood lipids. A total of 33 NMR datasets (Figure S1) were constructed using the 13 regions containing signals 147 

of lipids, either alone or in various combinations, and were subsequently used to develop PLS models with an 148 

optimal prediction performance (vide supra) (Figure 1). Briefly, an individual PLS model was developed for each 149 

LP variable. Firstly, a training model was developed using randomly selected 70% of samples, and was then tested 150 

on the remaining 30% of samples. The optimal number of latent variables (LV) for the training models was 151 

selected by developing one to twenty LV PLS models using 10 fold cross validation for each model, and the model 152 

with the smallest root mean square error of cross validation (RMSECV) value was chosen.  153 

Ultracentrifugation determined LP concentrations (milligram per decilitre, mg/dL) in fresh fasting plasma 154 

samples. In total, 97 variables were used as response variables for the development of the PLS models. Samples 155 

with LP concentrations below limit of detection (LOD) or missing value for a given LP variable were removed 156 

prior to PLS modelling. In addition, a few samples with an extraordinary underperforming PLS prediction of a 157 

LP variable were removed prior to the development of the final models (Figure 1). These extreme samples could 158 

primarily be related to the relatively high uncertainty of the UC measurements of a few individuals due to faulty 159 

results from lipids assays used in the UC. The uncertainty of the UC method for LP quantification ranged from 160 

5% to 40%, depending mainly on the molecular type 25. The lowest uncertainties were observed for apolipoprotein 161 

A (ApoA) (5-15%), apolipoprotein B (ApoB) (6-20%), and cholesterol (5-18%) molecules, while the highest 162 

uncertainty was observed for free cholesterol (8-40%). More details on reproducibility and source of uncertainty 163 

on reference method for LP measurement are published elsewhere 25.  164 

 165 

Optimal regions of the 1H NMR spectra for lipoprotein quantification 166 

When performing regression on spectra, a selection of an optimal spectral region is important for developing 167 

parsimonious models with less noise and fewer interferences, especially when spectra are large (e.g. >16k 168 

variables). For this reason, the 1H NMR spectra of blood plasma acquired from 316 Danish volunteers were 169 

divided into 13 spectral regions representing signals from different lipid functional groups. These regions include 170 

the signal of the methyl group (C18) of cholesterol (0.75-0.65 ppm), the signals of methyl (0.92-0.8 ppm), 171 

methylene (1.4-1.2 ppm), and methine (5.40-5.24 ppm) protons of different LP molecules, including triglycerides, 172 

phospholipids, apolipoproteins (apoA and apoB), as well as spectral regions containing signals from other lipid 173 

functional groups (Figure S1). Each spectral region was used either alone or in combination with other regions, 174 

resulting in 33 NMR datasets (including the entire NMR spectrum), to develop the PLS regression models for 175 

predicting LP concentrations in human blood plasma from UC reference values.  176 

The concentrations of 65 of the 97 measured LP were found to be predictable from the majority of the NMR 177 

datasets (Figure 2a). One criterion set for an acceptable prediction performance of the PLS model was to have a 178 

prediction accuracy (Q2) > 0.6 for test set samples. Q2 is a statistical measure of prediction accuracy often used in 179 

PLS modelling 26  and defined as Q2=(1-PRESS/SS), where PRESS is predictive residual sum of squares and SS 180 
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is sum of squares of actual values (LP concentrations). Total triglyceride and total cholesterol in blood plasma 181 

and in main fractions were predictable (Q2 > 0.6) from all 33 spectral datasets apart from spectral regions 26 and 182 

31 (Figure S1), which represent only the choline head group in lipids and the aromatic protons, respectively. Not 183 

surprisingly, these two regions were also the worst performing for predicting the other LP since they do not carry 184 

signals of LP molecules. They were therefore removed before further analysis. Spectral region 18, containing a 185 

weak signal of lysine residue in albumin and more abundant signals of creatine, creatinine, was also not suitable 186 

for prediction of most LP, and only total concentrations of tg, chol, apoA, and chole were weakly predictable. The 187 

most up field spectral region, representing the protons in the methyl group (C18) of cholesterol (region 1 in Figure 188 

S1), was able to predict all LP molecular classes in plasma and main fractions, as well as tg, chol, fchol, phosl, 189 

and apoB in some subfractions. The spectral regions representing protons of the methylene groups, located either 190 

one or two bonds away from carbonyl group or double bond of lipids (regions 11, 12, 13, 17, 27 in Figure S1) are 191 

primarily able to predict total concentrations of LP in blood plasma and the main fractions. The spectral regions 192 

23 and 25 (Figure S1), corresponding to glyceryl protons of lipids, CH2OCOR and CHOCOR, respectively, 193 

exhibit relatively high prediction power for total tg concentration in plasma and main fractions, as well as tg of 194 

VLDL and IDL. The performance of these regions in predicting LP subfractions is sub-optimal, and none of them 195 

are able to predict all subfractions. Thus, all these spectral regions could only selectively predict some LP, and 196 

were mostly limited to prediction of total concentrations of LP in plasma and/or their cumulative concentrations 197 

of main fractions. However, 20 of the 33 investigated NMR regions displayed relatively high prediction 198 

performances for all 65 LP (Figure 2a).These 20 NMR datasets were therefore used for further modelling. The 199 

prediction performance parameters of the PLS models developed for all 65 predictable LP using the 20 NMR 200 

regions are shown in Table S1.    201 

The five spectral regions (regions 7-10,14 in Figure 2b) representing the main signals of the LP, including methyl 202 

and methylene protons as well as methyl of cholesterol, showed the best prediction results, with Q2 > 0.6 for all 203 

65 predictable LP. Overall, the prediction performances of all five spectral regions were similar, with a mean Q2 204 

of ~0.84 and coefficients of variation (CV) of ~13% for the test set prediction models. However, for a few LP, 205 

the prediction performances differed significantly between the five regions. Unlike the other spectral regions, 206 

region 8 (Figure 2b) does not contain the methyl signal of cholesterol, though this did not influence the prediction 207 

performance for chol content in different LP particles. In contrast, a significantly lower prediction performance 208 

was observed for phosl in the LDL1 subfraction using region 8. The Q2 of the region 8 (Figure 2a) based model 209 

for LDL1phosl was 0.7, while the other LP regions exhibit a Q2 of at least 0.77. Regions 9 and 10 (Figure 2b), 210 

representing the entire LP region of 1.4-0.6 ppm, displayed a better prediction performance for tg, chol, and chole 211 

of LDL1, chol of LDL4, chole of HDL2b, and of chol and apoA of HDL3 subfractions, compared to the other 212 

three regions. Despite interfering signals from non-LP related molecules such as lactic acid, valine, leucine, 213 

isoleucine, the spectral regions 9 and 10 showed an overall better performance in prediction of all 65 LP than 214 

regions 7, 8 and 14, where the signals of the non-LP molecules were removed. Spectral regions containing only 215 

the methyl (region 2 and 6) or the methylene (region 3 and 4) protons of LP performed significantly worse 216 

compared to regions 8 and 9, where the two proton populations are combined. This was especially pronounced in 217 

the prediction performances of the PLS models developed for LDL and HDL subfractions (Table S1). 218 

Interestingly, region 15, which contains only signals of methylene protons located either one or two bonds away 219 

from a carbonyl group or double bond of the fatty acid chain, is also able to predict 60 out of 65 LP, with a Q2 of 220 
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at least 0.6 for test set samples. However, the prediction performances of region 15 for many LP are significantly 221 

lower than those of the spectral regions 9 or 10.Similarly, region 24, which represents olefinic protons of lipids, 222 

enabled predictions of 58 of 65 LP, with a Q2 > 0.6 for test set samples. Using a larger part of the spectral regions 223 

“as is” (region 16, 22, 28) or after selecting only LP related signals (region 20, 21, 29, 30) gave prediction 224 

performance similar to that of regions 2-4, with Q2 > 0.6 for the majority of LP in test set prediction. Finally, the 225 

use of the entire spectral range of 9.8-0.6 ppm (region 32) showed significantly lower LP prediction performances 226 

than regions 9 or 10.  227 

Despite comparable LP prediction performances of several spectral regions, especially regions 7-10 and 14 228 

(Figure 2a), region 9 (1.4-0.6 ppm, later referred to as LP region) proved to be an optimal spectral region, showing 229 

consistently high prediction performances for all 65 LP. This LP region is also the simplest one to extract from 230 

the entire spectra, and unlike other regions it does not require the removal of interferences (non-LP molecules) 231 

from narrow ranges of spectral intervals. Thus, the use of LP region minimizes complications that may arise when 232 

dealing with a large number of samples, such as possible chemical shifts, occurrence of unforeseen signals, or a 233 

high spectral complexity, which may impair reliable LP predictions across laboratories. Comparison of the relative 234 

standard deviation (RSD) of the 65 LP predicted from NMR spectra of the 40 quality control (QC) pooled blood 235 

plasma samples using the LP region and other spectral regions showed up to 10% lower RSD values in favour to 236 

the LP region (data not shown). Thus, it was decided to use the LP region for the development of optimal PLS 237 

models for NMR-based LP prediction. 238 

 239 

Prediction performance of PLS models using the LP region (1.4-0.6 ppm) 240 

Concentrations of 65 LP including main and subfractions were predictable from the 1H NMR spectral region of 241 

1.4-0.6 ppm (region 9; Figure 2b) with a Q2 of 0.6 or higher (Table S2). The PLS regression models varied in 242 

terms of their prediction performance and complexity. From 4 to 17 latent variables (LV) are required in order to 243 

obtain optimal PLS regression models. More than 40 LP predictions require 10 or less LV. Only one LP 244 

(LDL4chol) needed 15 LV, and three LP (apoB in LDL3, LDL4, and LDL6) needed 17 LV. The PLS regression 245 

models for total concentrations of LP in plasma and of the main LP fractions were found to be less complex than 246 

the corresponding models for the subfractions. Models for phoslp were generally less complex than the models 247 

for chol or apoB. For example, in the same subfraction, LDL1, the phoslp model required 7 LV while the chol 248 

and apoB models required 15 and 17 LV respectively. No clear trend explaining model complexity by LP 249 

molecular type, particle type or particle size was observed. However, it is assumed that the number of LV in PLS 250 

regression models is mainly determined by three factors: the chemical complexity of the LP (number of 251 

representative NMR signals and their resolution), the variation range present in a cohort (concentration span of 252 

the individual LP) and the presence of spectral interferences (overlap of signals of LP and non-LP molecules).   253 

Figure 3 shows the PLS predictions of selected LPs representing tg, chol, phoslp, and apoA (see Figure S2 for all 254 

65 LP). Concentrations of all seven LP molecules, tg, chol, fchol, chole, phoslp, apoA, and apoB in blood plasma 255 

were predictable and showed test set Q2 and CV values of 0.87-0.97 and 3-6%, respectively (Table S2). A 256 

cumulative concentration of VLDL, IDL, LDL, and HDL particles (e.g., chol_main_fraction = VLDLchol + 257 

IDLchol + LDLchol + HDLchol) was also predicted with high accuracy. For test set samples, Q2 and CV values 258 
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ranged between 0.70-0.97 and 4-8% respectively, for all main fractions. Partial least squares regression models 259 

performed slightly worse in predicting individual LP molecules in each main fraction separately (e.g. VLDLchol) 260 

than for cumulative amounts across all main fractions or in plasma. For example, Q2 and CV of models predicting 261 

concentration of chol in VLDL, IDL, LDL, and HDL ranged between 0.87-0.94 and 7-20% respectively, while 262 

the Q2 and CV of the model predicting total level of chol in main fractions was 0.95 and 5% respectively. Similar 263 

trends were observed for tg, chole, phoslp, apoA, and apoB molecules. Consistent for all seven LP molecules, the 264 

prediction performances of the PLS models developed for the main fractions were better than for their 265 

corresponding subfractions. For example, the Q2 and CV of the LDLphoslp model were 0.83 and 13% 266 

respectively, while the Q2 and CV values obtained from the PLS models developed for subfractions of this particle, 267 

including LDL1phoslp, LDL2phoslp, LDL3phoslp, and LDL4phoslp, had a range of 0.67-0.76 and 17-19% 268 

respectively. Overall, the PLS models of all 65 LP showed a Q2 of at least 0.6 for the test set samples with a mean, 269 

quartile (Q) 50%, Q 75%, and Q 90% values of 0.84, 0.86, 0.93, and 0.95 respectively. Similarly, the coefficients 270 

of variations (CV) of predicted LP concentrations in the test set samples were relatively low for all 65 LP and 271 

ranged between 3-30%, with mean, Q 50%, Q 75%, and Q 90% values of 13, 13, 17, and 21 respectively. 272 

Generally, the prediction performances of the PLS models developed on training set samples were similar to the 273 

test set models (differences between the training and test set RMSE values were <5%). Overall, the prediction 274 

performances of PLS regression models for different LP molecules decreased with specificity and can be ordered 275 

as follows: total concentration in blood plasma > cumulative in all main fractions > individual main fractions > 276 

subfractions.   277 

In summary, a total of 65 of 97 LP measured using UC were predictable with reasonable performance (Q2 >0.6 278 

for the test set). The prediction of the remaining 32 LP variables was sub-optimal, with a relatively low test set 279 

Q2 of 0.3-0.6. These models were therefore deemed unreliable and, as a minimum, require additional data (NMR 280 

and corresponding UC data) in order to be improved. It is assumed that there are two main reasons behind these 281 

suboptimal predictions: 1) a high uncertainty of the reference method (UC) related to assay limitations and freeze-282 

thaw cycle of plasma samples, and 2) a lack of variability and/or close to LOD levels of those 32 LP concentrations 283 

in the investigated cohort. A previous study found that the lowest repeatability in UC based LP quantification was 284 

observed for fchol, phoslp and tg molecules 25. This is in agreement with our PLS modelling results, where these 285 

LP molecules were not well predicted using the 1H NMR spectra. Monsonis-Centelles et al. 25 reported an average 286 

within-individual coefficient of variation (WCV) as high as 12 to 16% for LDL2tg - LDL6tg using fresh blood 287 

plasma samples duplicated from the same volunteer. In addition, their study also showed that the repeatability of 288 

the UC based quantification of tg molecules is significantly less using frozen plasma compared to fresh plasma 289 

samples. Given this, we speculate that the main reasons behind the relatively low prediction performances of the 290 

PLS models for LDL2tg-LDL6tg are twofold: sample matrix disruption due to freeze-thaw cycles of the plasma 291 

samples, and a relatively high uncertainty of the UC measurements. A similar trend was observed for fchol 292 

molecules in the LDL subfractions 25. Within-individual coefficient of variation values for LDL1fchol- LDL6fchol 293 

vary by 12-24%  dependent on the two different types of assays. The PLS models developed in the present study 294 

for fchol in LDL subfractions showed a Q2 of 0.2-0.4 for test set samples. In contrast, chol and phoslp molecules 295 

in LDL subfractions (LDL1-LDL6) were predicted with moderate to high prediction performance (test set Q2 of 296 

0.67-0.76 for phoslp and 0.70-0.81 for chol), with the exception of LDL6chol, LDL5phoslp, and LDL6phoslp, 297 
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which were not well predicted. Cholesterol esters (chole) were also predictable in all LDL subfractions with a 298 

moderate prediction performance (Q2 of 0.60-0.81), except for LDL3chole and LDL6chole.  299 

 300 

Validation of the final LP prediction models in an independent cohort 301 

In order to perform an external validation, PLS prediction models developed in this study were applied to an 302 

independent Swedish cohort 22 using externally measured 1H NMR spectra as input data. The predicted LP 303 

concentrations were subsequently compared to the actual concentrations. The Swedish cohort included 1H NMR 304 

spectra of blood serum from 290 healthy subjects (sex: 210 females/80 males; age: 57.8 ± 11 years old; BMI: 25.0 305 

± 2.6 kg/m2) measured using a protocol similar to that of the present study. Unlike the present study, the LP 306 

concentrations of the Swedish cohort were quantified using the HPLC method 27 at LipoSEARCH (Skylight 307 

Biotech Inc., Akita, Japan). Lipoprotein subfractions were thus not directly comparable, as the HPLC method is 308 

based on size distribution in contrast to the UC method, which separates LP particles based on their density. A 309 

direct comparison was therefore only possible for total concentrations of chol and tg in blood. While the 1H NMR 310 

spectra of the Swedish cohort were acquired using the same 1H NMR pulse sequence, temperature, and similar 311 

acquisition parameters as in the Danish cohort, the blood sample preparation procedure for NMR measurements 312 

differed slightly, resulting in noticeable differences in spectral intensities. Accordingly, prior to predictions, the 313 

spectra of the Swedish cohort were aligned and scaled towards the Danish cohort as described previously 19. Figure 314 

4 shows scatter plots comparing actual concentrations (mg/dL) of total chol and tg as measured by HPLC, with 315 

predicted concentrations from the corresponding PLS models developed using the Danish cohort in this study. 316 

The total concentrations of chol and tg were predicted well with a Pearson’s correlation coefficient (r2) of 0.94 317 

and 0.97 respectively. In the case of total tg, the root mean square error (RMSE) calculated between HPLC and 318 

PLS based predicted values was as low as 8.2 mg/dL, and mean standard deviation (STD) was 4.6, and mean 319 

relative standard deviation (RSD) was 5.1%. However, the PLS based predicted concentrations of total chol were 320 

underestimated in the majority of samples. Despite a high correlation between the actual and predicted values, the 321 

presence of the offset resulted in a relatively high RMSE (23.9). This may be related to systematic differences 322 

between the two reference measurement methods for chol quantification. The UC method has been shown to result 323 

in denaturation or degradation of some LP particles 28,29, which might be the reason for the systematic 324 

underestimation of chol particles when using UC calibrated PLS models.  325 

Despite the fact that subfractions are not directly comparable between HPLC and UC, correlations of chol and tg 326 

values in the some subfractions were found to be high. For example, r2 between the actual HPLC concentration 327 

of chol in the G17 subfraction (which is defined as medium HDL with a diameter of 10.9 nm) and chol of HDL2a 328 

subfraction predicted from UC calibrated PLS model was 0.83. As a consequence, RMSE and RSD values were 329 

also low, 2.4 and 6.3 respectively, suggesting that G17chol quantified by HPLC may in fact represent HDL2achol 330 

measured by UC. However, concentrations of tg in the same subfractions, quantified by HPLC or predicted using 331 

the PLS model calibrated by UC, were not comparable and resulted in a low r2 (0.3). Concentrations of tg in the 332 

G08 subfraction of the HPLC method, which represents tg in large LDL subfraction with the diameter of 28.6 nm, 333 

correspond to the tg of IDL fraction quantified using UC and showed r2, RMSE and RSD values of 0.72, 1.5, 8.4, 334 

respectively. However, concentrations of chol in the same subfractions, G08 from HPLC and IDL from UC, were 335 
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not comparable (r2 = 0.1 and RSD = 90%). Instead, the IDLchol content predicted by the PLS model showed a 336 

relative high correlation with the chol of G06 subfraction (medium VLDL with a particle diameter of 36.8 nm) 337 

measured by HPLC (r2 = 0.64 and RSD = 18%). Interestingly, a similar correlation was observed for the tg content 338 

in the same fractions, IDLtg versus tg in G06 (r2 = 0.68 and RSD = 22%) (Figure S3). Furthermore, the PLS based 339 

predicted chol concentration in the HDL2b subfraction was highly correlated to the chol of G16 subfraction (r2 = 340 

0.89) measured by HPLC, which represents a large HDL with a diameter of 12.1 nm. Although a high correlation 341 

coefficient was observed between the UC based predicted and HPLC values, a significant offset was present (LP 342 

concentrations were systematically overestimated by the PLS model or underestimated by the HPLC method), 343 

and predictions were not accurate (RSD = 46%). Concentrations of tg in HDL2b particle predicted by PLS and in 344 

the G16 subfraction of the HPLC were not comparable and resulted in an r2 of 0.34. Whereas, tg concentrations 345 

in G07 seem to represent tg in LDL1 subfraction measured by UC and showed relatively high correlation (r2 = 346 

0.65) and low RSD (15%).  347 

 348 

Rank of LP region of the 1H NMR spectra  349 

In order to better understand the feasibility of predicting the concentrations of 65 LP from a relatively small 1H 350 

NMR spectral region of human blood plasma, the LP region (1.4-0.6 ppm), the rank estimation of the NMR data 351 

was performed. It is known that concentrations of many LP particles co-vary in blood and that biology makes it 352 

extremely difficult to break this covariation. This phenomenon is known as cage of covariance 30. In practice, this 353 

means that some LP prediction models rely on information related to highly co-varying LP particles, and causal 354 

relationships between the LP particles thus remain largely unknown. Nevertheless, a rank estimation was 355 

performed in order to better understand the level of inter-correlations, i.e. the cage of covariance, between the 356 

individual LP, and compare it with the possible information content in the NMR spectra. In order to estimate the 357 

rank of the NMR spectra and UC data, a principal component analysis (PCA) based iterative approach 31,32 was 358 

employed (SI). It is assumed that the rank estimated in this way approximates the true chemical variation present 359 

in the data. This rank estimation revealed that the LP data used in this study (316 subjects by 65 LP variables) has 360 

a rank of 33 (Figure 5), which indicates that there are at least 33 independent systematic variations present in the 361 

LP data, and thus a medium level of cage of covariance. To further investigate this, the LP data was subjected to 362 

a correlation analysis where each LP variable of the original UC data (YACTUAL) was correlated to all other LP 363 

variables individually, resulting in 65-by-65 diagonal matrix consisting of Pearson’s correlation coefficients. The 364 

same correlation analysis was then performed on the predicted UC data obtained from PLS models developed on 365 

the Danish cohort in this study (YHAT) 30. The symmetric heat map shows Pearson’s correlation coefficients 366 

between the 65 LP in YACTUAL and YHAT  (Figure S4), where LP variables are ordered using K-Nearest Neighbour 367 

based clustering of LP in YACTUAL. The heat map and the distribution of the correlation coefficients suggest that 368 

an inter-correlation of LP variables is similar (symmetric) in YACTUAL and YHAT and ranged between -0.55 till 0.99. 369 

The fact that the correlations are not increased in the predicted concentrations (YHAT) compared to the actual 370 

(YACTUAL) is an indication of a reliable prediction network which is not over-fitted by inter-correlations between 371 

LP. Clustering of the correlation matrices further revealed three major clusters of positive correlations representing 372 

HDL, LDL and VLDL main and subfractions. Correlation between the same molecules but in different particles 373 
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is weak or insignificant. The most significant negative correlation trends were observed between VLDL and HDL 374 

particles, and to a lesser extent between LDL and HDL particles.  375 

In contrast to the UC data, the LP region of the 1H NMR spectra is much more complex. Despite the global 376 

alignment performed, minor signal misalignments are still present across samples, which complicates an unbiased 377 

rank estimation using the iterative PCA approach. Therefore, the rank of the LP region of the 1H NMR spectra 378 

obtained from the Danish cohort is estimated without and after binning with different bin sizes of 2-32 (Figure 5). 379 

The estimated rank of the LP region gradually decreases as bin size increases, with a notable decline after a bin 380 

size of 11. Interestingly, the bin size of 11 was the largest bin size that could be used before losing spectral 381 

resolution to the point that characteristic shape of the methyl protons between 0.95-0.8 ppm was kept intact, and 382 

before the loss of spin coupling information from signals of amino acids. Thus bin size of 11 was found to be 383 

optimal for reducing spectral misalignments while keeping the shape and resolution of signals intact. The rank of 384 

the LP region without any binning was found to be as high as 93. After binning with bin size of 11, the rank of 385 

the system reduced to 83. Further increase of the bin size caused rapid decline of the rank. For comparison, the 386 

rank of the NMR spectra of the Swedish cohort 22, using bin size of 11, was 92. This could be explained by the 387 

greater heterogeneity of the Swedish cohort compared to the Danish cohort. In conclusion, it is indeed possible 388 

that the LP region of the NMR spectra is able to predict a large number of independently varying LP in human 389 

blood plasma or serum.  390 

 391 

Spectral signatures of LP depend on particle size 392 

A few studies have characterised signature signals of the LP main fractions and subfractions. This has been done 393 

mathematically using either curve fitting 16 or by calculating selectivity ratio from PLS models developed to 394 

predict the LP 18,19, and experimentally by measuring pure fractions after UC 33. The concentrations of the three 395 

main populations of protons, cholesterol (0.75-0.6 ppm), methyl (0.95-0.80 ppm) and methylene (1.4-1.2 ppm), 396 

differ significantly among the 1H NMR spectra of the four main fractions. The chemical shifts of these signals 397 

also differ between the four main fractions, and it is mostly pronounced in the signals of the methyl and methylene 398 

groups. The spectral differences between the subclasses belonging to the same main fraction are much smaller, 399 

especially among the LDL subfractions. This section discusses the unique spectral signatures of LP main and 400 

subfractions, within and between molecular types, using a selectivity ratio matrix obtained from the PLS models. 401 

Selectivity ratio (SR) can be regarded as a spectral signature responsible for the prediction of a given LP particle. 402 

The SR matrix consisting of all the 65 predictable LP was analysed using PCA and ANOVA-simultaneous 403 

component analysis (ASCA) 34 (Figure 6). The first three principal components (PC) of the PCA model developed 404 

on the mean centred SR explained 95% of the data variation, and clearly distinguished the SR of VLDL, IDL, 405 

LDL, and HDL. By far the largest variation was captured by PC1 (68%), which fully separates LDL from HDL, 406 

and IDL particles were in between them, while VLDL fractions slightly overlapped with the LDLs. However, 407 

PC2 (20%) separates LDL from VLDL and IDL. Principal components analysis did not reveal any variation 408 

related to LP molecular types. The ASCA analysis (partition of variations) of the mean centred SR data showed 409 

that only particle type was significant and explained 59.5% of the total data variation, and that molecular type was 410 

not significant. This was confirmed by superimposing plots of SR that revealed unique and consistent SR 411 
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specificity for the majority of fractions within a particle type. Figure 6c shows the mean SR of the four main 412 

fractions across the molecular types (e.g. VLDLmean = mean of SR of VLDLchol, VLDLtg, VLDLfchol etc.) 413 

and shows that the SRs are notably different, both in terms of relative ratio of the three main signals (cholesterol, 414 

methyl and methylene) and in their chemical shift profiles. The SR of main fractions across different molecular 415 

types were very similar, with r2 ranging from 0.89 to 0.97 (Figure S5). The main difference between the SR of the 416 

four main fractions can be quantified as relative ratios of the three major proton populations (Figure 6c). For HDL 417 

and LDL the relative proportion of cholesterol methyl is significantly higher than in VLDL and IDL, whereas the 418 

relative ratio of methylene protons is similarly higher in SR of VLDL and IDL compared to HDL and LDL. Such 419 

relative proportions of the three major signals were consistent across all subfractions per particle type. When 420 

comparing different particle types, but for the same molecular type, the relative ratios and the chemical shifts of 421 

the signals were different (Figure S6a). However, the SR of subfractions belonging to the same main fraction and 422 

the same molecular type were similar, though they possessed clear trends of chemical shift changes in cholesterol 423 

methyl, LP methyl and methylene signals according to the particle size. For example, SR of the chol prediction 424 

models for all five subfractions of LDL exhibited a clear shift of cholesterol methyl and LP methyl signals towards 425 

a lower field from LDL1 to LDL5 subfractions (Figure S6b). The same trend was observed in SR of phoslp and 426 

apoB models of LDL subfractions - a clear shift of the LP methyl signal towards lower field was observed for 427 

both types of models. Similar shifts of LP methyl and methylene signals were observed for the chol, phoslp, and 428 

apoA models of HDL subfractions. In all cases, signals shifted towards a lower field from HDL3 to HDL2a and 429 

HDL2b subfractions. 430 

 431 

Implementation of lipoprotein prediction PLS models into the Signature Mapping (SigMa) software 432 

Based on the 1H NMR spectra and LP concentrations obtained from UC of blood plasma samples from 316 Danes, 433 

and subsequent PLS regression models, an open access software was developed for future use in research and 434 

biomarker discovery. It was developed as an extension of the SigMa software, originally developed to process 435 

complex 1H NMR metabolomics datasets 24,35. The software is based on the latest developments in the NMR 436 

spectral data processing methods and through the regression models developed in this study, and able to predict 437 

LP concentrations from human blood plasma using 1H NMR NOESY spectra. SigMa takes the user 1H NMR 438 

spectra as an input and returns the predicted concentrations (mg/dL) of 65 LP main and subclasses. This requires 439 

that the input spectra are compatible and acquired using a similar experimental protocol including blood sample 440 

preparation and 1H NMR spectral data acquisition. The SigMa software initializes by scaling the user spectra by 441 

the ERETIC signal and aligning the spectra towards the doublet of alanine’s methyl group at 1.49 ppm using the 442 

icoshift 23 algorithm, as described previously 19. Then the for LP predictions the input spectra are constrained to 443 

the LP region by selecting spectral range of 1.4-0.6 ppm. Prior to LP prediction SigMa ensures compatibility of 444 

the user spectra by spectral length correction and intensity normalization. Then 65 LP main and subclasses are 445 

predicted including a “traffic light” marker that keep track of the individual LP predictions quality. This quality 446 

check is based on an “X-Y relation” test and a “Y-predicted” test, which evaluates if the predicted LP 447 

concentrations are within the cohort calibration range. The “traffic light” marker classifies each predicted LP 448 

value as green (both input spectrum and predicted LP values are within the cohort calibration model), yellow (at 449 

least one parameter, either input spectrum or predicted LP concentration, is outside the cohort calibration model), 450 
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or red (both input spectrum and predicted LP values are outside the cohort calibration model). More details of the 451 

SigMa LP prediction method are explained in Supplementary Information. SigMa LP software can be freely 452 

downloaded from www.food.ku.dk/foodomics. 453 

 454 

Discussion 455 

The feasibility of LP prediction in human blood using 1H NMR spectra and PLS based regression was 456 

demonstrated some time ago, but prediction performances, parameters and complexity of PLS models, as well as 457 

their transferability to new cohorts, remains unclear. The present study describes, for the first time, the entire 458 

workflow of LP prediction using 1H NMR spectra, including spectral processing steps, the optimization and 459 

validation of PLS regression models, and their prediction performances on test set and independent cohort 460 

samples. Coherent datasets of 1H NMR spectra of human blood plasma and corresponding UC data acquired on 461 

300+ volunteers in the Danish cohort were made publicly available for future research, with an aim to improving 462 

PLS models for LP prediction. 1H NMR spectra were comprehensively investigated to find the best, simplest, and 463 

most robust spectral signatures able to predict concentration of LP. A total of 13 distinct spectral intervals 464 

representing LP signals and other lipid species were identified and tested in different combinations for their 465 

performance to develop PLS LP prediction models. We found that a relatively small interval of the 1H NMR 466 

spectra, namely the LP region (1.4-0.6 ppm), was the optimal region for LP prediction in terms of model 467 

performance, robustness and simplicity. The LP region contained not only the three most important proton 468 

populations representing LP signals, including methyl groups of cholesterol (0.75-0.65 ppm), and methyl (0.92-469 

0.8 ppm) and methylene (1.4-1.2 ppm) protons of different LP molecules, but also signals of a few amino acids 470 

(e.g., valine, leucine and isoleucine), and of lactic acid. Spectral regions representing only the methyl (0.92-0.8 471 

ppm) or the methylene (1.4-1.2 ppm) protons performed significantly worse, especially for LDL and HDL 472 

particles, than their counterparts, where the two proton populations were combined. This suggests that the entire 473 

LP profile information is better preserved in the LP region, which includes all major signature signals of LP 474 

molecules., This region was therefore the final NMR dataset used to develop the PLS models.  475 

Using the LP region, all main fractions in plasma were predicted with high accuracy. Consistently for all LP 476 

molecular types, the prediction performance of PLS models was best for total concentrations in blood plasma 477 

followed by main fractions, whilst relatively lower performances were observed for subfractions. The complexity 478 

of PLS models depends on LP particle type, the smaller the particle size the more LVs were needed to develop an 479 

optimal model. Overall, 4 to 17 LVs were required to predict the different LP variables, and the least number of 480 

LVs were required for models of LP molecules in plasma (4-7 LV) and in main fractions (4-8 LV). A greater 481 

number of LVs were required for subfractions (4-11 LV). The greatest number of LVs was needed for LDLapoB 482 

subfractions (8-17 LV). It can be assumed that the optimal number of LVs depends not only on the complexity of 483 

the signals, but also on the cohort, number of subjects, heterogeneity of the volunteers, as well as on the LP 484 

concentration span and spectral interferences. An average difference in RMSE of the training and test set models 485 

was <5%, which indicates robustness of the PLS models developed in this study. The models were further 486 

validated externally on an independent Swedish cohort (290 volunteers) and showed high accuracy in prediction 487 

of the LP variables that were comparable between the two cohorts, plasma concentrations of tg and chol. The PLS 488 
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models developed in this study were implemented in the SigMa LP software, which is freely available. In the 489 

Danish cohort we were able to predict concentrations of 65 of the 97 measured LP variables using UC. Sub-490 

optimal PLS models for the remaining 32 LP can be explained by relatively high uncertainty of the reference 491 

measurements and/or limitation of the variability in the cohort. The PLS models implemented in SigMa LP can 492 

be improved/upgraded in the future when a new datasets with coherent 1H NMR spectra and UC data become 493 

available from other cohorts. This will significantly increase the coverage of the LP prediction models.  494 

Analysis of selectivity ratios (SR) mostly shows characteristic spectral pattern for LP particle types, and to a less 495 

extent reflects particle size or molecular type. However, chemical shifts of a few signals in SR were dependent on 496 

the particle size of subfractions. This was most pronounced for LDL subfractions (Figure S5). The SR developed 497 

in this study can be used for PLS model comparison across laboratories to validate the spectral signatures of LP 498 

from 1H NMR spectra. Rank estimation performed on the LP region of the NMR spectra suggest the rank of 83 499 

for the Danish cohort. This is a surprisingly high number considering the relatively small NMR spectral interval, 500 

which only contains signals of a handful of blood metabolites and three major proton populations representing 501 

methyl group of cholesterol, and methyl and methylene protons of other LP molecules. Interestingly, a similarly 502 

high rank of 92 was observed for the LP region of the spectra from the Swedish cohort. These high “chemical” 503 

ranks reflect the complexity of the LP region due to the small but distinct spectral signatures of the LP main and 504 

subfractions. As observed from the SR, the same LP molecules possessed significantly different spectral 505 

signatures. Even more strikingly the same LP molecules in the same LP particle’s subfraction had significantly 506 

different SR spectral profiles (Figure S6a,b). The prediction of as many as 65 LP variables from a relatively small 507 

NMR spectral interval is therefore feasible, and the PLS models developed do not appear to be assisted by the co-508 

variation of LP alone.  509 

In conclusion, this study describes a protocol and open access data to build PLS models to predict LP concentration 510 

from standard 1H NMR spectra acquired on human blood plasma or serum using the most advanced/recent SOPs 511 

applied in all NMR phenotyping laboratories around the world. The models are optimized, use the most 512 

informative and reproducible region of the spectra, and are based on a relatively large and heterogeneous cohort. 513 

Most importantly, it is possible to enrich and maintain the calibration models when new datasets from different 514 

laboratories become available.   515 

Materials and Methods  516 

The study was approved by the Research Ethics Committees of the Capital Region of Denmark in accordance 517 

with the Helsinki declaration (H-15008313) and the Danish Data Protection Agency (2013-54-0522). The Danish 518 

cohort included 316 subjects recruited from the COUNTERSTRIKE cohort. Subjects included 206 females (51.1 519 

± 19.8 years old) and 110 males (57.4 ± 19.7 years old) with the mean body mass index (BMI (kg/m2)) of 24.9 (± 520 

4.4) for females and 25.3 (± 3.6) for males. The mean values for systolic and diastolic blood pressure (mm Hg) 521 

were 124.4 (± 14.5), and 76.7 (± 9.4), respectively, for females, and 130.6 (± 16.8) and 77.5 (± 11.0), respectively, 522 

for males. All subjects were apparently healthy and without diagnosis of any form of cardiovascular disease or 523 

diabetes, reporting no chronic gastrointestinal disorders, and not receiving antibiotic treatment within three 524 

months of starting the study, or using pre- or probiotic supplements within one month of starting the study. All 525 

subjects visited The Department of Nutrition, Exercise and Sports, where blood samples were taken, and 526 
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anthropometric and clinical parameters were recorded. Fasting blood samples were collected in vacutainers 527 

containing an anticoagulant reagent ethylenediaminetetraacetic acid (EDTA). Plasma was separated after blood 528 

sample collection and stored in 500 ul aliquot cryovials at −80 °C until measurement.  529 

Details of the UC based quantification of LP particles, measurement of One-dimensional (1D) proton (1H) NMR 530 

spectra on human blood plasma samples, the chemical and reagents used, and details of the spectral data 531 

processing and PLS model development are given in Supplementary Information. Briefly, quantification of LP 532 

particles was performed using UC as described previously 25. One-dimensional 1H NMR spectra were measured 533 

on fasting stage EDTA plasma samples as described previously 19 at the Department of Food Science (University 534 

of Copenhagen) using a Bruker Avance III 600 MHz NMR spectrometer equipped with a 5-mm broadband inverse 535 

RT (BBI) probe, automated tuning, and matching accessory (ATMA) and cooling unit BCU-05. The spectrometer 536 

was equipped with an automated sample changer (SampleJet, Bruker BioSpin) with sample cooling (278 K) and 537 

preheating stations (298 K), where samples were stored at 278 K and measured within 72h. Phase and baseline 538 

corrected 1D 1H NMR spectra were then imported to the SigMa software 24, scaled to the ERETIC signal 36, and 539 

aligned towards alanine’s doublet corresponding to its methyl group (1.507−1.494 ppm) using icoshift 23. Prior to 540 

PLS regression analysis subjects with a LP concentration below limit of detection (LOD) or with missing values 541 

were removed. This led to slightly different numbers of subjects for different PLS models. An optimal number of 542 

LVs was selected by fitting one to twenty LV models to the training samples (70%) using 10 fold cross validation 543 

and 10 times Monte-Carlo repetitions. Thus, a total of 640,200 PLS models (33 NMR datasets × 97 LP variables 544 

× 20 LVs × 10 cross validations) were developed in this study. It should be noted that a few subjects (zero to 545 

seven) whose LP values were predicted with a large error were regarded as “X-Y relation” outliers and were 546 

removed from the training models. A PLS calibration model was then recalculated and tested on independent 547 

subjects (30%) that were not used in the training model optimization. The final PLS calibration models were also 548 

tested to predict LP variables, plasma tg and chol, in the independent Swedish cohort 22. All data analysis including 549 

PLS, PCA, and ASCA, were performed in MATLAB (version R2016b, The Mathworks, Inc., U.S.A.) using 550 

customised MATLAB scripts written by the authors.  551 

Data Availability 552 

The 1H NMR data acquired on the human blood plasma of 316 healthy subjects from the Danish cohort and the 553 

corresponding lipoprotein concentration data, measured by ultracentrifugation, are available upon request by 554 

contacting the corresponding authors. Signature Mapping for Lipoprotein Quantification (SigMa LP) software 555 

can be freely downloaded from www.food.ku.dk/foodomics. All other data supporting the findings of this study 556 

are included in the article text and supporting information. 557 
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Figure captions 650 

Figure 1. An overview of the implemented workflow to predict concentrations of lipoproteins in human blood 651 

plasma using 1D 1H NMR spectra. An outer loop indicated with a grey line represents selection of NMR spectra 652 

regions used for PLS modelling. A total of 33 NMR datasets were constructed using 13 spectral regions, 653 

representing LP signals and signals of other lipid species, either alone or in different combinations. An inner lop 654 

indicated with a black line represents PLS modelling of each lipoprotein particle individually using a selected 655 

NMR spectral region. * m corresponds to a number of spectral data points in NMR data, k corresponds to a 656 

number of lipoprotein variables, n corresponds to a number of subjects recruited in cohorts. 657 

Figure 2. Lipoprotein prediction performance of PLS models developed on 20 NMR spectral regions, of 33 658 

investigated, that showed relatively high prediction performances for at least 65 of 97 modelled lipoproteins. a) 659 

Q2 obtained from test set prediction of 65 LP using PLS models developed on 20 NMR spectral regions. Black 660 

bars on the left side of the heat map show overall prediction performance of each LP variable (normalized 661 

cumulative value of Q2 obtained from 20 PLS models). Black bars at the bottom of the heat map show overall 662 

prediction performance of each NMR spectral regions used for PLS modelling (normalized cumulative value of 663 

Q2 obtained from 65 LP variables). The NMR spectral region shown inside the dashed line corresponds to the LP 664 

region (1.4-0.6 ppm) with one of the highest performances for predicting concentrations of LP. For more details 665 

see Table S1. b) 20 NMR spectral regions corresponding to the heat map on the left. *Regions of spectra 666 

highlighted in grey were excluded from the PLS modelling.  667 

Figure 3. Training PLS model and test set prediction performances of selected LP variables, included triglycerides 668 

(tg), cholesterol (chol), phospholipid (phoslp), and apolipoprotein A (apoA) molecules in different fraction or sub-669 

fraction of LP particles using the LP region (1.4-0.6 ppm) of the 1D 1H NMR spectra and ultracentrifugation as a 670 

reference method. 671 

Figure 4. Validation of the PLS based LP prediction models developed in this study in an independent cohort, the 672 

Swedish cohort (290 healthy subjects).  673 

Figure 5. Rank estimation of the LP region of the 1D 1H NMR spectra and ultracentrifugation data obtained from 674 

the Danish cohort (316 subjects) was performed separately using an iterative permutation based PCA modelling. 675 

Rank of the LP region of 1D 1H NMR spectra of the Swedish cohort (290 healthy subjects) was evaluated in the 676 

same way. Correlation coefficients (R2), relative standard deviation (RSD), standard deviation (STD), and root 677 

mean square error (RMSE) were calculated between the predicted value of LP variable in this study using UC and 678 

the HPLC based measured value obtained from the Swedish cohort. RMSE-M, Q2-M, and CV-M correspond to 679 

the RMSE of test set prediction (RMSEP), Q2 and coefficients of variance, respectively, obtained from the test set 680 

prediction of an LP variable obtained in this study.  681 

Figure 6. Comparison of selectivity ratios (SR) obtained from the PLS models developed for 65 LP variables. a) 682 

Score plots of PCA model developed on mean centred selectivity ratio data. b) Loadings of the corresponding 683 

PCA model. c) Mean of 1D 1H NMR spectra and mean selectivity ratios of four main fractions of LP across all 684 

molecular types. *Main difference in SR is between particles, VLDL, IDL, LDL, and HDL. ASCA analysis of the 685 

SR data show that only particle type was significant (p-val = 1.2e-10, Exp.Var. = 59.5%), while LP molecular 686 

type or the two-factor interaction terms were not significant. 687 
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Materials and Methods  

Chemicals and reagents 

Unless otherwise stated, all chemicals and reagents were purchased from Sigma-Aldrich (Søborg, Denmark). 

These include deuterium oxide (D2O, 99.9 atom % D), monobasic sodium phosphate (NaH2PO4, ≥ 99.0%), and 

dibasic sodium phosphate (Na2HPO4, ≥ 98.0%), sodium salt of 3-(trimethylsilyl) propionic-2,2,3,3-d4 acid (TSP, 

98 atom % D, ≥ 98.0%), and sodium azide (NaN3, ≥ 99.5%). The water used throughout the study was purified 

using a Millipore lab water system (Merck KGaA, Darmstadt, Germany) equipped with a 0.22 μm filter 

membrane. For the stock solutions used during ultracentrifugation NaCl (VWR Chemicals, US), NaN3 (Riedel-

de Haën, Germany), EDTA (Merck, Germany), and NaBr (Alfa Aesar, US) were used. 

 

Ultracentrifugation based quantification of lipoprotein particles  

Quantification of lipoprotein (LP) particles was performed using ultracentrifugation (UC) as previously described 

(1). Seven different lipoprotein molecules including cholesterol (chol), triglycerides (tg), cholesterol  ester (chole), 

free cholesterol (fchol), phospholipids (phosl), apolipoprotein A (apoA) and apolipoprotein B (apoB) were 

quantified in all or in some of the LP  main fractions (VLDL, IDL, HDL, LDL) and/or in their subfractions 

(HDL2a, HDL2b, HDL3, LDL1, LDL2, LDL3, LDL4, LDL5, LDL6). Fractionation was done by sequential 

centrifugation of 3 mL EDTA plasma using an Optima L-80 XP ultracentrifuge with a fixed angle rotor type 50.4 

Ti (Beckman Coulter, Inc., US). The UC process was initiated immediately after the fasting plasma sample was 

collected, and it was completed over a period of 8 days. A detailed description of the separation steps can be found 

in (1). Immediately after the fractionation step, all subfractions were frozen and stored at -80⁰C for later analysis. 

Colorimetric and turbidimetric assays were performed on an ABX Pentra 400 analyzer (ABX Pentra; Horiba 

ABX, Montpellier, France) to determine the plasma, main class and subclass concentrations of total chol, tg, apoA 

and apoB (ABX Pentra; Horiba Medical, France). Free cholesterol and phoslp were determined using colorimetric 

and turbidimetric assays (MTI Diagnostics, Germany). 

 

Measurement of 1H NMR spectra on human blood plasma  

Fasting EDTA-plasma samples were measured using one dimensional (1D) nuclear Overhauser effect 

spectroscopy (NOESY) proton (1H) NMR spectra as previously described (2). Briefly, 350 µL of plasma was 

carefully mixed with the same volume of phosphate buffer into a 2.0 mL Eppendorf tube and 600 µL of the 

mixture was transferred into SampleJet NMR tube (103.5 mm length and 5.0 mm diameter). The phosphate buffer 

was prepared as previously described (3). Sample preparation and measurements were randomized. Pooled control 

human blood plasma samples were measured at regular intervals throughout the whole measurement sequence. 

The 1H NMR spectra of blood plasma samples were acquired at the Department of Food Science (University of 

Copenhagen) using a Bruker Avance III 600 MHz NMR spectrometer equipped with a 5-mm broadband inverse 

RT (BBI) probe, automated tuning and matching accessory (ATMA) and cooling unit BCU-05. The spectrometer 

was equipped with an automated sample changer (SampleJet, Bruker BioSpin, Rheinstetten, Germany) with 

sample cooling (278 K) and preheating stations (298 K) where samples were stored at 278 K and measured within 
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72h. Data acquisition and processing were carried out using TOPSPIN 3.5 PL6 (Bruker BioSpin, Rheinstetten, 

Germany) and automation of the overall measurement procedure was controlled by Icon NMR (Bruker BioSpin, 

Rheinstetten, Germany). Each sample was pre-heated at 298 K for 60 sec in SampleJet and kept inside the NMR 

probe head for 5 minutes to reach temperature equilibrium at 310 ±0.1 K. Before each measurement automated 

tuning and matching, automated locking, and automated shimming (TOPSHIM routine) were performed. 

Automation included also the 90° hard pulse calibration, and optimized presaturation power for each sample. The 

1H NMR spectra were acquired using the standard pulse sequence with water suppression (noesygppr1d) from the 

Bruker pulse program library. A total of 32 scans were acquired after 4 dummy scans, and the generated free 

induction decays (FIDs) were collected into 96k data points using a spectral width of 30 ppm. The relaxation delay 

and mixing time were set to 4.0 and 0.01 sec, respectively. The receiver gain was set to 90.5 for all samples. 

Automated data processing, including Fourier transform of FID (free induction decay), apodization with a 0.3 Hz 

line-broadening, automated phasing, and baseline correction was carried out, for each 1H NMR spectrum, in the 

TOPSPIN software. 

 

Data analysis 

The 1H NMR spectra were imported into the SigMa software (4) and scaled towads the Electronic REference To 

access In vivo Concentrations (ERETIC) signal (5) positioned at 15 ppm, which is equivalent to 10 mmol L-1 

protons. The scaled spectra were then aligned towards the doublet of alanine’s methyl group (1.507−1.494 ppm) 

using icoshift (6). Subsequently, the spectra were divided into 13 different regions representing LP signals. Each 

region alone or in various combinations were used for partial least squares (PLS) regression analysis (7) making 

a total of 33 different NMR datasets with different lengths (Figure S1). Prior to the PLS analysis, subjects with 

LP concentrations below the limit of detection (LOD) or with missing values were removed from the datasets 

leading to a small difference in the number of subjects included in the PLS models. Each NMR dataset was 

separately used to predict 97 LP variables obtained from UC. NMR spectra and LP data were mean centred prior 

to PLS. First a training model was developed using 70% of randomly selected subjects (e.g., 210 subjects out of 

300). An optimal number of latent variables (LVs) was selected by fitting one to twenty LV models to the training 

samples using a 10-fold cross validation and 10 times Monte-Carlo repetitions. After a PLS calibration model was 

developed and optimized it was tested on 30% subjects (independent set) that were not used in training model 

optimization. In addition, the final PLS calibration models were also tested to predict LP variables, plasma tg and 

chol, of the independent Swedish cohort (8). In order to estimate the rank of the NMR and UC data, a principal 

component analysis (PCA) (9) based iterative approach (10) was employed. This method fits one component at a 

time by deflation of the original matrix by the corresponding modelled data and the procedure is continued on the 

resulting residual matrix. In parallel, the same iterative PCA procedure is repeated with the residual matrix after 

its columns are independently permuted. The method then compares the “so-called” F-ratio, which is a ratio of an 

eigenvalue obtained from the PCA analysis of the original matrix (or unpermuted residual matrix) to the value 

obtained from the PCA of the permuted residual matrix. After deflating a certain number of principal components 

(PCs), the F-ratio of the unpermuted residual matrix will become equal to or lower than the F-ratio obtained on 

the permuted residual matrix which in turn is a sign that there is no more sys 
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tematic variation left in the residuals. All data analysis including PLS, PCA, and ANOVA-simultaneous 

component analysis (ASCA) (11) were performed in MATLAB (version R2016b, The Mathworks, Inc., U.S.A.) 

using customised MATLAB scripts written by the authors.  

 

Captions of Supporting Information 

Figure S1. A total of 33 regions of the 1H NMR spectra were used to develop the PLS models for predicting 

concentrations of lipoproteins in human blood plasma. These regions represented 13 unique NMR spectral 

intervals corresponding to protons derived from different lipoprotein molecules and other lipids: Region 1 - 

represented the methyl group (C18) of cholesterol (δ 0.75-0.65); Region 2 – methyl group of lipoprotein molecules 

(δ 0.92-0.8); Region 3 – methylene group of lipoprotein molecules (δ 1.4-1.2); Region 11 - the methylene groups 

of lipids (CH2CH2CO) located two bonds away from carbonyl group (δ 1.48-1.46, 1.65-1.51); Region 12 -  the 

methylene groups of lipids (CH2C=C) located one bond away from double bond (δ 2.04-1.94); Region 13 - the 

methylene groups of lipids (CH2CO) located one bond away from carbonyl group (δ 2.28-2.2); Region 17 - the 

methylene groups of lipids (C=CHCH2CH=C) located one bond away from two double bonds (δ 2.84-2.74); 

Region 18 – signals derived from lysine residue in albumin (δ 2.84-3.09); Region 23 – the methylene group 

(CH2OCOR) of glyceryl of lipids and the methylene group (CH2OH) of choline (δ 4.35-4.24); Region 24 – the 

methine protons (CH) of unsaturated lipids (δ 5.4-5.24); Region 25 – the methine group (CHOCOR) of glyceryl 

of lipids (δ 5.23-5.14); Region 26 – the methylene group (NCH2) of choline (δ 3.71-3.65); Region 27 – the 

methylene groups of lipids (CH2CH2C=C) located one bond away from double bond (δ 1.88-1.65). Chemical 

shifts range of the remaining 20 regions were as follows: Region 4, δ 1.34-1.2, 1.4-1.36; Region 5, δ 1.07-0.92; 

Region 6, δ 1.07-0.8; Region 7, δ 0.75-0.6, 0.92-0.8, 1.34-1.2, 1.4-1.36; Region 8, δ 0.92-0.8, 1.34-1.2, 1.4-1.36; 

Region 9, δ 1.4-0.6; Region 10, δ  1.34-0.6, 1.4-1.36; Region 14, δ 0.75-0.6, 0.92-0.8, 1.34-1.2, 1.4-1.36, 1.48-

1.46, 1.65-1.51, 2.04-1.94, 2.28-2.2; Region 15, δ 1.48-1.46, 1.65-1.51, 2.04-1.94, 2.28-2.2; Region 16, δ 2.5-

0.6; Region 19, δ 3.09-2.74; Region 20, δ 1.48-1.46, 1.65-1.51, 2.04-1.94, 2.28-2.2, 3.09-2.74; Region 21, δ 0.75-

0.6, 0.92-0.8, 1.34-1.2, 1.4-1.36, 1.48-1.46, 1.65-1.51, 2.04-1.94, 2.28-2.2, 3.09-2.74; Region 22, δ 2.56-0.6, 2.7-

2.62, 3.09-2.73; Region 28, δ 2.56-0.6, 2.7-2.62, 3.09-2.73, 3.59-3.25, 4.35-3.65, 5.4-5.0, Region 29, δ 3.71-3.65, 

4.35-4.24, 5.23-5.14, 5.25-5.24, 5.4-5.26; Region 30, δ 0.75-0.6, 0.92-0.8, 1.34-1.2, 1.4-1.36, 1.48-1.46, 1.65-

1.51, 2.04-1.94, 2.28-2.2, 3.09-2.74, 3.71-3.65, 4.35-4.24, 5.23-5.14, 5.25-5.24, 5.4-5.26; Region 31, δ 9.8-5.45; 

Region 32, δ 2.56-0.6, 2.7-2.62, 3.09-2.73, 3.59-3.25, 4.35-3.65, 9.8-5.0; Region 33, δ 2.56-1.4, 2.7-2.62, 3.09-

2.73, 3.59-3.25, 4.35-3.65, 9.8-5.0. *Part of the spectra deemed in grey colour corresponds to the excluded range 

of the spectra from PLS modelling. 

Figure S2A. Lipoprotein prediction performance of test set PLS models developed on 20 NMR spectral regions 

(see Figure 2), of 33 investigated, that showed relatively high prediction performances for at least 65 of 97 

modelled lipoproteins. Q2 is a statistical measure of prediction accuracy often used in PLS modelling (12)  and 

defined as Q2=(1-PRESS/SS), where PRESS is predictive residual sum of squares and SS is sum of squares of 

actual values (LP concentrations). RMSEP, root mean square error of prediction, is a statistical measure of 

absolute prediction error estimated from test set PLS models. CV, coefficient of variation, is a statistical measure 

of relative (%) prediction error. Higher the Q2, and lower the CV and RMSE values indicate high prediction 

performance of PLS models. *Four best performing regions are highlighted in colour: LP (Region 9) in blue, -

CH3 (Region 2) in yellow, -CH2- (Region 3) in green, and –CH3 and –CH2- (Region 8) in magenta.    

Figure S2B. Lipoprotein prediction performance of training set PLS models developed on 20 NMR spectral 

regions (see Figure 2), of 33 investigated, that showed relatively high prediction performances for at least 65 of 

97 modelled lipoproteins. Q2 is a statistical measure of prediction accuracy often used in PLS modelling (12)  and 

defined as Q2=(1-PRESS/SS), where PRESS is predictive residual sum of squares and SS is sum of squares of 

actual values (LP concentrations). RMSECV, root mean square error of cross validation, is a statistical measure 

of absolute prediction error estimated from test set PLS models. CV, coefficient of variation, is a statistical 

measure of relative (%) prediction error. Higher the Q2, and lower the CV and RMSE values indicate high 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 25, 2021. ; https://doi.org/10.1101/2021.02.24.432509doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.24.432509


5 
 

prediction performance of PLS models. *Four best performing regions are highlighted in colour: LP (Region 9) 

in blue, -CH3 (Region 2) in yellow, -CH2- (Region 3) in green, and –CH3 and –CH2- (Region 8) in magenta.    

Figure S3. Validation of the PLS based LP prediction models developed in this study in an independent cohort, 

the Swedish cohort (290 healthy subjects) (see Figure 4). 

Figure S4. Correlations between lipoprotein particles. Heat map demonstrates clustered Pearson correlation 

coefficients calculated between lipoprotein concentrations, separately for LP measured using ultracentrifugation 

(YACTUAL) and predicted (YHAT) using the PLS models developed in this study. A distribution plot demonstrates 

an overview of positive and negative correlations between LP in YACTUAL and YHAT. 

Figure S5. Selectivity ratios (SR) calculated from PLS models. SR of different LP molecular are compared within 

the same main class, including all four main classes, VLDL, IDL, LDL, and HDL.   

Figure S6A. SR of the same LP molecular are compared across main classes, VLDL, IDL, LDL, and HDL.   

Figure S6B. SR of the same LP molecular are compared within the same main and subfractions.   

Table S1. Lipoprotein prediction performance of PLS models developed on 20 NMR spectral regions that showed 

relatively high prediction performances for 65 lipoproteins.  Q2 (prediction accuracy), R2 (Pearson correlation 

coefficient between actual and predicted values), RMSE (root mean square error of cross validation (for training 

set) or prediction (for test set)), CV (coefficients of variation), and P (p-value) values are given separately for 

training and test set prediction models. 

Table S2. Lipoprotein prediction performance of PLS models developed using the LP region (δ 1.4-0.6) of the 1H 

NMR spectra and LP measured using ultracentrifugation on the Danish cohort subjects. Q2 (prediction accuracy), 

R2 (Pearson correlation coefficient between actual and predicted values), RMSE (root mean square error of cross 

validation (for training set) or prediction (for test set)), CV (coefficients of variation), and P (p-value) values are 

given separately for training and test set prediction models. The table also contains the number of subjects included 

in training and test set PLS models, as well as mean, median, min, maximum, standard deviation, relative standard 

deviation, and quartile 0.25, 0.5, and 0.75 are given. 
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