








Fig. 6 | Switching between familiar and novel attractor states: proposed model. Energy landscape of CA3 network states representing
different maps and different positions along the track (schematic). In a familiar environment, the CA3 network falls into an attractor state
that is governed by strengthened recurrent synaptic connectivity, thereby performing generalization during memory recall of familiar
events. We propose that a small bias in the inputs from the dentate gyrus first recruits feed-forward inhibition, thereby lifting the
network state out of the deep trough representing the familiar environment. Direct excitation from the dentate gyrus then pushes the
CA3 network into a different attractor state with initially weaker, pre-existing recurrent connectivity, thereby performing discrimination
during novelty encoding. Numbers represent network states corresponding to the model snapshots shown in Figure 5c (1: Fig. 5c, left;
2: Fig. 5c, middle; 3: Fig. 5c, right).
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was mechanically removed using a surgical bone scraper. Stainless-steel headposts (Luigs &
Neumann) were attached to the animals’ skulls using dental acrylic (Super-Bond C&B, Sun
Medical). Postoperative analgesia (meloxicam 5 mg/kg) was administered orally in combination
with surgical recovery feeding gel (ClearH2O). Animals were allowed to recover from surgery for
at least seven days preceding the start of the training sessions.

Behavioral tasks in virtual reality

Three custom virtual reality environments were developed using the Blender Game Engine
(http://www.blender.org) in conjunction with the Blender Python Application Programming
Interface. All environments consisted of a 1.2 m-long linear corridor visually enriched with
proximal and distal cues and floor and wall textures. The reward delivery trigger zone was
placed in an un-cued location of the corridor that was identical in all environments. The warped
environments were projected onto a spherical dome screen (� 120 cm) using a quarter-sphere
mirror (� 45 cm) placed underneath the mouse, as described previously79–81. The screen covered
∼240°, which corresponds to nearly the entire horizontal field of view of the mouse. Animals were
head-fixed and placed on an air-supported polystyrene rolling cylinder (� 20 cm) that they used
as a treadmill to navigate the virtual scene. Cylinder rotation associated with animal locomotion
was read out with a computer mouse (Logitech G500) and linearly converted to one-dimensional
movement along the virtual reality corridor. Animals were extensively handled and habituated to
the virtual reality setup before the onset of experimental procedures. Animals underwent 5 training
sessions of 20-30 min each on consecutive days prior to the electrophysiological recordings. All
training sessions were conducted during the dark phase of the light cycle of the mice. During the
training period and the experiments, animals were water-restricted to 80% of their baseline weight
to maximize their behavioral drive82. Body weight and general health status were monitored
daily. Animals were trained to navigate the virtual corridor in the familiar environment (F) and
to retrieve an 8% sucrose solution reward by stopping for at least 3 s in an un-cued reward zone
placed at a fixed location of the corridor. Licking behavior was monitored using a custom-made
Arduino piezoelectric sensor coupled to the reward delivery spout. Animals were ‘teleported’ back
to the beginning of the track upon crossing of a defined threshold near the end of the virtual
corridor. As the virtual environments, training protocol and reward contingencies used in this
study are different from the ones used in previous work12, the hit rate results are not directly
comparable. After having completed the five-day training protocol in the familiar environment,
a behavioral recording session was conducted in which laps in the familiar environment (F)
were alternated with laps in the novel environment 1 (N1). The same environment alternation
strategy was used during the electrophysiological recordings, using the familiar environment (F)
and the novel environment 2 (N2). A purely behavioral session was conducted separately from
the electrophysiological recordings since the latter are typically very short and therefore do not
provide enough behavioral data to accomplish an accurate assessment of task performance.
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In vivo whole-cell patch-clamp recordings

Two craniotomies (� ∼0.5 mm) were drilled 3-24 hours before the recording session for the
recording electrode (right hemisphere, 2.0 mm caudal and 1.5 mm lateral from Bregma) and
the reference electrode (left hemisphere, 2.0 mm caudal and −1.5 mm lateral from Bregma).
The dura mater was removed using fine forceps and the cortical surface was kept covered with
artificial cerebrospinal fluid of the following composition: 150 mmol/L NaCl, 2.5 mmol/L KCl,
10 mmol/L HEPES, 2 mmol/L CaCl2, 1 mmol/L MgCl2. In a subset of animals, 600 nL of
1 mmol/L atropine solution was injected with a glass micropipette at a depth of 1.7 mm from
the cortical surface to selectively target the dentate gyrus83. Recording electrodes were pulled
from filamented borosilicate glass (Sutter Instrument) and filled with internal solution of the
following composition: 135 mmol/L potassium methanesulfonate, 7 mmol/L KCl, 0.3 mmol/L
MgCl2, 10 mmol/L HEPES, 0.1 mmol/L EGTA, 3.0 mmol/L Na2ATP, 0.3 mmol/L NaGTP,
1 mmol/L sodium phosphocreatine and 5 mg/mL biocytin, with pH adjusted to 7.2 with KOH.
All chemicals were purchased from Sigma. Pipette tip resistance was 4-8 MΩ. Electrodes were
arranged to penetrate the brain tissue perpendicularly to the cortical surface at the center of the
craniotomy and the depth of the recorded cell was estimated from the distance advanced with
the micromanipulator (Luigs & Neuman), taking as a reference the point where the recording
electrode made contact with the cortical surface. Whole-cell patch-clamp recordings were obtained
using a standard blind-patch approach, as previously described12,26,84. Only recordings with a
seal resistance > 1 GΩ were included in the analysis. Recordings were obtained in current-clamp
mode with no holding current. No correction was applied for the liquid junction potential.
Typical recording durations were ∼5 min, although longer recordings (∼30 min) were occasionally
obtained. Vm signals were low-pass filtered at 10 kHz and acquired at 50 kHz. After completion
of a recording, the patch recording electrode was gently withdrawn to obtain an outside-out patch
to verify the integrity of the seal and ensure the quality of the biocytin filling. To synchronize
behavioral and electrophysiological recordings, TTL pulses were triggered by the virtual reality
system whenever a new frame was displayed (frame rate: 100 Hz) and recorded with both the
behavioral and the electrophysiological acquisition systems.

Histology and microscopy

Immediately upon completion of a successful recording, animals were deeply anesthetized with an
overdose of ketamine/xylazine administered intraperitoneally and promptly perfused transcardially
with 1x phosphate-buffered saline followed by 4% paraformaldehyde solution. Brains were
extracted and kept immersed overnight in 4% paraformaldehyde solution. 60-70 µm-thick coronal
slices were prepared from the recorded hippocampi. Slices were stained with Alexa Fluor
488–streptavidin to reveal biocytin-filled neurons and patch electrode tracts. DAPI was applied
as a nuclear stain to reveal the general anatomy of the preparation. Fluorescence images were
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acquired using a spinning-disc confocal microscope (Opterra, Bruker) and analyzed using ImageJ.
The accuracy of the recording coordinates was confirmed in all cases by identification of either
the recorded neuron or the recording electrode tract.

Data analysis and statistics

To analyze subthreshold membrane potential, Vm traces were digitally low-pass filtered at 5 kHz
and resampled at 10 kHz. Vm traces were subsequently high-pass filtered at > 10−5 Hz to remove
slow trends such as reference drifts. Action potentials were removed from the traces by thresholding
to determine action potential times and then replacing 2 ms before and 10-20 ms (depending
on the action potential shape) after the action potential peak with an interpolated straight line.
Data are presented as the mean ± s.e.m., unless stated otherwise. Statistical significance was
assessed using either paired or unpaired two-tailed Student’s t-tests, as appropriate. Indications
of statistical significance correspond to the following values: ns p > 0.05, * p < 0.05, ** p < 0.01,
*** p < 0.001. All analyses were carried out using custom-made Python scripts85. The code is
available from the authors upon request.

Estimation of the effect of the observed synaptic response to novelty on population
activity in the dentate gyrus

A Gaussian fit was produced for the complete dataset of baseline values of membrane potential
recorded in dentate gyrus granule cells (n = 73 cells). Then, an artificial dataset representing
‘novelty’ was generated by applying the observed mean depolarization (1.0 mV) to these baseline
values and the corresponding Gaussian fit was produced. Ground-truth data on the activity of
dentate gyrus granule cells during spatial navigation was used to estimate that, during navigation
in a familiar environment, ∼3.3% of the granule cell population produces spikes during a 2 s
period26. The right tail of the Gaussian fit from the real dataset was used to calculate the spiking
threshold that would yield this percentage (−44.0 mV). Using this threshold, the percentage
of cells that would be above it (i.e. actively spiking) in the artificially depolarized dataset was
computed, which yielded 4.2%, representing a recruitment of spiking cells of approximately a
third of the baseline spiking population’s size.

Previous use of the data in other work

Some of the recordings included in the present study have also been used for previous work12,
where the specificity of subthreshold responses for the familiar and novel environments was
analyzed.
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CA3 network model: connections and inputs

An auto-associative neural network of n = 20,000 binary (0,1) units was implemented as a model
of CA3. 20% of the n units were randomly assigned placed fields (PF) in environment F, uniformly
centered on p = 400 equidistant points along the track (PF diameter = 33 pts). A scale factor of
0.3 cm was multiplied with this spatial dimension to simulate the physical length of the track
(120 cm) in the experiment (PF diameter = 9.9 cm). Activity patterns ξµ were generated for
each point by randomly choosing 330 units (sparsity level a = 0.0165)9 among those with a PF
overlapping the position. Parameters were adapted from Guzman et al.9 for a smaller number of
total units by keeping fixed the absolute number of units involved in a single memory.
The coupling matrix J was defined through the clipped Hebb rule,

J
(F )
ij = min

(
1,

∑
µ=1,...,p

ξµi ξ
µ
j

)
.

Such couplings carve a quasi-continuous attractor model of the environment34. Couplings J (N)
ij

supporting the pre-wired map N were defined in the same way, based on another random subset
of 0.2 n place cells, and were multiplicatively shrunk by random factors < 1 (beta-distribution,
parameters α = 0.7, β = 1.2). As a result, all connections J (N)

ij were reduced in strength, or even
set to zero (Fig. S3). Finally, the excitatory synaptic matrix J for the CA3 network was defined
as

Jij = Cij ×
(
J

(F )
ij + J

(N)
ij

)
,

where the connectivity matrix Cij = 0,1 randomly assigned 1,200 input connections j to each unit
i, in agreement with estimates of the connectivity9. mEC inputs to CA3 were spatially selective,
acting on 50% of the place cells, chosen at random, among those involved in the activity pattern
ξµ associated with the current position of a virtual rodent. To account for consolidation of map
F, input intensities on cells coding for environment F were stronger than for environment N while
the rodent was navigating environment F. Conversely, while navigating environment N, mEC
inputs of equal strengths were sent to the two maps. Dentate gyrus inputs, activated by novelty,
acted on randomly chosen 2% of units in the subnetwork supporting pre-map N, with the same
intensity as mEC inputs in the novel environment. Dentate gyrus baseline activity instead cued a
random 2% fraction of CA3 units at all times, with no spatial or map selectivity.

CA3 network dynamics

Place cells activities were updated by comparing the sum of their inputs to an activation threshold
G = 2.319 according to the following probability:

P (si(t+ 1) = 1) = F

(
hRC
i (t) + hmEC

i (t) + hDG
i (t) − gi

n
S(t) − hinter

i (t) − G

n
, T

)
,
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where i is the index of the unit, si = 0,1 its activity, and F is the sigmoidal function F (h, T ) =
1
π tan−1 (n·h

T

)
+ 1

2 , with the temperature T = 0.1, in agreement with the order of magnitude
estimated for similar network models86. In addition to inputs hmEC

i (t) from mEC and hDG
i (t) from

dentate gyrus, cells received inputs through CA3 recurrent couplings, hRC
i (t) = 1

n

∑
j Jijsj(t),

a global inhibition component proportional to network activity S(t), with gi = 0.035 for all
units contributing to the memory of the F map and gi = 0.015 for units involved only in the
storage of the N map, and inputs from nI = 5000 interneurons, hinter

i (t). To balance the DG
baseline input to CA3, global inhibition was set to have a minimal value counterbalancing the
activity of Smin = 50 neurons, i.e. S(t) = max

(
Smin,

∑
j sj(t)

)
. Interneurons were modeled

as threshold-linear units (threshold GI = 0.5), and sent inhibitory inputs to 500 place cells
each; they were activated during teleportation to environment N through an external stimulation
from the DG, effectively modeling a mechanism of feed-forward inhibition to CA3 linked to the
transient increase of DG activity. The intensities of all external cues (i.e., mEC, DG, inter)
decayed exponentially in time after each update of the corresponding cues, namely

hcue
i (t) = 1

n

kcue∑
m=1

Acueδcue
i (m)e−(t−tcue

m )/τcue
,

where kcue is the number of times the intensity is refreshed after an update of the cue, δcue
i = 0,1

indicates if unit i receives the input, Acue is the initial intensity, tcue
m is the time of the mth

refresh for each update of the cue, and τ cue is the decay time. In our simulations, we used
kmEC = kinter = 1, kDG = 15; AmEC = 3 for map F during navigation of environment F
(AmEC = 2 while in environment N) and AmEC = 2 for pre-map N (for navigation in both
environments), ADG = 2, Ainter = 20; τmEC = 100, τDG = 30, τ inter = 3. mEC and baseline DG
cues were updated once every five time steps, DG burst activity was updated 15 times after the
teleportation event (once every 5 time steps) and inter was updated only once at the teleportation
time. Alternative sets of parameters were also tested to check the stability of the model (Fig. S4).
In figures, time steps were scaled by a factor of 20 ms to match the average speed of the rodent
along the track.
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Fig. S1 | Supplementary analysis to Figure 2. a, Teleportation-aligned average across multiple recordings from dentate gyrus granule
cells showing the temporal dynamics of the subthreshold depolarization in response to novelty. The continuous green trace represents
the mean ± s.e.m. of the ∆Vm recorded 2.5 s after the FN2 teleportation events. The continuous orange trace represents the average
mean ± s.e.m. of a 1 s period preceding the teleportation event. Teleportation time is indicated by the vertical red dashed line. A
low-pass filtered trace (bold trace) is shown superimposed. b, ∆Vm summary for FN2 teleportations tested against a bootstrap obtained
from the same dataset (Bootstrap: −0.02 ± 0.02 mV, FN2: 1.02 ± 0.25 mV; n = 9 cells, paired t-test, p < 0.01). c, ∆speed summary
for FF and FN2 teleportations (−0.8 ± 0.4 cm/s and 0.0 ± 0.9 cm/s, respectively; n = 9 cells, paired t-test, p > 0.05). d, Correlation
between Mean Vm and FN2 ∆Vm (n = 9 cells, Pearson’s correlation coefficient, r = −0.19, p > 0.05).
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Fig. S2 | Targeted stereotaxic injections in the dentate gyrus. Coordinates used to target the dentate gyrus: from bregma, antero-
posterior −2.0 mm, parasagittal +1.5 mm, depth from cortical surface 1.7 mm. Top left: sagittal view. Top middle: coronal view.
Top right: 3D schematic of the target injection site. Bottom: representative example of an injection of the fluorescent marker BODIPY
(red) at the target coordinates. DAPI (blue) was used as a nuclear staining to reveal the general anatomy of the preparation. Images
generated using the Allen Institute Brain Explorer 2 software (http://mouse.brain-map.org/static/brainexplorer) and Paxinos
and Franklin’s The Mouse Brain in Stereotaxic Coordinates.

Supplementary Video | Network activity during two simulated lap crossings across the familiar (F) and the novel (N) environment.
Blue and red bars represent the number of active cells with a place field center in the corresponding 5 cm bin in, respectively, the F
(top) and N (middle) maps. Black dashed lines represent the position cued through the mEC input to the subnetworks involved in the
encoding of the two maps. Simulated animal position is shown at the bottom. Note the activity bump moving from the F to the N
map after teleportation.
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calculated separately for the two maps with a fraction of units per map of 0.2n. Sparser and weaker connections for pre-map N result
in a lower average synaptic input to its units compared to the subnetwork storing the F map. Insert plot: histogram (normalized as a
probability density function) for modified weights for connections in the N map following a beta distribution with parameters α = 0.7,
β = 1.2. Map N is initially generated as a consolidated map similarly to map F, non-zero weights are then replaced by the beta
distributed random variable in the plot. Notice the peak of the distribution at J(N)
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Fig. S4 | Simulations with alternative sets of network parameters. Effect of global inhibition and fraction of units per map on network
dynamics, represented as in Fig. 5b-e. a, Model with lower coefficients of global inhibition. Activity (top left) is higher in both maps
compared to the model in Fig. 5b with no significant differences in network performance. The stronger bump in map F is associated with
stronger recurrent inputs, changing the balance with mEC inputs and effectively slowing the bump from following the animal position
in the familiar environment (top right). To balance the difference in inhibition in map N, the threshold of initial activation of the map,
Smin, has to be lowered accordingly. This new threshold, affecting also map F, requires a corresponding decrease of the coefficient of
global inhibition gi,F also for this map. Finally, the strength of the transient feed-forward inhibition needs to be adapted to the new
levels of inhibition in the network to ensure the disruption of the activity bump in map F. The parameters for this simulation, modified
from Fig. 5, were gi,N = 0.01, gi,F = 0.025, Smin = 80 and Ainter = 30. Similar but opposite variations were also tested (i.e.,
gi,N = 0.02, gi,F = 0.05, Smin = 20 and Ainter = 15) with, again, no significant differences in network dynamics. b, Model with
a higher fraction (0.4n) of units per map. The increased map size with a fixed number of units per activity pattern generates less
correlated memories in the network. Lower correlations between the activity patterns require stronger inhibition and mEC inputs for
map F to drive its activity bump, resulting in a lower activity in the F map (top left, blue line) compared to Fig. 5b-e. Activity in the
F-N overlap units (top left, purple line) is instead compensated by the increased number of units shared by the two subnetworks. The
higher inhibition for units in the F map together with the higher overlap result in a reduced activity (top left, red line) and a noisier
spatial selectivity (bottom right) for the N map. The parameters modified from Fig. 5 were gi,F = 0.045, Smin = 45, AmEC,F = 5
and Ainter = 30.
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