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ABSTRACT 1 

 Heritable symbionts have diverse effects on the physiology, reproduction, and fitness of 2 

their hosts. Maternally transmitted Wolbachia are one of the most common endosymbionts in 3 

nature, infecting about half of all insect species. We test the hypothesis that Wolbachia alter host 4 

behavior by assessing the effects of 14 different Wolbachia strains on the locomotor activity of 5 

nine Drosophila host species. We find that Wolbachia alter the activity of six different host 6 

genotypes, including all hosts in our assay infected with wRi-like Wolbachia strains (wRi, wSuz, 7 

wAur), which have rapidly spread among Drosophila species in only the last 13,000 years. While 8 

Wolbachia effects on host activity were common, the direction of these effects varied 9 

unpredictability and sometimes depended on host sex. We hypothesize that the prominent effects 10 

of wRi-like Wolbachia may be explained by patterns of Wolbachia titer and localization within 11 

host somatic tissues, particularly in the central nervous system. Our findings support the view 12 

that Wolbachia have wide-ranging effects on host behavior. The fitness consequences of these 13 

behavioral modifications are important for understanding the evolution of host-symbiont 14 

interactions, including how Wolbachia spread within host populations. 15 
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INTRODUCTION 16 

Insects harbor microorganisms that have wide-ranging effects on their performance and 17 

fitness [1–3], including manipulations to reproduction [4–7], provisioning of nutrients [1,8,9], 18 

modifications of thermotolerance [10,11], and defense against pathogens [12–15]. Microbes may 19 

also alter host behavior [16–21]. In extreme instances, parasitic microbes can induce behaviors 20 

that increase the likelihood of transmission—for example, by directing hosts to habitats that 21 

promote transmission [22–28]. Infected hosts may also change their own behavior as an immune 22 

strategy against infection, including seeking warm temperatures to induce a “behavioral fever” 23 

[29,30] or reducing activity and increasing sleep time [19,31–34]. Such behavioral modifications 24 

have important implications for microbe spread and host fitness. 25 

 Maternally transmitted Wolbachia are the most common endosymbionts in nature, 26 

infecting many arthropods [5,35,36] and two distantly related groups of nematodes [37]. 27 

Discordant Wolbachia and host phylogenies indicate that many hosts have recently acquired 28 

Wolbachia via introgressive and horizontal transfer [38–43]. Wolbachia are primarily transmitted 29 

vertically by female hosts, so natural selection favors beneficial effects on host fitness that 30 

promote spread [44–47]. Maternal transmission occurs via the host reproductive system, but 31 

Wolbachia are also found in host somatic tissues, including nervous, digestive, and metabolic 32 

tissues [48–51]. Still, the behavioral and physiological consequences of somatic infections are 33 

poorly understood [19,51]. 34 

 Prior work indicates Wolbachia influence several host behaviors [19,52,53], including 35 

sleep [54–56] and temperature preference [20,57,58]. We broadly test for Wolbachia effects on 36 

the locomotor activity of Drosophila hosts infected with A-group Wolbachia (N = 11), B-group 37 

Wolbachia (N = 1), and an A- and B-group co-infection (N = 1). Our analysis includes two 38 

prominent A-group clades that recently spread among Drosophila: wMel-like Wolbachia 39 

(wMelCS, two wMel variants, wYak, wSan, and wTei) and wRi-like Wolbachia (wRi, wSuz, and 40 

wAur) [42,43]. We find that Wolbachia effects on host activity are common, particularly for 41 

wRi-like Wolbachia, a “super-spreader” strain that rapidly spread among Drosophila species in 42 

the last ~13,000 years [42].  43 

 44 

 45 

 46 
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METHODS 47 

Fly lines 48 

 We evaluated 13 different Wolbachia-infected host genotypes (Figure 1, Table S1), 49 

consisting of nine Drosophila species infected with 14 different A- and B-group Wolbachia that 50 

diverged up to 46 million years ago [59]. For two of the host species, D. melanogaster and D. 51 

simulans, we tested multiple Wolbachia-infected genotypes. This included a D. simulans host co-52 

infected with A-group wHa and B-group wNo [60–63]. We used tetracycline treatment as 53 

previously described [20] to generate uninfected genotypes to pair with each infected genotype, 54 

while taking care to avoid detrimental effects of the antibiotic treatment on mitochondrial 55 

function [64] (see Supplemental Methods). 56 

 57 

Host locomotor activity assays 58 

We reared flies at 25°C under a 12-h light:12-h dark cycle (Percival model I-36LL) on a 59 

standard food diet [20]. Each day, we collected a batch of female and male virgins for one pair of 60 

uninfected and infected genotypes. The four treatment groups (uninfected females, infected 61 

females, uninfected males, and infected males) were maintained in isolation until they were 3 to 62 

5 days old. We then measured the locomotor activity of the batch of flies using a 16-chamber 63 

flow-through respirometry and data acquisition system (MAVEn, Sable Systems International). 64 

The MAVEn has 16 2.4 ml volume polycarbonate animal chambers and an activity board that 65 

uses infrared light (invisible to flies) to monitor animal activity in each chamber, sampled at 1 66 

Hz (Figure S1). Individual flies were aspirated into a randomly assigned chamber and allowed to 67 

adjust to the new environment for 0.5 hours. Activity measurements were then recorded over a 3-68 

hour period between the hours of 0900 and 1600.  69 

The raw outputs from the activity sensors were transformed into the activity index 70 

absolute distance sums (ADS). We calculated ADS by first calculating the cumulative sum of the 71 

absolute difference between consecutive activity readings, and then calculating the slope of 72 

cumulative activity vs. time [65,66]. We used mean ADS over the 3-hour period as our estimate 73 

of locomotor activity for each fly; however, our analyses were robust regardless of how we 74 

quantified activity (see Supplemental Methods). We found that the mean ADS activity data 75 

required a transformation for statistical analysis; however, a single data transformation was not 76 

suitable for all host species. We used a log transformation of mean ADS for D. simulans, D. 77 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 24, 2021. ; https://doi.org/10.1101/2021.02.24.432688doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.24.432688
http://creativecommons.org/licenses/by-nd/4.0/


suzukii, D. auraria, D. mauritiana, and D. sechellia, and a square root transformation for D. 78 

melanogaster, D. yakuba, D. santomea, and D. teissieri. We present a full statistical analysis of 79 

all datasets in Tables S2 and S3, respectively. 80 

We used the log- and square root-transformed mean ADS data as dependent variables in 81 

linear models. We included infection status, sex, and an infection-by-sex interaction effect as 82 

independent variables, as well as additional independent variables to account for other potential 83 

sources of activity variation: randomly assigned animal chamber (1-16), experimental start time, 84 

mean water vapor (ppt), mean relative humidity (%), mean temperature (°C), and mean light 85 

intensity (lux) [65,66]. We evaluated the significance of individual effects using F tests and type 86 

III sum of squares using the “Anova” function in the car R package [67,68].  87 

 88 

Wolbachia phylogenomic analysis  89 

 We used publicly available Wolbachia genome assemblies [20,42,43,59,69–71], and new 90 

Illumina sequencing, to generate a Bayesian phylogram [20] (see Supplemental Methods). 91 

Wolbachia effects on host activity were especially common for wRi-like Wolbachia, so we used 92 

the phylogram to test whether Wolbachia effects on hosts exhibit phylogenetic signal. First, we 93 

treated Wolbachia effects on host locomotor activity as a binary trait and tested for phylogenetic 94 

signal using the D statistic [72], implemented in the caper R package [73]. Second, we treated 95 

Wolbachia effects on activity as a continuous trait and tested for phylogenetic signal using 96 

Pagel’s lambda (λ) [74]. Here, we analyzed each sex separately, because we found significant 97 

infection-by-sex interaction effects on activity (Tables S2 and S3). For each sex, we extracted the 98 

least-square (LS) mean ADS for infected and uninfected flies from the linear models (Tables S2 99 

and S3), and used the change in LS mean activity as a continuous character to calculate the 100 

maximum likelihood value of Pagel’s λ [74,75]. We used a likelihood ratio test to compare our 101 

fitted value of λ to a model assuming no phylogenetic signal (λ = 0) using the “phylosig” 102 

function in the R package phytools [76].   103 

 104 

RESULTS 105 

Wolbachia infections modify host locomotor activity  106 

 We assayed the locomotor activity of 3,104 flies (Figure 1). Wolbachia had a significant 107 

effect on the activity of six host genotypes, including hosts infected with both A- and B-group 108 
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Wolbachia. Interestingly, the direction of Wolbachia effects on host activity varied by genotype 109 

and sex (Figure 2). We found a significant Wolbachia infection-by-sex interaction effect for the 110 

wMelCS-D. melanogaster genotype that increased male activity (F = 4.566, P = 0.033; Table 111 

S3). We also found a significant infection-by-sex effect for the wRi-D. simulans genotype, but 112 

Wolbachia increased female activity (F = 8.150, P = 0.005; Table S2). The two other closely 113 

related wRi-like Wolbachia, wSuz and wAur, also had significant effects on host activity. The 114 

wSuz-D. suzukii genotype had a significant main effect of Wolbachia that reduced host activity 115 

(F = 11.311, P < 0.001; Table S2), and the wAur-D. auraria genotype had a significant 116 

infection-by-sex interaction that reduced female activity (F = 6.584, P = 0.011; Table S2). The 117 

wHa-D. simulans genotype had a significant main effect of Wolbachia that increased host 118 

activity (F = 7.764, P = 0.006; Table S2). Lastly, we found the wHa-wNo co-infected D. 119 

simulans genotype had a significant infection-by-sex interaction effect that reduced male activity 120 

(F = 7.076, P = 0.008; Table S2). Because this genotype is co-infected, we do not know the 121 

relative contributions of wHa and wNo to variation in host activity. See the Supplemental Results 122 

for a discussion of how other variables contributed to variation in locomotor activity. 123 

 124 

 Limited evidence for phylogenetic signal 125 

 We estimated a Bayesian phylogram of A- and B-group Wolbachia using 211 single-copy 126 

genes of identical length in all Wolbachia genomes, spanning 178,569 bp (Figure 2). We then 127 

tested whether closely related Wolbachia have similar effects on host activity. When treating 128 

Wolbachia effects on activity as a binary trait, our estimate of D = 0.322 was low, but not 129 

statistically different from a model of D = 1 assuming phylogenetic randomness (P = 0.101) or a 130 

model of D = 0 with strong phylogenetic signal (P = 0.198). Simulations of similar phylogenies 131 

with an increasing number of Wolbachia strains suggest that at least N = 50 strains are required 132 

to differentiate our estimated value of D = 0.322 from a model of phylogenetic randomness (D = 133 

1) (Figures S4 and S5). Thus, Wolbachia effects on host activity may exhibit phylogenetic 134 

signal, but many more Wolbachia strains are required to test this hypothesis. Unfortunately, N = 135 

50 strains are not presently available in culture. We also treated Wolbachia changes to host 136 

activity as a continuous trait; however, we found that maximum likelihood fitted λ values were 137 

extremely low, indicative of no phylogenetic signal.	λ values generated from the LS mean log-138 

transformed ADS data were not statistically different from zero for females (λ < 0.001, P = 1) or 139 
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males (λ < 0.001, P = 1). This was also true when we repeated the analyses for the LS mean 140 

square root-transformed ADS data for females (λ < 0.001, P = 1) and males (λ < 0.001, P = 1).  141 

 142 

DISCUSSION 143 

 Our analyses suggest that Wolbachia commonly alter host locomotor activity, which may 144 

affect host fitness. Locomotion is a basic host activity underlying many ecologically important 145 

behaviors, including foraging, thermoregulation, and mate seeking. In combination with our 146 

recent work demonstrating pervasive effects of A- and B-group Wolbachia on host temperature 147 

preference [20], we posit that Wolbachia infections may often alter host behavior.  148 

The wRi-like Wolbachia strains in our study (wRi, wSuz, and wAur) consistently altered 149 

host activity. We found a low, but non-significant D value of 0.322, suggesting effects on host 150 

activity may exhibit phylogenetic signal; although, an excessive number of Wolbachia strains are 151 

required to test this hypothesis. Our findings are consistent with prior experiments demonstrating 152 

that wRi increased female D. simulans activity in response to olfactory cues [77,78]. We 153 

hypothesize that the prominence of wRi-like Wolbachia effects on host activity relative to other 154 

strains may be due to variation in Wolbachia tissue localization [49,52]. wRi occurs at high titer 155 

in adult D. simulans brains and localizes to specific regions, whereas wMel shows a relatively 156 

even distribution in D. melanogaster [52]. wRi also occurs at higher titer in the ventral nerve 157 

cord, which is a major neural circuit center for motor activities such as walking [52,79–81]. 158 

Future experiments should compare Wolbachia titer and localization in adult brains for wRi-like 159 

variants and strains that do not alter locomotor activity.  160 

We also found considerable variation in the direction and sex-bias of Wolbachia effects 161 

on locomotor activity (Figure 2). Wolbachia decreased activity for wSuz, wAur, and the wNo-162 

wHa co-infection, whereas wMelCS, wRi, and wHa increased activity. These effects were 163 

female-biased for wRi and wAur, but male-biased for wMelCS and wNo-wHa. This variation had 164 

no relationship to the Wolbachia phylogeny, because we found no evidence for phylogenetic 165 

signal when measuring Wolbachia effects on females and males as a continuous trait (λ < 0.001). 166 

Specific Wolbachia effects on host activity may depend on interactions with the host 167 

background. For example, our work and others’ suggests that identical wMelCS variants have 168 

different effects on D. melanogaster temperature preference depending on the host background 169 

[20,57,58]. Host genomes also modify Wolbachia titer [82], Wolbachia maternal transmission 170 
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[83], components of host fitness [84–87], and the strength of cytoplasmic incompatibility [88–171 

90]. 172 

Changes to host activity could underlie Wolbachia-induced behaviors that promote 173 

infection spread. For example, wMel-infected D. melanogaster have higher field recapture rates 174 

than uninfected flies [91], and long distance dispersal of the spider Erigone atra is altered by 175 

Rickettsia, an endosymbiont closely related to Wolbachia [92]. Our own work suggests 176 

Wolbachia may alter host temperature preference to promote Wolbachia replication within host 177 

bodies [20]. Other experiments suggest that wMel and wRi may influence male mating rate 178 

[93,94]. Alternatively, hosts may be modifying their own behavior as a response to Wolbachia 179 

infection. Several studies indicate that wMel alters circadian activity and sleep patterns of D. 180 

melanogaster [52,54–56]. For example, Bi et al. [55] report that wMel increases sleep time, 181 

which could represent a host immune response to infection [19]. Ultimately, these effects on host 182 

behavior factor into how Wolbachia influence host fitness, which determines the spread and 183 

persistence of Wolbachia in host populations [4,95–98]. Because locomotor activity is such a 184 

fundamental host behavior, our results suggest Wolbachia may have complex and variable 185 

effects on many components of host fitness. 186 
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FIGURE LEGENDS 197 

Figure 1. Activity of uninfected and infected flies for each sex of each genotype. Activity is 198 

measured as mean absolute distance sums (ADS). Significance was evaluated using linear 199 

models (Tables S2 and S3). 200 

 201 

Figure 2. (A) Estimated Bayesian phylogram for A- and B-group Wolbachia strains. The 202 

divergence estimate for A- and B-groups is superimposed from Meany et al. [59]. All nodes have 203 

Bayesian posterior probabilities of 1. (B) Wolbachia effects on host activity scored as a binary 204 

trait: Wolbachia significantly altered host activity (black circle) or had no effect (white circle). 205 

(C) Wolbachia effects on activity scored as a continuous trait: the change in least-square (LS) 206 

mean log-transformed activity (ADS) for each sex. LS means were generated from linear models 207 

(Table S2). LS mean square root-transformed ADS data are shown in Figure S3.208 
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