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Abstract 17 

Global increases in human activity threaten connectivity of animal populations. Protection and 18 

restoration of animal movement corridors requires robust models to forecast the effects of human 19 

activity on connectivity. Recent advances in the field of animal movement ecology and step 20 

selection functions offer new approaches for estimating connectivity. We show how a 21 
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combination of hidden Markov movement models and step selection functions can be used to 22 

simulate realistic movement paths with multiple behavioral states. Simulated paths can be used 23 

to generate utilization distributions and estimate changes in connectivity for multiple land use 24 

scenarios. We applied movement models to 20 years of grizzly bear (Ursus arctos) and gray wolf 25 

(Canis lupus) data collected in and around Banff National Park, Canada. These carnivores 26 

avoided areas near towns in all seasons, avoided areas of high trail density in most seasons, and 27 

campgrounds during summer and fall. We simulated movement paths for three landscape 28 

scenarios: reference conditions with no anthropogenic development, current conditions, and 29 

future conditions with expanded town footprints and trail networks. We counted the number of 30 

paths that crossed valley-wide, digital transects through mountain tourist towns of Banff and 31 

Canmore, Alberta. We divided current and future crossing rates by the reference crossing rates to 32 

estimate connectivity. Current connectivity rates ranged between 7 and 45% of reference values 33 

with an average of 21% for grizzly bears and 25% for wolves. Potential town expansion and 34 

increased development of trails further decreased connectivity an average of 6% in future 35 

scenarios. Anthropogenic developments reduced the amount of available high quality large 36 

carnivore habitat in the Bow Valley by an average of 14% under current conditions and 16% 37 

under future conditions. Our approach for estimating connectivity provides a robust and flexible 38 

method for combining movement models with step selection analyses to estimate connectivity 39 

for a variety of species.  40 

 41 
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Introduction 45 

Global increases in human activity threatens wildlife populations and as a result, many 46 

conservation programs have increased their focus on ecological connectivity (Hilty et al. 2020). 47 

Connectivity analyses of animal movement are frequently used to identify likely dispersal routes 48 

between populations (Fattebert et al. 2015, Zeller et al. 2018), seasonal migrations routes (e.g. 49 

Fullman et al. 2021), and to highlight natural and anthropogenic pinch points to movement (i.e. 50 

wildlife corridors) as priority areas for conservation (Chetkiewicz and Boyce 2009, Suraci et al. 51 

2020). Within an animal’s home range, wildlife corridors facilitate movements important for 52 

reproduction, accessing seasonal resources, and predator-prey processes (Hebblewhite 2005, 53 

Panzacchi et al. 2016). At broader scales, connectivity facilitates dispersal (Benz et al. 2016), 54 

gene flow, and demographic rescue of subpopulations (Marrotte et al. 2017, Lamb et al. 2020). A 55 

wide variety of approaches have been used to estimate connectivity of animal movements, with 56 

varying degrees of success (Calabrese and Fagan 2004, Zeller et al. 2018). Emerging techniques 57 

in the field of movement ecology offer new opportunities to develop stronger links between  58 

movement behavior and estimates of  connectivity (e.g. Hooten et al. 2020).   59 

Movement models and step selection analyses offer a complementary approach for 60 

estimating connectivity either from model predictions (Buderman et al. 2018, Hooten et al. 2020) 61 

or from simulated paths (Palmer et al. 2011, Quaglietta and Porto 2019, Zeller et al. 2020). Step 62 

selection analyses are a subset of spatial point-process models that are increasingly used to 63 

estimate relative selection of resources (Fortin et al. 2005), to understand the effects of human 64 

activity on animal movement behaviour (e.g. Suraci et al. 2019), and to create utilization 65 

distributions (UDs) that predict spatial variation in intensity of habitat use (Signer et al. 2017). 66 

Step selection analyses have become increasingly accessible for practitioners through the 67 
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development of statistical packages in R (Avgar et al. 2016, Signer et al. 2019, Muff et al. 2020). 68 

Several studies have incorporated step selection functions (SSFs) into connectivity analyses by 69 

first creating spatial predictions of habitat use and then transforming predictions into resistance 70 

layers for cost-distance or circuit theory analyses (Zeller et al. 2018, Brennan et al. 2020, Suraci 71 

et al. 2020). Others have used the derived resistance surfaces to simulate animal movements 72 

(Quaglietta and Porto 2019, Jayadevan et al. 2020, Zeller et al. 2020). For example, Merkle et al. 73 

(2019) simulated movements directly from an SSF to forecast migration routes. Simulated 74 

individual-based paths are appealing because they can incorporate sequential, probabilistic 75 

movement decisions related to landscape features, speed of travel, and directional persistence 76 

(Avgar et al. 2016). Moreover, simulating animal movements is considered the best practice for 77 

generate unbiased UDs from SSFs (Signer et al. 2017). Simulations, while computational 78 

intensive, can easily be applied to multiple land use scenarios. Movement simulations from SSFs 79 

offer a promising method for assessing the cumulative effects of multiple landscape features on 80 

animal movement paths, intensity of use, and connectivity.  81 

Realistic simulations need to accommodate the underlying factors that influence animal 82 

movement including seasonal (Zeller et al. 2019, Brennan et al. 2020, Zeller et al. 2020) and 83 

temporal (Gaynor et al. 2018, Lamb et al. 2020) variability in resource selection and state-84 

specific movement behaviors (Michelot et al. 2016). For example, animals often have low 85 

directional persistence and low speed of travel when feeding and resting in slow states and have 86 

strong directional persistence and higher speed of travel when travelling in fast states (Fryxell et 87 

al. 2008). Such behavioral states are overlooked in classical circuit theory and cost-distance type 88 

connectivity models. And failure to incorporate behavioral state into SSFs can lead to biased 89 

UDs, poor estimates of connectivity, and misidentification of wildlife corridors (Abrahms et al. 90 
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2017). Finally, responses to human activity and estimates of connectivity can vary widely among 91 

species (e.g. Rogala et al. 2011, Brennan et al. 2020, Nickel et al. 2020). From a conservation 92 

perspective, focussing on the most sensitive species should increase connectivity for most other 93 

wildlife (Meurant et al. 2018, Lamb et al. 2020). 94 

Large carnivores are an important consideration for landscape-scale measures of 95 

connectivity for a number of reasons. First, these iconic and charismatic species are often 96 

selected as conservation ‘flagship’ and umbrella species, meaning they hold a particularly deep 97 

value for the public and management agencies (Ray et al. 2013). Second, the potential threat of 98 

carnivores to human safety requires a detailed understanding of how animals move through 99 

human-dominated landscapes (Buchholtz et al. 2020, Lamb et al. 2020). Third, large carnivores 100 

have the potential to affect community-level processes through top-down control on prey 101 

abundance and thus trophic cascades (Hebblewhite et al. 2005, Hebblewhite and Merrill 2011, 102 

Ripple et al. 2014). Consequently, understanding how movements of carnivores are affected by 103 

connectivity and corridor design policies (Ford et al. 2020) is an important step towards better 104 

management of ecosystem-level process (Terborgh et al. 1999).  105 

The novel approaches to quantifying connectivity afforded through SSF-derived 106 

simulations may support better land use decision making for carnivore conservation. Here, we 107 

focused on assessing carnivore connectivity in a transboundary region of Banff National Park 108 

(BNP), AB, Canada where transportation infrastructure, outdoor recreation, and urban areas 109 

occupy much of the prime habitat in the valley bottoms of the mountainous landscape. We focus 110 

on the movements of grizzly bears (Ursus arctos) and wolves (Canis lupus) because of their 111 

management relevance, threatened status, and important ecological roles (e.g. Hebblewhite et al. 112 

2005). We used 20 years of grizzly bear and wolf telemetry data to develop seasonal hidden 113 
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Markov models and SSFs. We simulated animal paths from the movement models and SSFs to 114 

assess changes in UDs and connectivity. Based on grizzly bear and wolf responses to human 115 

activity in other studies (Whittington et al. 2005, Hebblewhite and Merrill 2008, Lamb et al. 116 

2020), we expected grizzly bears and wolves to select linear features as efficient travel routes 117 

while avoiding areas near towns and areas with high trail density. We expected avoidance to be 118 

most pronounced and connectivity to be lowest during peak tourist visitation in summer. Finally, 119 

we expected that connectivity around towns would decrease from current to future conditions 120 

due to an expanded town footprint and increased recreational trail density (Gutzwiller et al. 121 

2017). Building on the growing field of movement ecology, we provide a flexible approach to 122 

generate movement-based estimates of connectivity that can be applied to other taxa and 123 

systems.  124 

 125 

Materials and Methods 126 

Study area 127 

The study area encompassed 17,450 km2 of the Canadian Rockies within and adjacent to BNP 128 

(51.2° N, 115.5° W, Appendix S1: Figure S1). We defined the extent of the study area based on 129 

movements of radio-collared wolves and grizzly bears monitored from 2000 to 2020. The study 130 

area contained rugged topography, short summers and long cold winters. See Whittington et al. 131 

(2019) for a description of vegetation and the predator-prey community.  132 

The study area contained the tourist towns of Banff and Canmore and several hamlets 133 

that occupied the centre of the Bow Valley. Linear features such as the Trans Canada highway, a 134 

national railway, and secondary roads bisected the study area. Like many global protected areas 135 

(Wittemyer et al. 2008), human activity within the study area increased steadily over the last 20 136 
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years (Alberta Environment and Parks 2018), with the potential for increasing impacts on 137 

wildlife connectivity (Gutzwiller et al. 2017). BNP currently receives over 4 million visitors per 138 

year, mostly concentrated in summer. Most anthropogenic developments and recreational 139 

activities were concentrated near roads within the Bow Valley. Backcountry areas in the 140 

northeastern portion of the study area received minimal human use.  141 

Telemetry data 142 

Researchers fit wolves and grizzly bears with Global Positioning System (GPS) collars to 143 

collect data from 2000 to 2020. Researchers captured and collared grizzly bears using a 144 

combination of culvert traps and free-range darting and wolves using a net shot from a helicopter 145 

under University and Federal government capture and Animal Care permits (see Appendix S1 146 

for summary of permits). Researchers programmed most collars to collect GPS locations every 147 

two hours. GPS collars had high fix rates with low habitat-induced fix-rate bias (Hebblewhite et 148 

al. 2007). We obtained a large sample of locations from both front and backcountry areas (Figure 149 

2, Appendix S1: Figures S1 – S3).  150 

Statistical analyses 151 

 We used a three stage, individual-based modeling approach to quantify carnivore 152 

responses to anthropogenic features and connectivity (Figure 1). Here, we provide an overview 153 

of our methods and then provide additional details for each step of the analysis. First, we applied 154 

hidden Markov models to animal movement data to predict slow versus fast movement states as 155 

well as movement parameters and transition probabilities for both movement states. We 156 

associated slow states with feeding or resting behaviour, and fast states with travelling 157 

behaviour. Second, we integrated movement states into SSFs, such that each SSF contained 158 

interactions between movement state, directional persistence, and movement rates. This enabled 159 
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us to simulate state-specific movements directly from our SSF. We used results of the SSF to 160 

assess responses to anthropogenic features. We also developed home-range scale resource 161 

selection function (RSF) models to evaluate scale-dependence of SSF models for connectivity 162 

evaluation. Third, we used the combination of hidden Markov models and SSFs with covariates 163 

to simulate realistic individual-based movements. We simulated movement paths under three 164 

landscape conditions reflecting reference, current, and future levels of anthropogenic 165 

development. Reference represented a null model of potential habitat with no anthropogenic 166 

development. We compared transect crossing rates and UDs from current and future conditions 167 

to reference conditions to estimate connectivity and change in the amount of high-quality habitat 168 

for each carnivore.  169 

Movement model 170 

 We fit hidden Markov models to grizzly bear and wolf GPS step lengths and turn angles 171 

so that we could incorporate movement behaviour into SSFs and to create biologically realistic 172 

simulations of animal movement. We used functions from the moveHMM package version 1.7 to 173 

fit hidden Markov models (Michelot et al. 2016). For each species and season, we fit two-state 174 

movement models to reflect slow and fast movements, following previous studies of GPS 175 

movement (Fryxell et al. 2008). We used the gamma distribution for step length and the circular 176 

von Mises distribution for turn angles (Avgar et al. 2016). We included the cosine of hour as a 177 

covariate to allow for diurnal variation in the frequency of slow and fast states. We predicted the 178 

probability of being in a fast state for each GPS location, which we then incorporated into the 179 

SSF below (Figure 1). We further used parameters from the movement models to simulate 180 

movement states, step lengths, and turn angles in the path simulations below.    181 

 182 
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Step and resource selection: responses to development across scales 183 

We developed grizzly bear and wolf SSF and RSF to assess how anthropogenic 184 

development, topography, and land cover affected seasonal wolf and grizzly bear movement 185 

(Figure 1). One of the challenges of interpreting SSFs is that results can depend on sampling 186 

scale, i.e., time between locations (Mahoney et al. 2018). To ensure results of our SSF-based 187 

movement models were consistent with third-order within home range processes, we developed 188 

complementary RSF models for individual wolf and grizzly bears to evaluate potential scale-189 

dependence in SSF results.   190 

The SSF models compared movement and environmental attributes of used steps to 191 

matched available locations (Avgar et al. 2016, Signer et al. 2019). We estimated each animal’s 192 

movement parameters for step length and turn angle. We sampled from these movement 193 

parameters to generate random locations around each used location to sample availability. For 194 

each animal’s step (strata i) we generated J = 10 paired random locations. We extracted covariate 195 

vectors xij for each location and used conditional logistic regression to estimate covariate vector 196 

β.  197 

(eq. 1) 198 

𝑃𝑟(𝑦𝑖𝑗 = 1|𝒙𝑖𝑗) =  𝜋𝑖𝑗 =  
exp( 𝛃𝒙𝑖𝑗)

∑ exp(𝛃𝒙𝑖𝑗)𝐽
𝑗=1

 199 

We followed the modelling strategies outlined by Muff et al. (2020) for used-available 200 

SSF and RSF designs. We used the Poisson formulation of conditional logistic regression to fit 201 

the SSF and included random intercepts for each strata i. We accounted for individual animal 202 

variability in selection by including random coefficients for explanatory variables. We set 203 

weights for used locations to 1.0 and random locations to 1000, and fixed the variance of the 204 
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random intercept for strata to 104. We used the R packages amt version 0.0.9  (Signer et al. 2019) 205 

to define available locations and glmmTMB version 1.0.1 (Brooks et al. 2017) to estimate the 206 

models. We visualized the effects of covariates on the relative probability of selection using 207 

relative selection strength (RSS) where RSS  = exp(βx) (Avgar et al. 2017). 208 

 The SSFs included covariates for state-specific speed of travel and directional persistence 209 

(Roever et al. 2014, Duchesne et al. 2015). We first predicted the probability of fast state for 210 

each used location from the hidden Markov model (section 2.3.1 above, Figure 1). We applied 211 

that predicted probability to all paired available locations. Our SSF then included interactions 212 

between probability of fast state and the natural logarithm of step length and between probability 213 

of fast state and the cosine of turn angle (Avgar et al. 2016). Thus, selection for step lengths 214 

(speed) and turn angles (persistence) depended on movement state. The cosine of turn angle 215 

reflected a measure of directional persistence with values ranging between -1.0 when animals 216 

turned around to 1.0 when they continued in the same direction.  217 

We developed RSF models with a ratio of 1:10 used to available locations and sampled 218 

available locations within each individual animal’s 95% minimum convex polygon. We used 219 

logistic regression to fit the RSF and included random intercepts for each animal. We accounted 220 

for individual animal variability in selection by including random coefficients for explanatory 221 

variables. We set weights for used locations to 1.0 and random locations to 1000, and fixed the 222 

variance of the random intercept for strata to 104. We used the R packages amt version 0.0.9  223 

(Signer et al. 2019) to define available locations and glmmTMB version 1.0.1 (Brooks et al. 224 

2017) to estimate the models. We used the same explanatory variables for both SSF and RSF 225 

models. We visually compared parameter estimates for the SSF and RSF models for consistency 226 

in responses to anthropogenic development. 227 
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The SSFs and RSFs included environmental and anthropogenic explanatory variables that 228 

were previously found to be important predictors of grizzly bear or wolf resource selection in the 229 

Canadian Rockies (Nielsen et al. 2006, Hebblewhite and Merrill 2008, Rogala et al. 2011). To 230 

minimize collinearity, we removed explanatory variables that had Pearson correlation 231 

coefficients > 0.6 and variance inflation factors > 2.0. When two variables were highly 232 

correlated, we selected the covariate based on biological relevance and predictive power that we 233 

assessed with univariate plots. All models contained the same 17 environmental and 234 

anthropogenic covariates. Environmental covariates included five land cover classes, elevation 235 

(m), the negative cosine of aspect such that south = 1.0 and north = -1.0, slope (degrees), 236 

proximity to forest edge (km), proximity to large patch of vegetated habitat greater than 9 km2 237 

(Proctor et al. 2015), and an indicator variable for whether the area had burned since 1960. See 238 

Appendix S1: Table S2 for details. 239 

Covariates for anthropogenic development included proximity to towns (km), proximity 240 

to campgrounds (km), density of formal trails (km/km2, 500 m radius), and indicator variables 241 

for whether the animal was on or off trails and the railway. We classified distance to town based 242 

on a digitized aerial photograph of buildings and developed areas within towns. We excluded 243 

green spaces and golf courses from the town footprint. We predicted that carnivores would select 244 

for trails and the railway as travel routes. We predicted that carnivores would avoid areas near 245 

towns, campgrounds, and areas of high trail density, especially in summer during peak visitation 246 

(Rogala et al. 2011). We lacked direct measures of human activity so we included an interaction 247 

between trail density and the natural logarithm of distance to paved road (km). We assumed that 248 

trail use would be highest near trail heads along paved roads (Rogala et al. 2011, Zhai et al. 249 

2018). We included an interaction between proximity to town and time of day (cosine of hour) 250 
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because we expected stronger avoidance of towns during the day compared to the night 251 

(Hebblewhite and Merrill 2008). We applied a decay term (1 – exp-10 * distance) to the distance 252 

covariates so that the influence of these features had an asymptote near 500 m (Shepherd and 253 

Whittington 2006, Rogala et al. 2011). We scaled all other continuous covariates by their mean 254 

and standard deviation to improve model convergence. 255 

Animal resource selection and responses to anthropogenic development can vary 256 

seasonally. Thus, we defined four seasons and created separate SSF models for each species and 257 

season. We defined seasons based on animal movement, plant phenology, and human visitation 258 

rates to BNP. We classified Spring as May and June which included plant emergence, ungulate 259 

parturition, grizzly bear mating, wolf denning, and moderate levels of human activity; Summer as 260 

July and August during the height of berry season and peak visitation; and Fall as September and 261 

October when plants have senesced and the study area received moderate levels of visitation, and 262 

Winter as November through April for wolves with lower levels of visitation in backcountry 263 

areas and high levels of visitation near ski hills and towns.  264 

Connectivity and habitat degradation 265 

 We simulated individual-based carnivore movements from our SSFs across three 266 

landscape scenarios, from which we estimated connectivity and changes in the amount of high 267 

quality habitat (Figure 1). We used a combination of the hidden Markov models and SSFs to 268 

simulate carnivore movements throughout the study area (Figure 1, Appendix S1: Figure 1). We 269 

simulated 200,000 paths within the 17,000 km2 study are for each species, season, and landscape 270 

scenario. We selected random start locations and initial directions of travel.  For each path, we 271 

sampled s = 720 movement states (steps, s) with two-hour fix interval across t = 60 days from the 272 

hidden Markov models. We chose 60 days to match the duration of spring, summer, and fall 273 
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seasons used in the step selection analyses. For each step, we sampled n = 20 step lengths and 274 

turn angles from the state-specific movement parameters. We extracted environmental attributes 275 

of the proposed locations and used the combination of environmental attributes and movement 276 

parameters to calculate probability of use conditional on the 20 sample locations (equation 1). 277 

We probabilistically selected one of the proposed locations and continued to the next step. We 278 

repeated this process for all steps in the path. 279 

The study occurred in a rugged environment where steep, rocky mountain ranges can 280 

influence animal movements. We therefore defined unavailable habitat as barren landscapes with 281 

slopes > 35 degrees, which were used by grizzly bears and wolves 1.9 and 0.2% of the time, 282 

respectively. We also classified towns and developed areas as unavailable habitat. To create 283 

realistic movement paths, we reduced the probability of simulated steps jumping across 284 

mountain ranges and towns by sampling four equidistant locations along proposed steps. We 285 

rejected steps if any of those locations occurred in the unavailable habitat. We minimized 286 

boundary effects on spatial predictions of use by terminating paths when > 40% of the proposed 287 

steps occurred outside the study area and by setting the study area boundary > 30 km from the 288 

towns of Banff and Canmore. Finally, start locations could occur in poor quality habitat, so we 289 

removed the first twelve (t = 1 day) steps from each path while paths oriented to higher quality 290 

habitat. 291 

We simulated animal movements for three scenarios with varying levels of anthropogenic 292 

development: reference, current, and future. First, we removed the effect of towns, roads, and the 293 

railway from SSFs when simulating paths under reference conditions, which we used as a null 294 

model of movement (Heinemeyer et al. 2019, Brennan et al. 2020). In reality, First Nations have 295 

occupied the study area for over 11,000 years (Langemann 2011) and the reference condition 296 
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underestimated the historical effects of human activity. Second, we simulated animal movements 297 

under current conditions from which we developed our SSFs. Finally, we simulated animal 298 

movements under one future scenario with expanded development and trail density. We 299 

modified the town of Canmore’s developed footprint to reflect residential and business 300 

development proposals in the 2020 Smith Creek and Three Sisters area structure plans 301 

(QuantumPlace Developments Ltd. 2020b, a). We excluded green spaces and golf courses from 302 

the developed footprint given that carnivores can use these areas for movement. The developed 303 

footprint for the town of Banff is legally fixed under the National Parks Act and is not expected 304 

to increase. However, like many mountain towns, the creation and intensity of use on informal 305 

trails has increased near Banff and Canmore over the last ten years. We, thus added an inventory 306 

of informal trails to the existing formal trail network and updated metrics of trail density. 307 

Increased use of existing and new recreational trails has the potential to reduce wildlife 308 

connectivity (Gutzwiller et al. 2017). We simulated animal movements with the updated town 309 

and trail layers to estimate future connectivity. 310 

To calculate connectivity, we created digital, cross-valley transects through the towns of 311 

Banff and Canmore (Figure 2, Figure 3). We aligned transects so that they crossed the narrowest 312 

movement corridors under current condition, where the combination of rugged topography and 313 

development created pinch points to movement. We counted both the number of simulated paths 314 

and individual steps that crossed transects on the north and south sides of the valley. We used 315 

number of unique paths that crossed the transects as our metric of connectivity to reflect the 316 

population level value of corridors. We calculated connectivity as 100 * ncross / nreference, where 317 

ncross was the number of unique paths that crossed in current or future conditions and nreference was 318 
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the number of unique paths that crossed under reference conditions with no anthropogenic 319 

development. We evaluated how connectivity changed with species, seasons, and time period.  320 

Finally, we examined the effects of anthropogenic development on the amount of high 321 

quality habitat available to carnivores. We calculated UDs as the number of simulated locations 322 

that occurred within each 210 x 210 m2 grid cell and then divided the tallies by the number of 323 

total simulated locations (Signer et al. 2017). We classified reference UDs into three equal area 324 

bins representing low, medium, and high quality habitat. We applied the same break points and 325 

habitat classifications to UDs from the current and future scenarios. We then calculated changes 326 

in the amount of high quality habitat. We focussed our analysis within a five km radius of the 327 

Trans Canada Highway between Banff and Canmore (366 km2). The five km radius represented 328 

the 0.99 and 0.95 quantiles of grizzly bear and wolf step lengths, respectively, and the focal 329 

study approximately covered the peak to peak width of the Bow Valley. We calculated the 330 

proportion of high quality habitat degraded due to anthropogenic development relative to 331 

reference conditions (Heinemeyer et al. 2019). For example, our calculation of habitat 332 

degradation under current conditions was (AreaHighReference – AreaHighCurrent)/TotalArea, 333 

whereby AreaHigh represented the area of high quality habitat and TotalArea, represented the 334 

total area of the focal study. Our metric of habitat degradation thus accounted for both decreased 335 

UDs near anthropogenic developments and concurrent increased UDs as simulated animals spent 336 

more time in less developed portions of the landscape. We visually evaluated how habitat 337 

degradation varied with species, seasons, and time period. 338 

 339 
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Results 340 

Movement state 341 

We analysed GPS data from 34 grizzly bears (19 females, 15 males, 72,217 locations) and 33 342 

wolves (13 females, 20 males, 84,434 locations; Appendix S1: Figure S1 – S3). Hidden Markov 343 

models revealed that grizzly bears and wolves spent a similar proportion of time in their fast state 344 

(p = 0.64 and 0.60 respectively). Grizzly bears and wolves had the same median step lengths for 345 

slow steps (16 m) (Appendix S2: Table S1). Wolf fast steps (median = 1270 m) were on average 346 

2.5 times longer than grizzly bear fast steps (median = 496 m). Grizzly bears had a much 347 

stronger diurnal cycle of movement states than wolves (Figure 4). Grizzly bears increased their 348 

proportion of time in slow states at night. Wolves had a weaker and sometimes opposite diurnal 349 

cycle. Wolves increased the proportion of time in slow states at night during fall and winter only. 350 

Wolves increased the proportion of time in fast states at night during spring and summer, which 351 

coincided with the longest days of the year.  352 

Step and resource selection: responses to development across scales 353 

As expected, we found that wolves and grizzly bears generally avoided areas with high 354 

levels of human activity in all seasons (Figure 5, Figure 6, Supplementary Table S2). Both 355 

species strongly avoided areas near towns (median β = 1.11, range from 0.44 to 2.08) and 95% 356 

CI’s excluded zero on 6 of the 7 models (Figure 4). Grizzly bear and wolf responses to areas near 357 

town changed slightly at night, though the effect size was small compared to avoidance of towns 358 

in general. Parameter estimates for distance to town were >10 times larger than parameter 359 

estimates for the distance to town by night time interaction (Figure 5, Figure 6). Grizzly bear 360 

avoidance of towns diminished at night in all seasons (e.g., summer β = -0.05, SE = 0.01). Wolf 361 

response to towns diminished at night during winter (β = -0.05, SE = 0.01), but strengthened 362 
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during summer (β = -0.05, SE = 0.01), and fall (β = -0.05, SE = 0.01). Grizzly bears and wolves 363 

avoided areas with high trail density near paved roads (median β = -0.93, range from -1.92 to 364 

0.151) with all but one estimate being less than zero and five out of seven models with 95% CI’s 365 

that excluded zero. Carnivore responses to trail density tapered with distance to paved roads 366 

(Figure 6). Wolves avoided areas near vehicle accessible campgrounds during summer when 367 

campgrounds were most active (e.g., summer β = 1.00, SE = 0.41).  Grizzly bears avoided areas 368 

near campgrounds during the fall but not during the summer berry season nor in the spring. 369 

Grizzly bears and wolves weakly selected trails during all seasons with the strongest selection for 370 

grizzly bears in summer and for wolves in winter. Grizzly bears selected the railway during the 371 

spring and fall and avoided the railway during the summer berry season. Wolves strongly 372 

selected the railway during winter and weakly selected the railway at other times of the year. 373 

RSF models had similar parameter estimates compared to SSF models confirming 374 

minimal scale-dependence of our SSF results (Figure 5, Appendix S2: Table S3, Table S4). Most 375 

(84%) of the SSF and RSF anthropogenic parameters had the same positive or negative sign. 376 

Most sign differences occurred for parameters with 95% CI’s that overlapped zero. From a 377 

management perspective, the biggest difference in parameter estimates was that the grizzly bear 378 

fall SSF suggested weak avoidance of areas near town (β = 0.44, SE = 0.26), whereas the RSF 379 

suggested grizzly bears selected areas near town (β = -0.81, SE = 0.13). Otherwise, all other 380 

parameter estimates for distance to town were positive. Overall, the RSF results supported the 381 

scale-independence of our SSF results regarding carnivore avoidance of areas near towns and 382 

areas with high trail density. 383 
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Connectivity and habitat degradation 384 

Simulated paths under reference, current, and future land use scenarios had similar 385 

movement attributes compared observed paths (e.g., Figure 2, Figure 3). Both simulated and 386 

observed paths contained series of short steps with high turn angles interspersed with long 387 

distance movements with strong directional persistence. Under reference conditions, simulated 388 

paths were concentrated in the valley bottoms and used areas within the current footprint of 389 

towns. The combination of towns and rugged topography constrained the movements of both 390 

observed and simulated paths under current and future scenarios. This resulted in UDs with low 391 

frequencies of occurrence near towns and areas of high trail density and high UDs in more 392 

remote areas of the Bow Valley (Appendix S1: Figures S4 - S5). 393 

Grizzly bear and wolf connectivity across digital transects on the north and south sides of 394 

Banff and Canmore ranged between 7 and 45% under current conditions with mean values of 395 

21% for grizzly bears and 25% for wolves (Figure 7). Grizzly bear and wolf connectivity further 396 

decreased from current to future conditions an average of 6% and 5% respectively (range = 0 to 397 

13%). Connectivity for grizzly bears and wolves was highest in the spring. Grizzly bear 398 

connectivity was lowest in the summer, whereas wolf connectivity was lowest in the fall and 399 

winter. Grizzly bear connectivity was on average higher along the northern transects compared to 400 

the southern transects. Wolf connectivity was highest on the northern side of Banff and lowest on 401 

the southern side of Canmore.  402 

Grizzly bears and wolves UDs showed high intensity of use through the valley bottoms 403 

including areas near Banff and Canmore under reference conditions (Figure 2, Figure 3, 404 

Supplementary Figures S4 and S5). UDs under current and future conditions showed a 405 

cumulative decrease in use in and around the towns. The decrease in use near towns was offset 406 
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by increased use in more remote areas of the valley. The proportion of high quality habitat 407 

degraded due to anthropogenic development increased from current (mean = 0.145, range = 408 

0.088 to 0.183) to future conditions (mean = 0.164, range = 0.126 to 0.198; Figure 8). Habitat 409 

degradation was highest in summer and lowest in the spring and fall for grizzly bears. Habitat 410 

degradation was high for wolves in the summer, fall, and winter, and lowest in the spring. 411 

 412 

Discussion 413 

Our study used a combination of hidden Markov models and SSFs to estimate utilizations, 414 

connectivity, and changes in the amount of high quality due to current and future estimates of 415 

anthropogenic development. Our approach assessed the cumulative effects of multiple 416 

anthropogenic features on carnivore movements and connectivity around the towns of Banff and 417 

Canmore, Alberta, which averaged 23% relative to reference conditions. A scenario of future 418 

development and trail expansion would further reduce connectivity by an average of 5 to 6%. By 419 

using empirically-derived parameters in an individual-based simulation, our approach offers a 420 

tangible response variable for scientists to convey to land use decision makers. For example, 421 

rather than translating how ‘current density’ may change under different scenarios, we are able to 422 

estimate a percent change in the number of animals moving through a corridor under predicted 423 

land use scenarios.  424 

The main advantages of our approach are as follows: 1) simulated movements directly 425 

from an SSF with multiple behavioural states helped create realistic movement paths where 426 

movement decisions were based on resource selection parameters; 2) our approach avoided 427 

transforming SSFs into resistance surfaces used for circuit-theory and cost-distance analyses, 428 

which have an weak theoretical link to movement ecology; and 3) estimates for changes in UDs 429 
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and connectivity have a simpler interpretation and a tighter link to movement probabilities 430 

compared to least-cost and circuit theory based estimates of connectivity. We chose to estimate 431 

connectivity by comparing transect crossing rates of simulated paths through narrow movement 432 

corridors, which in our study area are of conservation concern. Our approach could easily be 433 

expanded to examine the frequency with which paths travel between habitat patches (e.g. Suraci 434 

et al. 2020), between summer and winter ranges (Merkle et al. 2019), across highways with 435 

increased mortality risk (e.g. Quaglietta et al. 2019), or through other areas of conservation 436 

concern.  437 

 Our study supports the growing body of research showing that wildlife avoid some forms 438 

of human activity (e.g. Gaynor et al. 2018, Tucker et al. 2018, Nickel et al. 2020), which can lead 439 

to habitat fragmentation and reductions in connectivity (e.g. Bischof et al. 2017, Hilty et al. 440 

2020, Suraci et al. 2020). Given the global growth in human activity adjacent to protected areas 441 

(Wittemyer et al. 2008), and concurrent impacts of growing recreation in these landscapes 442 

(Gutzwiller et al. 2017), our approach and results emphasize the importance of cumulative 443 

effects assessment in regions surrounding parks and protected areas.   444 

 Numerous studies have found that grizzly bears (Chetkiewicz and Boyce 2009, Morales-445 

González et al. 2020) and wolves (Hebblewhite and Merrill 2008, Rogala et al. 2011, Anton et 446 

al. 2020) avoid human activity, which can contribute to the fragmentation of populations 447 

(Proctor et al. 2012, Bischof et al. 2017). However, few studies have compared the behaviour of 448 

the two species. Wolves in our study exhibited stronger avoidance of towns, similar responses to 449 

trails, and weaker selection for the railway compared to grizzly bears. Grizzly bears and wolves 450 

had higher connectivity estimates in spring, which coincided with lower levels of human activity 451 

and a concentration of food resources and wolf movements to and from den sites in valley 452 
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bottoms. Interestingly, wolf connectivity estimates were slightly higher than grizzly bear 453 

connectivity estimates. One reason for this disconnect could be that wolves had faster speeds of 454 

travel, fewer steps were required to traverse corridors, and perhaps simulated steps could more 455 

easily jump across towns. Parameterizing models using path selection functions or collecting 456 

finer resolution GPS data could help reduce the probability of paths crossing inhospitable 457 

features. For instance, path selection functions can sometimes produced stronger regression 458 

coefficients and better connectivity models compared to SSFs (Zeller et al. 2015, Zeller et al. 459 

2018). Further, we did not assess how individual variability in animal responses to anthropogenic 460 

development affected connectivity (Muff et al. 2020). Simulating movements from random 461 

coefficients could highlight estimates of connectivity for both wary and habituated animals and 462 

could help identify areas likely to have high levels of human wildlife conflict (Buchholtz et al. 463 

2020, Lamb et al. 2020).  464 

Two limitations of our study bear further consideration for similar work in the future. 465 

First, we lacked direct measurements of human activity on trail networks (Alberta Environment 466 

and Parks 2018). Because carnivores typically avoid encounters with people rather than linear 467 

features, our lack of high resolution trail use data likely reduced the effect size and precision of 468 

parameter estimates for trail density. Estimates of recreational activity could be improved by 469 

directly tracking individual movements (Heinemeyer et al. 2019), inferring activity from mobile 470 

device data (Corradini et al. 2021), or modelling spatial and temporal trends in trail use (Ladle et 471 

al. 2019). Better estimates of recreational activity would improve our understanding of how 472 

recreational activity affects wildlife movement and our ability to manage human-wildlife 473 

coexistence (Rogala et al. 2011, Naidoo and Burton 2020). Second, our data consisted of animal 474 

movements within established home ranges rather than dispersal or nomadic movements that are 475 
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important for landscape-scale connectivity (Fattebert et al. 2015). Other studies suggest animals 476 

select different resources and may have increased tolerance for human activity when dispersing 477 

when compared to movement within the home range. For instance, resistance models for Iberian 478 

lynx under-estimated connectivity when they were developed using GPS data from within home 479 

range movements (Blazquez-Cabrera et al. 2016). Further development and evaluation of 480 

connectivity models using dispersal data would be important when evaluating connectivity 481 

between isolated populations (Zeller et al. 2018). 482 

 Restoration actions, such as removal of human footprint, managing or consolidating 483 

recreational activity, and trail closures have potential to improve habitat quality and connectivity. 484 

Wildlife increased their use of corridors and degraded habitat following reductions in human 485 

activity, both in our ecosystem (Duke et al. 2001, Shepherd and Whittington 2006, Whittington 486 

et al. 2019) and around the world (Ngoprasert et al. 2017). For example, early work in our study 487 

area demonstrated positive wildlife connectivity consequences of removing recreational footprint 488 

in the Cascade wildlife corridor on the north side of the Banff town site (Duke et al. 2001), and 489 

positive effects of a temporal road closure on wildlife habitat quality (Whittington et al. 2019).  490 

Our approach for simulating animal movements and assessing connectivity could be applied to 491 

assess the effects of potential restoration actions on fine-scale connectivity (Wang et al. 2014, 492 

Mariela et al. 2020, Suraci et al. 2020). Simulations and restoration actions could focus on 493 

highway mitigations (Quaglietta et al. 2019), reductions in trail density, permanent closures, 494 

seasonal closures, or temporal closures (Whittington et al. 2019). In the face of global increases 495 

in human activity, especially surrounding parks and protected areas (Wittemyer et al. 2008), 496 

proactive habitat protection and restoration actions will be required to maintain habitat quality 497 

and connectivity for wide ranging wildlife (Hilty et al. 2020).  498 
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List of Figures 747 

Figure 1. Workflow to assess connectivity and change in habitat quality using hidden Markov 748 

models, SSFs, and RSFs. We classified movement behaviors into slow and fast states and then 749 

used those states in SSF models and in path simulations. Simulated points can be used to 750 

estimate UDs and changes in habitat quality. Connectivity can be measured by comparing 751 

movement rates through corridors, across transects, or between patches relative to a reference 752 

model of movement with no anthropogenic development. 753 

 754 

Figure 2. Illustration of our connectivity modeling approach in Figure 1 for one species (wolf) 755 

and one season (summer) showing the distribution of observed wolf paths around the town of 756 

Banff, a random sample of simulated paths under three land use scenarios, and expected 757 

utilization distribution. We used hidden Markov models and SSFs to simulate 200,000 758 

movement paths across a two-month window. We tallied the number of paths that crossed the 759 

valley wide transect and calculated connectivity as the ratio of current to reference and future to 760 

reference crossing frequencies.  We further quantified habitat degradation as changes in the area 761 

of high quality habitat relative to reference conditions. 762 

 763 

Figure 3. Illustration of our connectivity modeling approach in Figure 1 for one species (wolf) 764 

and one season (summer) showing the distribution of observed wolf paths around the town of 765 

Canmore, a random sample of simulated paths under three land use scenarios, and expected 766 

utilization distribution. 767 

 768 
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Figure 4. Grizzly bear and wolf movement state probabilities (slow versus fast movements) and 769 

95% CI’s depended on time of day. Movement states were predicted from hidden Markov 770 

models developed from GPS locations. Slow and fast states are interpreted to represent feeding-771 

resting and travel behaviours, respectively. 772 

 773 

Figure 5. Human use related parameter estimates and 95% CI’s from grizzly bear and wolf SSF 774 

and RSF models. We created separate models for each species and season. Positive values reflect 775 

selection for high values of the covariate. 776 

 777 

Figure 6. Grizzly bear and wolf relative selection strength and 95% CI’s as a function of distance 778 

to town and trail density during summer. We calculated relative selection strength by creating 779 

predictions from SSFs while holding all variables constant at their mean except for distance to 780 

town, trail density, time of day (Day = 1200 hours, Night = 2400 hours), and distance to paved 781 

road (Near = 0 km and Far = 20 km). 782 

 783 

Figure 7. Connectivity estimates for grizzly bears and wolves around the towns of Banff and 784 

Canmore under current and future footprints of anthropogenic development. We estimated 785 

connectivity by comparing the number of simulated paths that crossed transects under current 786 

and future conditions to crossing rates from reference conditions. We simulated 200,000 paths 787 

for each species, season, and time period. On average, connectivity decreased from Current to 788 

Future for grizzly bears by 6.5%, and, wolves by 5.1%. Grizzly bears have no connectivity 789 

estimates while they hibernation in winter. 790 

 791 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 25, 2021. ; https://doi.org/10.1101/2021.02.24.432739doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.24.432739
http://creativecommons.org/licenses/by-nc-nd/4.0/


37 

 

Figure 8. Habitat degradation measured as the decrease in proportion of high quality habitat from 792 

reference to current and future time periods. We estimated habitat degradation for the Bow 793 

Valley between Banff and Canmore, Alberta, Canada 794 
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 796 

 797 

Figure 1. Workflow to assess connectivity and change in habitat quality using hidden Markov 798 

models, SSFs, and RSFs. We classified movement behaviors into slow and fast states and then 799 

used those states in SSF models and in path simulations. Simulated points can be used to 800 

estimate UDs and changes in habitat quality. Connectivity can be measured by comparing 801 

movement rates through corridors, across transects, or between patches relative to a reference 802 

model of movement with no anthropogenic development.   803 
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Figure 2. Illustration of our connectivity modeling approach in Figure 1 for one species (wolf) 805 

and one season (summer) showing the distribution of observed wolf paths around the town of 806 

Banff, a random sample of simulated paths under three land use scenarios, and expected 807 

utilization distribution. We used hidden Markov models and SSFs to simulate 200,000 808 

movement paths across a two-month window. We tallied the number of paths that crossed the 809 

valley wide transect and calculated connectivity as the ratio of current to reference and future to 810 

reference crossing frequencies.  We further quantified habitat degradation as changes in the area 811 

of high quality habitat relative to reference conditions.    812 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 25, 2021. ; https://doi.org/10.1101/2021.02.24.432739doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.24.432739
http://creativecommons.org/licenses/by-nc-nd/4.0/


41 

 

 813 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 25, 2021. ; https://doi.org/10.1101/2021.02.24.432739doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.24.432739
http://creativecommons.org/licenses/by-nc-nd/4.0/


42 

 

Figure 3. Illustration of our connectivity modeling approach in Figure 1 for one species (wolf) 814 

and one season (summer) showing the distribution of observed wolf paths around the town of 815 

Canmore, a random sample of simulated paths under three land use scenarios, and expected 816 

utilization distribution.  817 
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 818 

 819 

Figure 4. Grizzly bear and wolf movement state probabilities (slow versus fast movements) and 820 

95% CI’s depended on time of day. Movement states were predicted from hidden Markov 821 

models developed from GPS locations. Slow and fast states are interpreted to represent feeding-822 

resting and travel behaviours, respectively.  823 
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 824 

 825 

Figure 5. Human use related parameter estimates and 95% CI’s from grizzly bear and wolf SSF 826 

and RSF models. We created separate models for each species and season. Positive values reflect 827 

selection for high values of the covariate.  828 
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 829 

  830 

Figure 6. Grizzly bear and wolf relative selection strength and 95% CI’s as a function of distance 831 

to town and trail density during summer. We calculated relative selection strength by creating 832 

predictions from SSFs while holding all variables constant at their mean except for distance to 833 

town, trail density, time of day (Day = 1200 hours, Night = 2400 hours), and distance to paved 834 

road (Near = 0 km and Far = 20 km). 835 

  836 
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 837 

Figure 7. Connectivity estimates for grizzly bears and wolves around the towns of Banff and 838 

Canmore under current and future footprints of anthropogenic development. We estimated 839 

connectivity by comparing the number of simulated paths that crossed transects under current 840 

and future conditions to crossing rates from reference conditions. We simulated 200,000 paths 841 

for each species, season, and time period. On average, connectivity decreased from Current to 842 

Future for grizzly bears by 6.5%, and, wolves by 5.1%. Grizzly bears have no connectivity 843 

estimates while they hibernation in winter. 844 

  845 
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 846 

Figure 8. Habitat degradation measured as the decrease in proportion of high quality habitat from 847 

reference to current and future time periods. We estimated habitat degradation for the Bow 848 

Valley between Banff and Canmore, Alberta, Canada. 849 

 850 
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