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The validity of research results depends on the reliability of
analysis methods. In recent years, there have been concerns
about the validity of research that uses diffusion-weighted MRI
(dMRI) to understand human brain white matter connections
in vivo, in part based on reliability of the analysis methods used
in this field. We defined and assessed three dimensions of reli-
ability in dMRI-based tractometry, an analysis technique that
assesses the physical properties of white matter pathways: (1)
reproducibility, (2) test-retest reliability and (3) robustness. To
facilitate reproducibility, we provide software that automates
tractometry (https://yeatmanlab.github.io/pyAFQ).
In measurements from the Human Connectome Project, as well
as clinical-grade measurements, we find that tractometry has
high test-retest reliability that is comparable to most standard-
ized clinical assessment tools. We find that tractometry is also
robust: showing high reliability with different choices of anal-
ysis algorithms. Taken together, our results suggest that trac-
tometry is a reliable approach to analysis of white matter con-
nections. The overall approach taken here both demonstrates
the specific trustworthiness of tractometry analysis and outlines
what researchers can do to demonstrate the reliability of com-
putational analysis pipelines in neuroimaging.
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Introduction1

The white matter of the brain contains the long-range connec-2

tions between distant cortical regions. The integration and3

coordination of brain activity through the fascicles contain-4

ing these connections is important for information processing5

and for brain health (1, 2). Using voxel-specific directional6

diffusion information from diffusion-weighted MRI (dMRI),7

computational tractography produces three-dimensional tra-8

jectories through the white matter within the MRI volume9

that are called “streamlines” (3, 4). Collections of streamlines10

that match the location and direction of major white matter11

pathways within an individual can be generated with different12

strategies: using probabilistic (5, 6) or streamline-based (7, 8)13

atlases, or known anatomical landmarks (9–12). Because14

these are models of the anatomy, we refer to these estimates15

as “bundles” to distinguish them from the anatomical path-16

ways themselves. The delineation of well-known anatomical17

pathways overcomes many of the concerns about confounds18

in dMRI-based tractography (13, 14), because “brain connec-19

tions derived from diffusion MRI tractography can be highly20

anatomically accurate – if we know where white matter path-21

ways start, where they end, and where they do not go” (15).22

The physical properties of the tissue affect the diffusion23

of water within the brain and the microstructure of tissue24

within the white matter along the length of computationally-25

generated bundles can be assessed using a variety of mod-26

els (16, 17). Taken together, computational tractography,27

bundle recognition and diffusion modeling provide so-called28

“tract profiles”: estimates of microstructural properties of29

tissue along the length of major pathways. This is the ba-30

sis of tractometry: statistical analysis that compares different31

groups, or assesses individual variability in brain connection32

structure (9, 18–21). For the inferences made from tractome-33

try to be valid and useful, tract profiles need to be reliable.34

In the present work, we provide an assessment of three dif-35

ferent ways in which scientific results can be reliable: repro-36

ducibility, test-retest reliability, and robustness. These terms37

are often debated and conflicting definitions for these terms38

have been proposed (22, 23). Here, we use the definitions39

proposed in (24). Reproducibility is defined as the case in40

which data and methods are fully accessible and usable: run-41

ning the same code with the same data should produce an42

identical result. Use of different data (e.g., in a test-retest43

experiment) resulting in quantitatively comparable results44

would denote test-retest reliability (TRR). In clinical science45

and psychology in general, TRR (e.g., in the form of inter-46

rater reliability) is considered a key metric of the reliability of47

a measurement. Use of a different analysis approach or dif-48

ferent analysis system (e.g., different software implementa-49

tion of the same ideas) could result in similar conclusions, de-50

noting their robustness against implementation details. The51

recent findings of Botvinik-Nezer et al (25) show that even52

when full computational reproducibility is achieved, the re-53
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sults of analysing a single fMRI dataset can vary significantly54

between teams and analysis pipelines, demonstrating issues55

of robustness.56

The contribution of the present work is three-fold: To57

support reproducible research using tractometry, we de-58

veloped an open-source software library called Auto-59

mated Fiber Quantification in Python (pyAFQ; https:60

//yeatmanlab.github.io/pyAFQ). Given dMRI61

data that has undergone standard preprocessing (e.g., us-62

ing QSIprep (26)), pyAFQ automatically performs tractogra-63

phy, classifies streamlines into bundles representing the ma-64

jor tracts, and extracts tract profiles of diffusion properties65

along those bundles, producing “tidy” CSV output files (27)66

that are amenable to further statistical analysis (Fig. S1). The67

library implements the major functionality provided by a pre-68

vious MATLAB implementation of tractometry analysis (9),69

and offers a menu of configurable algorithms allowing re-70

searchers to tune the pipeline to their specific scientific ques-71

tions (Fig. S2). Second, we use pyAFQ to assess test-retest72

reliability of tractometry results. Third, we assess robustness73

of tractometry results to variations across different models74

of the diffusion in individual voxels, across different bun-75

dle recognition approaches, and across different implemen-76

tations.77

Materials and Methods78

pyAFQ. We developed an open-source tractometry software79

library to support computational reproducibility: Python80

Automated Fiber Quantification (pyAFQ; https://81

github.com/yeatmanlab/pyAFQ). The software re-82

lies heavily on methods implemented in DIPY (28) . Our83

implementation was also guided by a previous MATLAB im-84

plementation of tractometry (mAFQ) (9). More details are85

available in the ’Automated Fiber Quantification in Python86

(pyAFQ)’ section of Supplementary Methods.87

Tractometry. The pyAFQ software is configurable, allowing88

users to specify methods and parameters for different stages89

of the analysis (Fig. S2). Here, we will describe the default90

setting. In the first step, computational tractography methods,91

implemented in DIPY (28), are used to generate streamlines92

throughout the brain white matter (Fig. S1A). Next, the T1-93

weighted MNI template (29, 30) is registered to the anistropic94

power map (APM) (31, 32) computed from the diffusion data,95

that has a T1-like contrast (Fig. S1B) using the symmetric im-96

age normalization method (33) implemented in DIPY (28).97

The next step is to perform bundle recognition, where each98

tractography streamline is classified as either belonging to a99

particular bundle, or discarded. We use the transform found100

during registration to bring canonical anatomical landmarks,101

such as waypoint regions of interest (ROIs) and probability102

maps, from template space to the individual subject’s native103

space. Waypoint ROIs are used to delineate the trajectory of104

the bundles (34). See Table S1 for the bundle abbreviations105

we use in this paper. Streamlines that pass through inclu-106

sion waypoint ROIs for a particular bundle, and do not pass107

through exclusion ROI, are selected as candidates to include108

in the bundle. In addition, a probabilistic atlas (35) is used as109

a tie-breaker to determine whether a streamline is more likely110

to belong to one bundle or another (in cases where the stream-111

line matches the criteria for inclusion in either). For example,112

the corticospinal tract is identified by finding streamlines that113

do pass through an axial waypoint ROI in the brainstem and114

another ROI axially oriented in the white matter of the corona115

radiata, but that do not pass through the midline (Fig. S1C).116

The final step is to extract the tract profile: each streamline is117

resampled to a fixed number of points and the mean value of a118

diffusion-derived scalar (e.g., fractional anisotropy (FA) and119

mean diffusivity (MD)) is found for each one of these nodes.120

The values are summarized by weighting the contribution of121

each streamline, based on how concordant the trajectory of122

this streamline is with respect to the other streamlines in the123

bundle (Fig. S1D). To make sure that profiles represent prop-124

erties of the core white matter, we remove the first and last125

5 nodes of the profile, then further remove any nodes where126

either the FA is less than 0.2 or the MD is greater than 0.002.127

This removes nodes that contain partial volume artifacts (16).128

Data. We used two datasets with test-retest measurements.129

We used Human Connectome Project test-retest measure-130

ments of dMRI for 44 neurologically healthy subjects aged131

22-35 (HCP-TR) (36). The other is an experimental dataset,132

with dMRI from 48 children, 5 years old in age, collected133

at the University of Washington (UW-PREK). More details134

about the measurement are available in the ’Data’ section of135

Supplementary Methods.136

HCP-TR Configurations. We processed HCP-TR with137

three different pyAFQ configurations. In the first configu-138

ration, we used the diffusion kurtosis model (DKI) as the ori-139

entation distribution function (ODF) model. In the second140

configuration, we used constrained spherical deconvolution141

(CSD) as the ODF model. For the final configuration, we142

used RecoBundles (8) for bundle recognition instead of the143

default waypoint ROI approach, and DKI as the ODF model.144

More details are available in the ’Configurations’ section of145

Supplementary Methods.146

Measures of Reliability. Tract recognition of each bundle147

was compared across measurements and methods using the148

Dice coefficient, weighted by streamline count (wDSC) (37).149

Tract profiles were compared with three measures: (1) Pro-150

file reliability: mean intraclass correlation coefficient (ICC)151

across points in different tract profiles for different data,152

which quantifies the agreement of tract profiles (38, 39); (2)153

Subject reliability: Spearman’s rank correlation coefficient154

(Spearman’s ρ) between the mean of the tract profiles across155

individuals, which quantifies the consistency of the mean of156

tract profiles; (3) an adjusted contrast index profile (ACIP) to157

directly compare the values of individual nodes in the tract158

profiles in different measurements. To estimate test-retest159

reliability (TRR), the above measures were calculated for160

each individual across different measurements. To estimate161

robustness, these were calculated for each individual across162

different analysis methods. For example, if we calculate the163
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subject reliability across analysis methods, we would call164

that “subject robustness”. If we calculated subject reliability165

across measurements, we would call that “subject TRR”. We166

explain profile and subject reliability in more detail below;167

we explain wDSC and ACIP in more detail in the ’Measures168

of Reliability’ section of Supplementary Methods169

Profile reliability. We use profile reliability to compare the170

shapes of profiles per bundle and per scalar. Given two sets171

of data (either test-retest or from different analyses), we first172

calculate the ICC between tract profiles for each subject in173

a given bundle and scalar. Then, we take the mean of those174

correlations. We do this for every bundle and for every scalar.175

We call this profile reliability because larger differences in176

the overall values along the profiles will result in a smaller177

mean of the ICC. Consistent profile shapes are important for178

distinguishing bundles. Profile reliability provides an assess-179

ment of the overall reliability of the tract profiles, summariz-180

ing over the full length of the bundle, for a particular scalar.181

We calculate the 95% confidence interval on profile reliabili-182

ties using the standard error of the measurement.183

In some cases, there is low between-subject variance in184

tract profile shape (for example, this is often the case in185

CST). We use ICC to account for this, as ICC will penal-186

ize low between-subject variance in addition to rewarding187

high within-subject variance. Profile reliability is a way of188

quantifying the agreement between profiles. Qualitatively,189

we use four descriptions for profile reliability: excellent (ICC190

> 0.75), good (ICC = 0.60 to 0.74), fair (ICC = 0.40 to 0.59),191

and poor (ICC < 0.40) (40).192

Subject reliability. We calculate subject reliability to compare193

individual differences in profiles, per bundle and per scalar,194

following (41). Given two measurements for each subject,195

we first take the mean of each profile within each individ-196

ual, measurement and scalar. Then we calculate Spearman’s197

ρ from the means from different subjects for a given bundle198

and scalar across the measurements. High subject reliabil-199

ity means the ordering of an individual’s tract profile mean200

among other individuals is consistent across measurements201

or methods. This is akin to test reliability which is computed202

for any clinical measure.203

One downside of subject reliability is that the shape of the204

extracted profile is not considered. Additionally, if one mea-205

surement or method produces higher values for all subjects206

uniformly, subject reliability would not be affected. Instead,207

the intent of subject reliability is to well summarize the208

preservation of relative differences between individuals for209

mean tract profiles. In other words, subject reliability quan-210

tifies the consistency of mean profiles. The 95% confidence211

interval on subject reliabilities are parametric.212

Results213

Tractometry using pyAFQ classifies streamlines into bundles214

that represent major anatomical pathways. The streamlines215

are used to sample dMRI-derived scalars into bundle profiles216

that are calculated for every individual and can be summa-217

rized for a group of subjects. An example of the process and218

result of the tract profile extraction process is shown in Sup-219

plementary Fig. S3, together with the results of this process220

across the 18 major white matter pathways for all subjects in221

the HCP-TR dataset.222

Assessing test-retest reliability of tractometry. In223

datasets with scan-rescan data we can assess test-retest relia-224

bility (TRR) at several different levels of tractometry. For ex-225

ample, the correlation between two profiles provides a mea-226

sure of the reliability of the overall tract profile in that sub-227

ject. Analyzing the Human Connectome Project’s test-retest228

dataset (HCP-TR), we find that for fractional anisotropy (FA)229

calculated using DKI, the values of profile reliability vary230

across subjects (Figure 1A), but they overall tend to be rather231

high, with the average value within each bundle in the range232

0.77 ± 0.05 to 0.92 ± 0.02 and a median across bundles of233

0.86 (Figure 1B). We find similar results for mean diffusivity234

(MD; Fig. S4) and replicate similar results in a second dataset235

(Fig. 3B).236

Fig. 1. FA profile test-retest reliability A: Histograms of individual subject ICC
between the FA tract profiles across sessions for a given bundle. Colors encode
the bundles, matching the diagram showing the rough anatomical positions of the
bundles for the left side of the brain (center). B: Mean (± 95% confidence inter-
val) TRR for each bundle, color-coded to match the histograms and the bundles
diagram, with median across bundles in red.

Subject reliability assesses the reliability of mean tract pro-237

files across individuals. Subject FA TRR in the HCP-TR238

also tends to be high, but the values vary more across bun-239

dles with a range of 0.57 ± 0.24 to 0.85 ± 0.12 and a median240

across bundles of 0.73. We can see that subject TRR is lower241

than profile TRR (Figure 2). This trend is consistent for MD242

(Fig. S5) as well as for another dataset (Fig. 3C).243

Test-retest reliability of tractometry in different imple-244

mentations, datasets, and tractography methods. We245
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Fig. 2. Subject test-retest reliability A: Mean tract profiles for a given bundle and
the FA scalar for each subject using the first and second session of HCP-TR. Colors
encode bundle information, matching the core of the bundles (center). B: subject
reliability is calculated from the Spearman’s ρ of these distributions, with median
across bundles in red (± 95% confidence interval).

compared TRR across datasets and implementations. In both246

datasets, we found high TRR in the results of tractography247

and bundle recognition: wDSC was larger than 0.7 for all248

but one bundle (Fig. 3A): the delineation of the anterior for-249

ceps (FA bundle) seems relatively unreliable using pyAFQ250

in the UW-PREK dataset (using the FA scalar, pyAFQ sub-251

ject TRR is only 0.37 ± 0.28 compared to mAFQ’s 0.84 ±252

0.10). We found overall high profile TRR that did not always253

translate to high subject TRR (Fig. 3B-G). For example, for254

FA in UW-PREK, median profile TRRs are 0.75 for pyAFQ255

and 0.77 for mAFQ while median subject TRRs are 0.70 for256

pyAFQ and 0.75 for mAFQ. Note that profile and subject257

TRR have different denominators (for example, subjects that258

have similar mean profiles to each other would have low sub-259

ject TRR, even if the profiles are reliable, because it is harder260

to distinguish between subjects in this case). mAFQ is one of261

the most popular software pipelines currently available for262

tractometry analysis, so it provides an important point for263

comparison. In comparing different software implementa-264

tions, we found that mAFQ has higher subject TRR relative265

to pyAFQ in the UW-PREK dataset, when TRR is relatively266

low for pyAFQ (see the FA bundle, CST L, and ATR L in267

Fig. 3C). On the other hand, in the HCP-TR dataset pyAFQ268

we used the RTP pipeline (42, 43), which is an extension of269

mAFQ, and found that pyAFQ tends to have slightly higher270

profile TRR than RTP for MD, but slightly lower profile TRR271

for FA (Fig. 3D). The pyAFQ and RTP subject TRR are272

highly comparable (Fig. 3E). In FA, the median pyAFQ sub-273

ject TRR for FA is 0.76 while the median RTP subject TRR is274

0.74. Comparing different ODF models in pyAFQ, we found275

that the DKI and CSD ODF models have highly similar TRR,276

both at the level of wDSC (Fig. 3A), as well as at the level of277

profile and subject TRR (Fig. 3F-G).278

Robustness: comparison between distinct tractogra-279

phy models and bundles recognition algorithms. To as-280

sess the robustness of tractometry results to different models281

and algorithms, we used the same measures that were used to282

calculate TRR.283

Tractometry results can be robust to differences in ODF284

models used in tractography. We compared two algorithms:285

tractography using DKI- and CSD-derived ODFs. The286

weighted Dice similarity coefficient (wDSC) for this com-287

parison can be rather high in some cases (e.g., the uncinate288

and corticospinal tracts, Figure 4A), but produce results that289

appear very different for some bundles, such as the arcuate290

and superior longitudinal fasciculi (ARC and SLF) (see also291

Figure 4D). Despite these discrepancies, profile and subject292

robustness are high for most bundles (median FA of 0.77293

and 0.75, respectively) (Figure 4B,C). In contrast to the re-294

sults found in TRR, MD subject robustness is consistently295

higher than FA subject robustness. The two bundles with296

the most marked differences between the two ODF models297

are the SLF and ARC (Figure 4D). These bundles have low298

wDSC and profile robustness, yet their subject robustness re-299

mains remarkably high (In FA, 0.75 ± 0.17 for ARC R and300

0.88 ± 0.09 for SLF R) (Figure 4C). These differences are301

partially explained due to the fact that there are systematic302

biases in the sampling of white matter by bundles generated303

with these two ODF models, as demonstrated by the non-304

zero adjusted contrast index profile (ACIP) between the two305

models (Figure 4E).306

Most white matter bundles are highly robust across bundle307

recognition methods. We compared bundle recognition with308

the same tractography results using two different approaches:309

the default waypoint ROI approach (9), and an alternative ap-310

proach (RecoBundles) that uses atlas templates in the space311

of the streamlines (44). Between these algorithms, wDSC is312

around or above 0.6 for all but one bundle, ILF R (Figure 5).313

There is an asymmetry in the ILF atlas bundle(7), which re-314

sults in discrepancies between ILF R recognized with way-315

point ROIs and with RecoBundles. Despite this bundle, we316

find high robustness overall. For MD, the first quartile subject317

robustness is 0.82 (Figure 5C, D).318

Tractometry results are robust to differences in software im-319

plementation. Overall, we found that robustness of tractom-320

etry across these different software implementations is high321

in most white matter bundles. In the mAFQ/pyAFQ com-322

parison, most bundles have a wDSC around or above 0.8,323

except the two callosal bundles (FA bundle and FP), which324

have a much lower overlap (Fig. 6A). Consistent with this325

pattern, profile and subject robustness is also overall rather326

high (Fig. 6B, C). The median values across bundles are 0.71327

and 0.77 for FA profile and subject robustness, respectively.328
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Fig. 3. wDSC, profile, and subject TRR of: pyAFQ and mAFQ on UW-PREK; pyAFQ on HCP-TR using different ODF models; and RTP on HCP-TR. Colors indicate
bundle. In A: texture indicates the dataset and methods being compared. Error bars show the 95% confidence interval. B, D, and F show profile TRR and C, E, and G show
subject TRR. Profile and subject TRR calculations are demonstrated with HCP-TR using DKI in figures 1 and 2 respectively. In B and C, we compare the TRR of mAFQ and
pyAFQ on UW-PREK. In D and E, we compare pyAFQ and RTP on HCP-TR using only single shell data. In F and G, we compare DKI and CSD TRR on HCP-TR. Point
shapes indicate the extracted scalar. The red dotted line is equal TRR between methods.
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Fig. 4. ODF model robustness. We compared DKI- and CSD-derived tractography. Colors encode bundle information as in Figures 1 and 2. Textured hatching encodes
FA/MD information. A wDSC robustness. B Profile robustness. C Subject robustness. Error bars represent 95% confidence interval. D, E Adjusted contrast index profile
(ACIP) between ARC L and SLF L tract profiles of each algorithm. Positive ACI indicates DKI found a higher value of FA than CSD at that node. The 95% confidence interval
on the mean is shaded. F Tractography and bundle recognition results for ARC L and SLF L respectively for one example subject.

For some bundles, like the right and left uncinate, there is329

large agreement between pyAFQ and mAFQ (for subject FA:330

UNC L ρ = 0.90 ± 0.07, UNC R ρ = 0.89 ± 0.08). How-331

ever, the callosal bundles have particularly low mean diffu-332

sivity (MD) profile robustness (Fig. 6B) (0.07 ± 0.09 for FP,333

0.18±0.09 for FA).334

The robustness of tractometry to the differences between the335

pyAFQ and mAFQ implementation depends on the bundle,336

scalar, and reliability metric. In addition, for many bundles,337

the ACIP between mAFQ and pyAFQ results is very close338

to 0, indicating no systematic differences (Fig. 6D). In some339

bundles – the corticospinal tract (CST) and the anterior thala-340

mic radiations (ATR) – there are small systematic differences341

between mAFQ and pyAFQ. In the Forceps Posterior (FP),342

pyAFQ consistently finds smaller FA values than mAFQ in a343

section on the left side. Notice that the forceps anterior has344

an ACIP that deviates only slightly from 0, even though the345

forceps recognitions did not have as much overlap as other346

bundle recognitions (see Fig. 6A).347

Discussion348

Previous work has called into question the the reliability349

of neuroimaging analysis (e.g., (25, 45, 46)). We assessed350

the reliability of a specific approach, tractometry, which351

is grounded in decades of anatomical knowledge, and we352

demonstrate that this approach is reproducible, reliable and353

robust. A tractometry analysis typically combines the out-354

puts of tractography with diffusion reconstruction at the level355

of the individual voxels within each bundle. One of the ma-356

jor challenges facing researchers who use tractometry is that357

there are many ways to analyze diffusion data, including dif-358

ferent models of diffusion at the level of individual voxels;359

techniques to connect voxels through tractography; and ap-360

proaches to classify tractography results into major white361
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Fig. 5. Recognition algorithm robustness. A wDSC. B Profile robustness. C Subject robustness. Error bars show the 95% confidence interval. D The ILF R FA ACIP, where
positive ACI indicates RecoBundles found a higher value of FA than the waypoint ROIs approach at that node. E shows the ILF R found by each algorithm for an example
subject.

matter bundles. Here, we analyzed the reliability of tractome-362

try analysis at several different levels. We analyzed both test-363

retest reliability of tractometry results and their robustness to364

changes in analytic details, such as choice of tractography365

method, bundle recognition algorithm, and software imple-366

mentation (Fig 6).367

Test-retest reliability of tractometry. Test-retest reliabil-368

ity (TRR) of tractometry is usually rather high, comparable369

in some tracts and measurements to the TRR of the measure-370

ment. In comparing the HCP-TR analysis and UW-PREK371

analysis, we note that higher measurement reliability goes372

hand in hand with tractometry reliability.373

In terms of the anatomical definitions of the bundles, quan-374

tified as the TRR wDSC, we find reliable results in both375

datasets and with both software implementations and both376

tractography methods that we tested. With pyAFQ we found377

a relatively low TRR in the frontal callosal bundle (FA bun-378

dle) in the UW-PREK dataset. This could be due to the sen-379

sitivity of the definition of this bundle to susceptibility dis-380

tortion artifacts in the frontal poles of the two hemispheres.381

This low TRR was not found with mAFQ, suggesting that382

this low TRR is not a necessary feature of the analysis, and is383

a potential avenue for improvement to pyAFQ. While the two384

implementations were created by teams with partial overlap385

and despite the fact that pyAFQ implementation drew both386

inspiration as well as specific implementation details from387

mAFQ, many details of implementation still differ substan-388

tially. For example, the implementations of tractography al-389

gorithms are quite different – pyAFQ relies on DIPY (28)390

for its tractography, while mAFQ uses implementations pro-391

vided in Vistasoft (47). The two pipelines also use differ-392

ent registration algorithms, with pyAFQ relying on the SyN393

algorithm (33), while mAFQ relies on registration methods394

implemented as part of the Statistical Parametric Mapping395

(SPM) software (48). These differences may explain the dis-396

Kruper et al. | bioRχiv | 7

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 28, 2021. ; https://doi.org/10.1101/2021.02.24.432740doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.24.432740
http://creativecommons.org/licenses/by/4.0/


Fig. 6. Robustness between pyAFQ and mAFQ on UW-PREK session # 1 data. A ACIP between the FA tract profiles from UW-PREK using pyAFQ and mAFQ. Positive ACI
indicates pyAFQ found a higher value than mAFQ at that node. The 95% confidence interval on the mean is shaded. Robustness in wDSC (B) bundle profiles (C) and across
subjects (D). Error bars show the 95% confidence interval.
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crepancies observed.397

We also find that TRR is high at the level of profiles within398

subjects and mean tract profiles across subjects. This is gen-399

erally observed in both datasets that we examined, and us-400

ing different analysis methods and software implementations.401

For the UW-PREK dataset, subject TRR tends to be higher402

in mAFQ than in pyAFQ. On the other hand, for the HCP-403

TR dataset, pyAFQ subject TRR tends to be higher than that404

obtained with RTP, which is a fork and extension of mAFQ405

(42, 43). Generally, TRR of FA profiles and also TRR of406

mean FA across subjects tend to be higher than those of MD.407

This could be because the assessment of MD is more sensi-408

tive to partial volume effects. In contrast to FA, MD is also409

not bounded, which means that extreme values at the bound-410

aries of tissue types can have a substantial effect on TRR.411

Robustness of tractometry. As highlighted in the recent412

work by Botvinik-Nezer et al (25) and in parallel by Schilling413

et al (45), inferences from even a single dataset can vary sig-414

nificantly, depending on the decisions and analysis pipelines415

that are used. The analysis approaches used in tractometry416

embody many assumptions made at the different stages of417

analysis: the model of the signal in each individual voxel, the418

manner in which streamlines are generated in tractography,419

the definition of bundles, and the extraction of tract profiles.420

While TRR is important, it does not guard against systematic421

errors in the analysis approach. One way to test model as-422

sumptions and software failures is to create ground truth data423

against which different methods and implementations can be424

tested (13, 49, 50). However, this approach also relies on425

certain assumptions about the mechanisms that generate the426

data that is considered ground truth, making this approach427

more straightforward for some methods than others. Here,428

we instead assessed the robustness of tractometry results to429

perturbations of analytic components, focusing on the mod-430

elling of ODFs in individual voxels and the approach taken431

to bundle recognition.432

Subject robustness remains high despite differences in the433

spatial extent of bundles. We replicated previous findings434

that the definition of major bundles can vary in terms of their435

spatial extent (quantified via wDSC) (13, 37, 40, 45), depend-436

ing on the software implementation or the ODF model used.437

As we show, low wDSC robustness often corresponds to low438

profile robustness, and vice versa (Fig 6B,C, Fig 4A,B, and439

Fig 5A,B). That is, when two algorithms detect bundles with440

small spatial overlap, the shape of the resulting tract profiles441

are also different from each other. However, low wDSC and442

profile robustness does not always translate to low subject443

robustness. Algorithms can detect bundles with low spatial444

overlap and of different shapes yet still agree on the ordering445

of the mean of the profiles, i.e., which subjects have high or446

low FA in a given bundle. A clear example of this is the SLF447

and ARC in Fig 4 (wDSC and profile robustness are low, yet448

subject robustness is very high). This suggests that tractome-449

try can overcome failures in precise delineation of the major450

bundles by averaging tissue properties within the core of the451

white matter. Conversely, important details that are sensitive452

to these choices may be missed when averaging along the453

length of the tracts. Moreover, this may also reflect biases in454

the measurement that cannot be overcome at either stage of455

the analysis: tractography or bundle recognition.456

Our high subject-level robustness results (Fig 6C, Fig 4C, and457

Fig 5C) dovetail with the results of a recently-published study458

that used tractometry in a sample of 45 participants (51), and459

found high subject-level correlations between the mean tract460

values of FA and MD for two different pipelines: determin-461

istic tractography using the diffusion tensor model (DTI) as462

the ODF model (essentially identical to a pipeline used in our463

supplementary analysis, described in “DTI Configuration”),464

and probabilistic tractography using CSD as the ODF model.465

Consistent with our results on the HCP-TR dataset, slightly466

higher subject robustness was found for MD than for FA.467

Exceptions & Limitations. High profile robustness did not al-468

ways imply high subject robustness (e.g., the FP in Fig 4469

has high profile robustness, but low subject robustness). This470

suggests that there are other sources of between-subject vari-471

ance that do not correspond directly to profile robustness472

within an individual.473

There are still significant challenges to robustness that arise474

from the way in which the major bundles are defined. This475

problem was highlighted in recent work that demonstrated476

that different researchers use different criteria to define bun-477

dles of streamlines that represent the same tract (45). In478

our case, this challenge is represented by the relatively low479

robustness between the waypoint ROI algorithm for bundle480

definition and the RecoBundles algorithm. In this compari-481

son, the wDSC exceeds 0.8 in only one bundle and is below482

0.4 in two cases. While both algorithms identify a bundle of483

streamlines that represents the right ILF, this bundle differs484

substantially between the two algorithms. Even so, profile485

and subject robustness can still be rather high, even in some486

cases in which rather middling overlap is found between the487

anatomical extent of the bundles. This challenge highlights488

the need for more precise definitions of the models of brain489

tracts that are derived from dMRI, but also highlights the490

need for clear, automated and reproducible software to per-491

form bundle recognition.492

In addition to decisions about analysis approach, which may493

be theoretically motivated, software implementations may494

contain systematic errors in executing the different steps and495

different software may be prone to different kinds of failure496

modes. Since other software implementations (9, 42) of the497

AFQ approach have been in widespread use in multiple dif-498

ferent datasets and research settings, we also compared the499

results across different software implementations (Fig. 6).500

While there are some systematic differences between imple-501

mentations, tractometry is overall quite robust to differences502

between software implementations.503

Another important limitation of this work is that we have only504

analyzed samples of healthy individuals. Where brains are505

severely deformed (e.g., in TBI, brain tumors and so forth),506

particular care would be needed to check the results of bundle507

recognition, and separate considerations would be needed in508

order to reach conclusions about the reliability of the infer-509
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ences made.510

Computational reproducibility via open-source soft-511

ware. Reproducibility is a bedrock of science, but achieving512

full computational reproducibility is a high bar that requires513

access to the software, data and computational environment514

that a researcher uses (22). One of the goals of pyAFQ is to515

provide a platform for reproducible tractometry. It is embed-516

ded in an ecosystem of tools for reproducible neuroimaging517

and is extensible. This is shown in Fig. S6 and Fig S2 and is518

further discussed in “Supplementary Discussion of pyAFQ”.519

Results from the present article and supplements can be520

reproduced using a set of Jupyter notebooks provided here:521

https://github.com/36000/Tractometry_522

TRR_and_robustness. After installing the version of523

pyAFQ that we used (0.6), reproduction should be straight-524

forward on standard operating systems and architectures, or525

in cloud computing systems (see code and Supplementary526

Methods). In the UW-PREK dataset, we shared the tract527

profiles and we provide web-based visualizations using a528

tool that previously developed for transparent data sharing529

of tractometry data (52): https://yeatmanlab.530

github.io/UW_PREK_pyAFQ_pre_browser and531

https://yeatmanlab.github.io/UW_PREK_532

pyAFQ_post_browser.533

The HCP-TR dataset is relatively straightforward for others534

to access in its preprocessed form through the HCP, and be-535

cause the study IDs can be openly shared in our code, anyone536

with such access should be able to reproduce the figures in537

full. Using these resources, it should be possible to re-execute538

our workflows and replicate most of our results (53). For ex-539

ample, if other researchers would be interested in comparing540

our TRR results to another tractometry pipeline (e.g., TRAC-541

ULA (11), another popular tractometry pipeline) or another542

bundle recognition algorithm (e.g., TractSeg (54), which uses543

a neural network to recognize bundles, or Classifyber (55),544

which uses a linear classifier), they could do so with the HCP-545

TR dataset, inspired by our scripts, and the visualization tools546

in the pyAFQ software.547

Future Work. There are many aspects of reliability that548

could be further explored. We explored robustness with re-549

spect to ODF models and bundle recognition algorithms; ro-550

bustness could also be explored with respect to: data acquisi-551

tion parameters within the same subject; preprocessing meth-552

ods; profile extraction method (for example, comparing our553

current approach with the BUndle ANalytics (BUAN) (56));554

and the effects of profile realignment on tract profile reliabil-555

ity (57). Another possibility for teasing apart measurement556

and tractography effects would be to test profile TRR using557

the streamline of one scan on the results of the second scan558

(by registering the streamline themselves, to avoid data inter-559

polation in volume registration). This could tease apart the560

effects of tractography from the voxel-level models of tis-561

sue properties, because it is not necessary that these would562

be sensitive to the same constraints (e.g., different sensitiv-563

ity to noise). The methods we demonstrate and resources we564

provide in this paper should be useful for anyone wishing to565

further explore reliability in tractometry.566
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Supplementary Methods1075

Automated Fiber Quantification in Python (pyAFQ). Inspired by a previous MATLAB implementation (9), We developed1076

a software library that automates dMRI-based tractometry analysis. The library is called pyAFQ (Python Automated Fiber1077

Quantification), and it is implemented as open-source software here: https://github.com/yeatmanlab/pyAFQ. The1078

software is developed under the permissive OSI-approved BSD license. It allows users to specify the methods and parame-1079

ters they want to use for tractometry. pyAFQ uses many components of the scientific Python ecosystem (58). In particular,1080

it relies heavily on implementations of algorithms for diffusion reconstruction, orientation determination, tractography and1081

image registration implemented in Diffusion Imaging in Python (DIPY), an open-source, Python library for computational neu-1082

roanatomy (28). The pyAFQ software implements extensive documentation with Sphinx (59), including a gallery of executable1083

examples, implemented using Sphinx Gallery (60). Unit testing is implemented using pytest, with continuous integration im-1084

plemented to test proposed changes to the library, as well as longer nightly tests that check that pipelines of operations are1085

not adversely affected by changes that are introduced in developing the software. pyAFQ’s test suite uses the HARDI data1086

collected for (16), CFIN (61), and data from the Human Connectome Project. pyAFQ can be parallelized across subjects and1087

sessions using dask (62). The analysis performed in this paper primarily used pyAFQ run using Cloudknot (63) on Amazon1088

Web Services (AWS).1089

There are many ways to analyze dMRI data and to estimate tractomery-based tract-profiles. For example, many different1090

models are used to determine the directions of tracking within each voxel and to connect different voxels with a variety of1091

tractography algorithms. Similarly, different models can be used to determine the tissue properties within a voxel. However, it1092

is hard to determine which methods to use, because different methods may be appropriate for different datasets, depending on1093

their characteristics: the measurements conducted, the signal to noise ratio (SNR) of the data and so forth. Software to support1094

analysis of a variety of datasets should make it easy to use many different methods and to compare results between methods.1095

All of the choices the user can make in each of the steps of pyAFQ are delineated below and summarized in Fig. S2. The1096

software implements a library with an object-oriented application programming interface (API), as well as a command-line1097

interface (CLI). Using pyAFQ’s API, pyAFQ can be run with only a few lines of code. The API is also flexible, giving the user1098

the ability to choose which algorithms and parameters to use. For users unfamiliar with python, pyAFQ has a command line1099

interface (CLI) which uses a configuration file written in TOML (64). pyAFQ also has a Boutiques configuration file and can1100

be executed using Boutiques (65).1101

Locating and mapping data (BIDS). The first step in analysis is to find the files that the software will use. pyAFQ relies on1102

pyBIDS (66, 67) to query data that is provided in the BIDS format (68). It looks for dMRI, b-value, and b-vector files stored1103

in standard formats (see https://yeatmanlab.github.io/pyAFQ/usage/data.html for details). Additionally,1104

the user can provide files from other processing pipelines to be used as a brain mask during registration or as start or stop1105

masks during tractography, as well as completed tractography results. We typically use the Nibabel software library to interact1106

with neuroimaging files (69). Following the BIDS standard, the outputs of pyAFQ are put in the BIDS derivatives folder, in a1107

pipeline directory labelled as “afq”. The derivative BIDS format follows as much as possible the draft implementation of the1108

BIDS derivatives for dMRI data.1109

Tractography. There are several methods for computational tractography. The pyAFQ software exposes many of these as op-1110

tions. It allows users to choose from multiple fiber orientation distribution functions (70) that determine the direction of tracking1111

in each step of the process: based on Diffusion Tensor Imaging (DTI) (71, 72), Diffusion Kurtosis Imaging (DKI) (73), Con-1112

strained Spherical Deconvolution (CSD) (74, 75), and Multi-Shell Multi-Tissue Constrained Spherical Deconvolution (MSMT-1113

CSD) (76). Deterministic and probabilistic tractography algorithms can be used and stopping criteria can be implemented for1114

particle filtering tractography, using the continuous map criterion (77) or anatomically-constrained tractography (78). The de-1115

fault tractography setting uses DTI, deterministic direction finding, a max turning angle per step of 30o, one seed per voxel, and1116

retains only streamlines between 10 and 1000mm long. Many of our tractography defaults are inspired by the results of (79)1117

and (9). The default seed and stop masks are created by thresholding FA at 0.2. All of these parameters can be customized1118

using pyAFQ’s API or CLI.1119

Template registration. The user can specify their own template and subject image to register, however pyAFQ also provides four1120

builtin options: register subject non-diffusion weighted image (also known as b0) to the Montreal Neurological Institute (MNI)1121

T2 template (29, 30); register subject FA to a group mean fractional anisotropy (FA) template from the UK Biobank (80, 81);1122

register a subject’s anisotropic power map (APM) (31, 32) to the MNI T1 template; and register subject streamlines to the 161123

bundles human connectome project (HCP) atlas (7) using streamline registration (SLR) (82). The first three of these builtin1124

techniques use the nonlinear Symmetric Diffeomorphic Registration (SyN) (33) after an optional linear preregistration, both1125

implemented in DIPY. pyAFQ uses Templateflow (83) to get MNI T1/T2 templates for registration. The default registration1126

behavior is to consider all b-values under 50 to be b0, mask the subject’s APM using DIPY’s median_otsu image recognition1127

algorithm (84) on the subject b0, and register the masked power map to the masked MNI T1 template. Per default, we chose to1128
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use the APM for registration based on previous findings that show this is a good choice (85) and based on our own experience.1129

All of these parameters can be customized using pyAFQ’s API and CLI.1130

Bundle recognition and cleaning. To identify the streamlines that best represent a particular anatomical pathway, we perform1131

bundle recognition. The default behavior is to perform the initial classification using probability maps, and then segment with1132

waypoint ROIs defined in (86), then filter the classified streamlines by their termination locations, using the AAL atlas (87),1133

where streamlines must be within 4mm of the expected endpoint region. Waypoint ROIs are moved into the subject space and1134

then patched up using the Quickhull Algorithm (88). There is also an option, turned off by default, to clip streamline edges at1135

the ROIs (86).1136

In addition to the waypoint-based recognition described above, pyAFQ also allows the user to choose to use a streamline atlas1137

based bundle recognition method, called RecoBundles (44). Parameters for either algorithm can be customized using pyAFQ’s1138

API and CLI.1139

After recognition, cleaning is performed based on the Mahalanobis distance of each streamline from the mean in each node.1140

This process was originally described in (9). By default, pyAFQ resamples streamlines to 100 points (nodes) and performs1141

5 rounds of cleaning with a distance threshold of 5 standard deviations from the mean of the node coordinates at each point,1142

and a length threshold of 4 standard deviations from the mean length. Cleaning is also stopped if a bundle has less than 201143

streamlines. All of these parameters can be customized using pyAFQ’s API and CLI.1144

Tract Profile Extraction. After cleaning, pyAFQ computes and visualizes tract profiles. The mean profile (called a “tract profile”)1145

is calculated using the same Mahalanobis distance-based weighting strategy as in Yeatman et al. (9), implemented in DIPY.1146

Visualization can be performed using one of two backends: fury (89) or plotly (90), which create either animated gifs or1147

interactive html files respectively. Visualizations are created for the whole brain tractometry and for each individual bundle.1148

Data. We measured the reliability of tractometry using two datasets with contrasting characteristics.1149

Human Connectome Project (HCP-TR). The WU-Minn Human Connectome Project (HCP) (91) includes measurements of1150

diffusion MRI data from almost all of the 1,200 participants. Here, we focus our analysis on a subset of these subjects for1151

which test-retest data are available. We refer to this data as HCP-TR. This dataset contains dMRI data from 44 individuals.1152

This represents a relatively high-quality, high-resolution dataset, with multiple diffusion directions and multiple b-values. The1153

acquisition parameters of HCP-TR are described in detail elsewhere (36). We used data that had been preprocessed through the1154

HCP pipelines, as provided through the AWS Open Data program (https://registry.opendata.aws/hcp-openaccess/).1155

University of Washington Pre-K (UW-PREK). Two measurements were conducted in each participant 1 day apart. These were1156

acquired with 32 directions, b=1,500 s/mm2, 2 mm3 isotropic resolution, TR/TE=7200/83 msec. Data were preprocessed using1157

FSL for eddy current, motion correction, and susceptibility distortion correction. Analysis using the mAFQ was conducted as1158

previously described (9). We converted UW-PREK to BIDS format (68) for input into pyAFQ’s API.1159

We attempted to configure pyAFQ to most closely match the mAFQ configuration. We used robust estimation of tensors by1160

outlier rejection (RESTORE) (92) to fit the DTI model. In tractography, we used 160,000 seeds randomly distributed wherever1161

DTI FA is higher than 0.3. We used only 1 round of cleaning. We ran this on both the UW-PREK pre and post sessions, and1162

compared its reproducibility to the results on the same datasets with mAFQ. We also compared the robustness of the results1163

between the pyAFQ and mAFQ algorithms on the pre-session data only.1164

Configurations. For all configurations, we used the Freesurfer brain segmentation provided by HCP to calculate a permissive1165

brain mask, with all portions of the image not labelled as 0, considered part of the brain. The brain mask is used when fitting1166

the ODF models. We compared the TRR of each configuration, as well as the robustness of the results across configurations.1167

We also compared the TRR of these configurations to the TRR of results published by Lerma-Usabiaga and colleagues (43),1168

denoted RTP.1169

DTI Configuration. In addition to the three configurations enumerated in the present paper, we processed HCP-TR with a fourth1170

configuration. We used only measurements with b-values between 990 and 1010 s/mm2. We used DTI as the ODF model for1171

tractography and profile extraction. We compared this configuration to RTP in 3D,E. We also analysed DTI for robustness and1172

found its results to be nearly identical to DKI.1173

RecoBundles Configuration. One of the configurations we ran on the HCP-TR data used RecoBundles (8). pyAFQ provides1174

programmatic access to two atlases, one being the full 80 bundles human connectome project (HCP) atlas (7), and other being1175

a 16 bundle subset of that atlas. We ran RecoBundles on HCP-TR using the full 80 bundles atlas. We use the following1176

RecoBundles parameter configuration: a model cluster threshold of 1.25, a reduction threshold of 25, no refinement, a pruning1177

threshold of 12, local streamline-based linear registration on with an asymmetric metric. We used this configuration for all 801178

bundles. Multi-shell data and the DKI ODF model were used. We used nonlinear symmetric diffeomorphic registration and a1179

brain mask based on the HCP-provided segmentation.1180
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RTP. As a point of comparison, we used an open dataset of HCP-TR derivatives that was published by Lerma-Usabiaga and1181

colleagues (43). They processed HCP-TR using the Reproducible Tract Profiles (RTP) pipeline (42). This pipeline is a full1182

end-to-end pipeline and system for deployment of analysis that receives as input raw MRI data as acquired on the scanner.1183

While it applies different preprocessing steps and uses different tractography algorithms than mAFQ, relying on MRTRIX for1184

many of these steps (93), the bundle recognition steps closely resemble the ones used in mAFQ, relying on functions that stem1185

from the same MATLAB codebase as mAFQ. The end result of RTP are tract profiles in an easy-to-use and data-science ready1186

JSON format. We denote their results as RTP and compare them to the HCP-TR results computed with pyAFQ.1187

Measures of reliability. pyAFQ gives the user the choice of which underlying algorithms to use when performing tractometry,1188

as shown in Fig. S2. We use this feature of pyAFQ to run multiple analyses on HCP-TR and UW-PREK, which both have test-1189

retest data. The analyses we selected represent only a small subset of the possible configurations of pyAFQ. However, because1190

the software is freely available and easily configurable with the API or CLI, it would be straightforward to test other analyses. To1191

compare the results on test-retest data (TRR) and compare results across analyses (robustness), we use four different measures1192

of reliability. Each one of these measures emphasizes different aspects of reliability.1193

Weighted Dice similarity coefficient (wDSC). The anatomical reliability of bundle recognition solutions is assessed by com-1194

paring their spatial overlap in the white matter volume. First, for every voxel in the white matter, we count the number of1195

streamlines that pass through that voxel for a given bundle, then divide by the total number of streamlines in that bundle. This1196

creates what we call a streamline density map (28). We could compare streamline density maps using a Dice similarity coeffi-1197

cient (94), but that would require applying a threshold to the density maps, and could give a few streamlines a large influence1198

on the calculation. Instead, we use the weighted Dice similarity coefficient (wDSC) (37):1199

D(i, j) =

∑
v∈Vi∩Vj

Wi,v +Wj,v∑
v∈Vi

Wi,v +
∑
v∈Vj

Wj,v

(1)

where v is a voxel index, Wi,v is the streamline density for a bundle i in voxel v, and v‘ are voxels where the two bundles i and1200

j intersect. wDSC provides a measure of the reliability in the spatial extent of bundles, in a manner that is independent from1201

the assessment of tract profiles.1202

Adjusted contrast index profile (ACIP). We use an adjusted contrast index to directly compare the values of individual nodes in1203

the tract profiles in different measurements. For two values (V1, V2) in different profiles, the adjusted contrast index (ACI) is1204

calculated using Eq (2).1205

ACI(V 1,V 2) = 2V2 −V1
V2 +V1

(2)

We multiply by 2 to make the contrast index have comparable values to fractional difference. In contrast to fractional difference,1206

however, the ACI does not require one of the variables to be a reference, andACI(V 1,V 2) = −ACI(V 2,V 1). Calculating and1207

then plotting the ACI for each point between two profiles highlights the differences between profiles, producing the adjusted1208

contrast index profile (ACIP). ACIP emphasizes discrepancies in estimates along the length of the tract in a manner that does1209

not depend on the scale of the measurement (e.g., the different scales of FA and MD).1210
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Supplementary Discussion of pyAFQ1211

pyAFQ is embedded in an ecosystem of tools for reproducible neuroimaging. The wider ecosystem of tools and standards1212

surrounding pyAFQ is shown in Fig. S6. Each tool has its own place in the ecosystem. We rely heavily on implementations1213

of dMRI analysis algorithms implemented in DIPY (28). Reproducibility and interoperability are also facilitated by relying on1214

the BIDS format (68) and the pyBIDS software (66, 67). Requiring a BIDS-like input makes integration with other software in1215

the ecosystem easier. For example, it is fairly straightforward to use the outputs of BIDS-compatible preprocessing pipelines,1216

such as qsiprep (95), as inputs to pyAFQ. Furthermore, the modularity of the pyAFQ pipeline means that outputs of other1217

tractography software (e.g., MRTRIX (96)) can be used as inputs to bundle recognition, with BIDS filters as the metadata that1218

allows finding and incorporating through the right data.1219

Cloud-based processing is going to be more important as large datasets are processed. pyAFQ does not depend on proprietary1220

software and can be scaled to large datasets using cloud computing platforms. In this paper, we used Cloudknot (63) to scale1221

pyAFQ across subjects and methods on AWS. However, because pyAFQ is a Python package, it can easily be run on any cloud1222

computing platform. Computing in the public cloud also supports reproducible research, as computations conducted on the1223

public cloud are perfectly portable to other users of the software. Our software is written with that in mind, including functions1224

that know how to easily access datasets that are already stored in the cloud (e.g., HCP and Healthy Brain Network (97) datasets).1225

We know that one of the most important ways in which users can diagnose whether processing worked as expected is by visually1226

inspecting the results. Thus, we provide several different visualization methods, relying on the VTK-derived FURY library, or1227

on browser-friendly visualizations with Plotly. pyAFQ outputs are also fully compatible with AFQ-Browser, a browser-based1228

tool for interactive visualization and exploration of tractometry results (52).1229

Finally, beyond visualization and summary of the results, and tools for analysis of reliability presented in this work, pyAFQ1230

does not provide a substantial set of tools for statistical analysis of tractometry results. Instead, the outputs of pyAFQ are1231

provided as “tidy” CSV tables (27). This means that it is compatible as inputs to the AFQ Insight tool for statistical analysis1232

(20), but also amenable to many other statistical analysis approaches. This output should facilitate interdisciplinary use of1233

dMRI data, as it is provided in a format that is widely used in statistics and machine learning.1234

pyAFQ is extensible. In general, variability in results would be reduced with a standard pipeline that could be used across all1235

studies and datasets. However, as noted by Lindquist, “studies tend to be too varied for one pipeline to always be appropri-1236

ate” (98). This is particularly true as new measurement techniques, new processing methods and new analysis approaches for1237

dMRI are evolving. Therefore, the pyAFQ pipeline was designed to be flexible, making it easier to reproduce results, while1238

providing researchers with many choices for the appropriate analysis, depending on their data and questions. pyAFQ allows the1239

user to make many decisions (Fig S2), and all of those decisions can be encoded in a configuration file. That configuration file1240

can be used to reproduce the same analysis pipeline given the same version of pyAFQ is used. By providing the configuration1241

file or the arguments passed to the main API, one can clearly satisfy the requirement for a re-executable workflow outlined1242

in (53).1243

To extend to new bundles, pyAFQ allows users to define new queries that recognize bundles that are not part of the set of 181244

detected by the original mAFQ software. For a simple example, we use a set of alternative waypoint ROIs to detect different1245

portions of the corpus callosum (99) (Fig S7A). These alternative ROIs are included in pyAFQ but not used by default. In more1246

complicated example, another set of ROIs is used to recognize the location of the optic radiations (OR; Fig S7). Because these1247

are relatively small and winding, their delineation requires additional components: it requires several waypoint ROIs used not1248

only as inclusion criteria, but also as exclusion criteria, and it requires delineation of endpoints in the cortex that are not part of1249

the AAL atlas, which is used in the standard set of bundles. It also requires oversampling of streamlines, so in order to obtain1250

a proper definition of the OR, tractography is configured to use 125 seeds per voxel (instead of the default 8). All of these1251

components can be integrated into calls to the software API, without needing to change any of its internals. This includes any1252

custom waypoint ROIs, inclusive or exclusive, as well as probability maps, endpoint locations, and whether the bundle crosses1253

the midline.1254
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Supplementary Figures and Tables1255

Fig. S1. The stages of tractometry. A Computational tractography generates streamlines estimating the trajectories of white matter
connections. B An anatomical template is registered to each subjects individual brain. Here, in a mid-coronal view, the MNI T1-weighted
template (29, 30), shown with the locations of waypoint ROIs for classification of the left corticospinal tract (5) (slightly enlarged for
visualization purposes). The subject’s anisotropic power map (APM) (31) is used as the target for registration, due to its similarity to the
T1 contrast. C Classification of the streamlines. Here, in a lateral view, the streamlines classified as belonging to the left corticospinal
tract (CST L), overlaid on a mid-saggital slice of the subject’s non diffusion-weighted (b0) image. The streamlines are shaded by the
subject’s fractional anisotropy (FA) along their length. D, Tract profiles are extracted from the bundles. Here, the FA profile for CST L.
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ARC L Left Arcuate
ARC R Right Arcuate
ATR L Left Thalamic Radiation
ATR R Right Thalamic Radiation
CGC L Left Cingulum Cingulate
CGC R Right Cingulum Cingulate
CST L Left Corticospinal
CST R Right Corticospinal
FA Callosum Forceps Minor
FP Callosum Forceps Major
IFO L Left Inferior Fronto-occipital Fasciculus
IFO R Right Inferior Fronto-occipital Fasciculus
ILF L Left Inferior Longitudinal Fasciculus
ILF R Right Inferior Longitudinal Fasciculus
SLF L Left Superior Longitudinal Fasciculus
SLF R Right Superior Longitudinal Fasciculus
UNC L Left Uncinate
UNC R Right Uncinate

Table S1. Abbreviations of the major white matter pathways recognized by pyAFQ.
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Fig. S2. Choices the user can make for how to run pyAFQ. The colors represent different steps of tractometry. Tractography is shaded
blue, registration is shaded green, recognition is shaded orange, and tract profiles is shaded red. Every rounded box and diamond
contains one or more choices, except for the rounded boxes marked “Done!”, which indicates all choices have been made. Diamonds
indicate the path you take depends on the choice in the diamond. pyAFQ has reasonable defaults for all of these decisions; however it
also makes it simple for the user to customize their tractometry pipeline according to their needs.
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Fig. S3. Extraction of tract profiles from the recognition of white matter into major bundles of streamlines. A Representative
bundles from an example subject in the HCP-TR dataset. Streamlines are colored by bundle, and are shaded by the interpolated FA
value at each point. The background is the mean non diffusion-weighted image (b0). B The same subject’s fractional anisotropy (FA).
C extracting FA along each bundle and plotting the FA in a tract profile. Individual tract profiles are plotted with thin lines and the mean
tract profile is plotted with a thick line. The tract profiles are colored according to their bundle are laid out in positions that reflect their
anatomical positions (compare A and C).
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Fig. S4. MD profile test-retest reliability A: Histograms of individual subject ICC between the MD tract profiles across sessions for a
given bundle. Colors encode the bundles, matching the diagram showing the rough anatomical positions of the bundles for the left side
of the brain (center). B: Mean (± 95% confidence interval) TRR for each bundle, color-coded to match the histograms and the bundles
diagram, with median across bundles in red.
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Fig. S5. Subject test-retest reliability A: Mean tract profiles for a given bundle and the MD scalar for each subject using the first
and second session of HCP-TR. Colors encode bundle information, matching the core of the bundles (center). B: subject reliability
is calculated from the Spearman’s ρ of these distributions, with median across bundles in red. Error bars show the 95% confidence
interval.
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Fig. S6. The pyAFQ software is intergrated into an ecosystem for reproducible tractometry Steps performed by pyAFQ are enclosed
in the dotted rectangle, whereas steps outside that rectangle are performed by other software. Upper left: pyAFQ requires preprocessed
diffusion MRI data in BIDS format. This could be from QSIprep (26) or dMRIprep (https://github.com/nipreps/dmriprep).
Bottom right: pyAFQ outputs can serve as inputs to AFQ Browser for further interaction and visualization (52) or AFQ Insight for
statistical analysis (20). Bottom left: pyAFQ uses DIPY (28) for the implementation of dMRI algorithms. pyAFQ uses Cloudknot (63) to
scale processing by parallelizing across subjects in AWS.

Fig. S7. Callosal bundles from HCP-TR, optic radiations from UW-PREK, found by pyAFQ. Streamlines are colored according to
their bundles and shaded according to FA. The background images are each a b0 slice. A callosal bundles found by pyAFQ on an
example subject from HCP-TR. B optic radiations found by pyAFQ on an example subject from UW-PREK.
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