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ABSTRACT 

The Fathead Minnow (FHM) is one of the most important and widely used model organisms in aquatic 

toxicology.  The lack of a high-quality and well-annotated FHM reference genome, however, has severely 

hampered the efforts using modem ‘omics approaches with FHM for environmental toxicogenomics 

studies. We present here a de novo assembled and nearly complete reference of the fathead minnow 

genome.  Compared to the current fragmented and sparsely annotated FHM genome assembly (FHM1), 

the new highly contiguous and well-annotated FHM reference genome (FHM2) represents a major 

improvement, having 95.1% of the complete BUSCOs (Benchmarking Universal Single-Copy Orthologs) 

and a scaffold N50 of 12.0 Mbps. The completeness of gene annotation for the FHM2 reference genome 

was demonstrated to be comparable to that of the zebrafish (ZF) GRCz11 reference genome.  In addition, 

our comparative genomics analyses between FHM and ZF revealed highly conserved coding regions 

between two species while discovering much more compact gene structure in FHM than ZF. This study 

not only provides insights for assembling a highly repetitive AT-rich genome, but also delivers a critical 

genomic resource essential for toxicogenomics studies in environmental toxicology. 
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INTRODUCTION 

The fathead minnow (Pimephales promelas), found in most surface water across North America, can 
tolerate many harsh conditions. Its short lifespan (1-3 years) and high reproductive rate make it the most 
suitable species in fresh water for aquatic toxicology research and regulatory testing [1] among the most 
commonly used model species for ecological toxicity testing [2-5].  Consequently, there is a huge 
compendium of toxicity studies largely focused on apical responses, such as growth, mortality and 
fecundity, to chemical exposure.  Though these studies have been critical in characterizing the risk posed 
by chemicals, they provide little insight into the underlying mechanisms determining organismal response.  
The stressor response phenotype is ultimately determined through the coordinated interaction of ‘omes 
layers (genome, epigenome, transcriptome, metabolome and proteome) [6], thus incorporating ‘omics 
endpoints into toxicity studies may provide key information regarding chemical mode of action (MOA) and 
factors driving the response phenotype [7].   
 
Of the ‘omics, transcriptomics is perhaps the most well-studied due to the availability and maturity of 

experimental platforms, such as microarrays.  Transcriptomic data have been successful in identifying 

chemical MOA, the etiology of disease, and a prognostic biomarkers [8-10].  The development of a FHM 

microarray has allowed researchers to evaluate across a large proportion of the transcriptome changes in 

gene expression [11-14].  The lack of comparable technological platforms for the other ‘omes has limited 

the characterization of their roles as a determinate of organismal response.   As a result, interpretation of 

transcriptomic data is largely done without consideration of the other omics.  

Over the last 10 years, advancements in next generation sequencing (NGS) have allowed ready access 

to other nucleic acid based ‘omics (epigenetics, genomics) [15].  Further, it has augmented transcriptomic 

data to include alternative splice variants and isoforms [16].  Epigenetics and genotype play significant 

roles in determining transcriptional levels, the development of disease, tissue specific responses, and 

alternative splice variants [7, 17, 18].  As the number of studies that incorporate epigenetics, the analysis 

of alternative splice usage and genomic sequencing has increased, it has become increasingly clear that 

solely focusing on the transcriptome provides only a glimpse of the total systemic response [19].  The 

inclusion of endpoints across other ‘omics provides additional layers of information that can be used 

individually or collectively to address gaps in our current understanding of the toxicological and stress 

responses, as well as the development of prognostic and diagnostic tools.   

The availability of the first FHM genome assembly (dubbed here as “FHM1”), assembled with Illumina 

short-read sequencing, made it possible to use FHM for NGS ‘omics-based studies [20, 21]. However,  

due to the technical limits faced when assembling a genome from short read data the FHM1 assembly is 

highly discontiguous and incomplete, complicating the meaningful association of DNA and RNA sequence 

with gene expression so as to be useful for most NGS applications (e.g., transcriptomics).  As 

interpretation of NGS results is highly dependent on the quality of the reference genome [22], there is a 

clear need for a high-quality reference genome.  We here present a new, highly contiguous, nearly 

complete, and comprehensively annotated FHM genome assembly, which has been used successfully in-

house studies with NGS-based technologies.  The assembly was accomplished using a hybrid of long 

and short-read sequencing, optical mapping and Hi-C technologies.  The quality of the new FHM 

assembly is comparable to, in terms of the complete BUSCOs and RNA-seq read mapping rate, the latest 

ZF GRCz11 assembly, as the latter represents the best characterized fish genome available [23].   

MATERIAL AND METHODS 

Source of specimens 

All fathead minnows were obtained from the culture at the USEPA laboratory in Cincinnati, Ohio. This 

culture was established in 1998 and has since been maintained without any additional fish from the 

outside. Because the genome sequencing effort unfolded over several years, a few different fish were 

used for the different analyses.  
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DNA library construction and sequencing 

Brain and tail muscle tissue was isolated from a single 10-month-old male FHM. High molecular weight 

DNA was isolated using MagAttract (Qiagen, Germantown, MD). Samples were digested overnight using 

proteinase K. DNA concentration was checked on a Nanodrop ND-1000 spectrophotometer (Nanodrop 

Technologies, Wilmington, DE). Integrity of DNA was confirmed using a Bioanalyzer DNA 12000 chip 

(Agilent Technologies, Santa Clara, CA). 

Long-read DNA libraries were prepared and sequenced by the Interdisciplinary Center for Biotechnology 

Research at the University of Florida (UF ICBR) on a PacBio RS II system. Sequencing was done in two 

rounds. For the first round of sequencing, BluePippin (Sage biosciences) was used to select templates 

greater than 20-kb, and libraries were sequenced on 24 SMRTcells using P6-C4 chemistry. For the 

second round of sequencing, the size selection was done using SageELF (Sage biosciences), and 

libraries were sequenced on 48 SMRTcells. 

Short read sequencing libraries were prepared and sequenced by the Research Technology Support 

Facility (RTSF) Genomics Core at Michigan State University. Libraries were prepared using the Illumina 

TruSeq Nano DNA library kit. Sequencing was done in a paired-end 250-base format on both lanes of a 

dual flow cell in Rapid Run mode on an Illumina HiSeq 2500 System. 

RNA library construction and sequencing 

RNA was isolated from multiple tissues from one adult male and one adult female fish, from unfertilized 

eggs, and from several developmental stages ranging from 24-h post-fertilization embryos to 30-d post-

hatch larvae. Total RNA was isolated using Tri-Reagent (Molecular Research Center, Inc.) following 

manufacturer’s protocol and quantified using a Nanodrop ND-1000 (Thermo Fisher Scientific, Wilmington, 

DE). RNA quality was checked using RNA 6000 Nano Assay on an Agilent 2100 Bioanalyzer (Agilent 

Technologies, Santa Clara, CA). Two RNA pools were made: an adult RNA pool made up of equal 

amounts of RNA from each adult tissue, and a juvenile pool made up of equal amounts from eggs, 

embryos and larvae. 

RNA libraries were produced and sequenced by the Research Technology Support Facility (RTSF) 

Genomics Core at Michigan State University. Separate libraries were prepared from the two RNA pools 

using the TruSeq Stranded mRNA LT sample prep kit (Illumina, San Diego, CA). Libraries were run in 

paired-end 150-base format on both lanes of a dual flow cell in Rapid Run mode on an Illumina HiSeq 

2500 System. Base calling was done with Illumina Real Time Analysis software v1.17.21.3 and output 

was converted to FASTQ format with Illumina Bcl2fastq v1.8.4. 

Non-coding RNA library construction and sequencing 

For sequencing of non-coding RNA (ncRNA), RNA was isolated from unfertilized eggs from a single 

female, from four 4-dph fry, from 20 6-dph fry, and from both brain and liver tissue from one adult male 

and one adult female. Samples were homogenized in Tri-reagent and processed using the Direct-zol 

RNA Microprep kit (Zymo Research; Irvine, CA) following manufacturer’s protocol. RNA quality was 

checked using an Agilent Bioanalyzer and RNA 6000 Nano chip. For each sample type, 1000 ng of total 

RNA was used as input for the TruSeq Small RNA Library preparation kit (Illumina) following 

manufacturer’s protocol. Libraries were sent to RTSF where they were pooled, checked for quality, and 

sequenced. The pool was loaded onto one lane of an Illumina HiSeq 4000 flow cell. Sequencing was 

performed in a 1x50bp single read format using HiSeq 4000 SBS reagents.  Additionally, RNA was 

isolated from ten, 6-d post hatch larvae that had been exposed for 48 h to 10 mg EE2/l and ten 

unexposed larvae, following the procedures above. Libraries were made from the two sets of samples, 

and equal amounts of each were combined into one sample that was split and sequenced on two lanes of 

a flow cell.  

Generation of Bionano optical mapping data 

DNA was isolated from blood of a six-month-old male FHM using the Blood and Cell Culture DNA 

Isolation Kit (Bionano Genomics, San Diego, CA). Nucleated fish blood was embedded in agarose plugs 
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for titration in volumes of 1 µL, 3 µL, 8 µL, 20 µL, and 50 µL. A proteinase K digestion was performed, 

followed by additional washes and agarose digestion. The agarose plugs were sent to the McDonnell 

Genome Institute (MGI) Washington University for processing and analysis.  

From this point, the DNA was drop dialyzed and allowed to equilibrate at room temperature for two 

days.  The DNA samples were assessed for quantity and quality using a Qubit dsDNA BR Assay kit and 

CHEF gel.  A 750ng aliquot of DNA was labeled and stained following the ‘Bionano Prep Direct Label and 

Stain’(DLS) protocol.  Once stained, the DNA was quantified using a Qubit dsDNA HS Assay kit and run 

on the Saphyr chip. During the Saphyr run, the DNA were processed through a series of micro and 

nanochannels to prevent the linear DNA from folding back on itself.  Once the DNA is linearized into the 

nanochannels, the data were imaged and captured by the Saphyr instrument.   

HiC library preparation and sequencing 

Liver tissue from a single adult male of 10 - 12 months old was used for chromosome conformation 

capture Hi-C sequencing.  Two HiC libraries were prepared in a similar manner as described previously 

[24]. Briefly, for each library, chromatin was fixed in place with formaldehyde in the nucleus and then 

extracted. Fixed chromatin was digested with DpnII, the 5’ overhangs filled in with biotinylated 

nucleotides, and then free blunt ends were ligated. After ligation, crosslinks were reversed, and the DNA 

purified from protein. Purified DNA was treated to remove biotin that was not internal to ligated fragments. 

The DNA was then sheared to ~350 bp mean fragment size and sequencing libraries were generated 

using NEBNext Ultra enzymes and Illumina-compatible adapters. Biotin-containing fragments were 

isolated using streptavidin beads before PCR enrichment of each library. The libraries were sequenced 

on an Illumina HiSeqX platform. The number and length of read pairs produced for each library was: 208 

million, 2x150bp for library 1; and 220 million, 2x150bp for library 2. Together, these Dovetail HiC library 

reads provided 14,719.10 x physical coverage of the genome (10-10,000 kb pairs). This HiC library 

preparation and sequencing service was provided by Dovetail Genomics (Scotts Valley, CA) at 

https://dovetailgenomics.com. 

Genome Assembly 

Assembling of the primary sequence contigs   

PacBio subreads were extracted with the SMRT Link (version 6) software tool from PacBio. The extracted 

subreads were then corrected, trimmed, and assembled by the CANU assembler (version 1.8) [25, 26] to 

generate the first draft diploid FHM genome assembly (see Suppl Table 1 for parameter settings).  Pilon 

(version 1.23) [27] was then used to polish this draft assembly by correcting miscalled bases, fixing mis-

assemblies and filling small gaps in the assembly.  Two sets of Illumina paired-end reads were used 

together for this polishing: 1) two lanes of 2X101 reads generated by Dupont from NCBI SRA (accession# 

SRR1304883 and SRR1301972), and 2) two lanes of 2X250bps from EPA.  For each Illumina data set, 

BWA-MEM (version 0.7.15) [28] and SAMTOOLS (version 1.3.1) [29] were employed to align and sort 

Illumina reads to the assembly with BWA’s default paired-end read alignment protocol.   After polishing, 

Purge_haplotigs (version 1.0.4) [30] was used to purge haplotigs, haplotype copies of primary contigs, 

from this diploid assembly. For a diploid genome, CANU often assembles both haplotypes as primary 

contigs for genome regions with a high degree of heterozygosity. This makes it necessary to purge such 

as haplotigs from this diploid assembly of FHM.  This haplotig-purged assembly was then further polished 

with the same Illumina short reads by Pilon to correct misassembled contigs and fill gaps, some of which 

could be introduced by the haplotigs purging process.  

Scaffolding of the primary sequence contigs 

To generate chromosome-level genome assembly, we used the following three types of data to scaffold 

the primary sequence contigs assembled from PacBio reads: 1) two sets of long Illumina mate-pair or 

jump-library sequencing reads, which were downloaded from the public NCBI SRA database including 

one 40Kb fosmid library (SRR1304690) and one 6Kb mate-pair library (SRR1301983),  2) HiC Illumina 

paired-end sequencing reads (see HiC library preparation and sequencing section for the details), 3) 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 25, 2021. ; https://doi.org/10.1101/2021.02.24.432777doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.24.432777
http://creativecommons.org/licenses/by-nd/4.0/


   
FHM Reference Genome 

6 
 

optical mapping data generated using Bionano Direct Label and Stain (DLS) technology (see Generation 

of Bionano optical mapping data section for the details).  

To achieve the best scaffolding results, we scaffolded the assembly of primary contigs four times in the 

following order:  1) scaffolding using the HiC library data, 2) scaffolding using the Illumina mate-pair 

library data, 3) hybrid scaffolding with Bionano optical mapping data, and 4) final scaffolding with the HiC 

library data.  For both assembly scaffolding with HiC data, SALSA (version 2.2) [31] was used as the 

scaffolding tool and BWA-MEM (version 0.7.15) was the alignment tool.  For the first HiC scaffolding, 

reads were mapped to the assembly with the default BWA-MEM paired-end read mapping protocol while 

reads were aligned with the option “-SPM” to skip mate rescue, read paring, and mark shorter split hits as 

secondary for the final HiC scaffolding. SSPACE (Standard version 3.0) [32] tool was used for the second 

assembly scaffolding with the Illmina mate-pair library data. SSPACE was run with the option “-x 0 -m 32 -

o 20 -k 5 -a 0.70 -n 15 -p 1 -v 0 -z 0 -g 0 -S 0”.  The hybridScaffold.pl tool in the Bionano Solve (version 

3.3, https://BioNanogenomics.com/support/software-downloads) was employed to carry out the hybrid 

scaffolding with Bionano optical mapping data.  It was run with the option “-B 2 -N 1” to ensure no cut to 

the sequence genome assembly while allowing cuts to Bionano genome map when there are conflicts 

between two genome assemblies.   

For both genome assembly and scaffolding, we tested several different tools and tried with different 

parameter settings to find the best tools and running options to achieve the best FHM assembly. For 

example, we tested CANU (multiple versions), FALCON (version 1.2.4) and FALCON-UNZIP (version 

1.1.4) in the pb-assembly pipeline (version 0.0.6) [33], DBG2OLC [34], MARVEL assembler [35], and 

Minimap/Miniasm [36] as well some other assemblers.  We also tested different running assembly 

options, particularly for CANU, for both diploid and haploid assemblies.  For assembly scaffolding, we 

tested several scaffolding tools, e.g., SSPACE, BESST [37], BOSS [38], OPERA_LG [39] for scaffolding 

with Illumina mate-pair reads.  In addition, we tried different alignment options and different scaffolding 

orders with different types of data for scaffolding.  For example, we tried scaffolding first with the Illumina 

mate-pair data, then Bionano, and finally HiC data, but it turned out to be not the best.   

Genome assembly evaluation    

We evaluated a genome assembly in multiple ways. We first checked if genome assembly size was 

closed to the estimated size from other sources e.g., flow cytometry, and compared N50 for assembly 

continuity of different genome assemblies.  We also used mapping rates of short Illumina reads from 

genome resequencing and RNA-seq generated in house to assess completeness of the genome 

assembly.  Finally, we used BUSCO (version 3.0.2) [40, 41] to evaluate genome completeness and 

duplication level of individual assembles.   

Identification of transposable and repeat elements 

The transposable elements (TE) in the FHM genome were identified with a combination of de novo 

finding and homolog-based search approaches.  For the de novo TE finding, we used RepeatModeler 

(version 2.0.1) [42] and RepeatMasker (version 4.1.0) (http://www.repeatmasker.org) to construct a de 

novo FHM-specific repeat consensus library with TE classification.  In this step, RepeatScout (version 

1.0.6) [43] and RECON (version 1.08) [44] were deployed to discover all TE elements and generate TE 

family models. Additionally, RepeatModeler LTR module was used to carry out an independent run to 

identify and classify long terminal repeats (LTR). Specifically, the LTR module was run with LTRharvest 

from GenomeTools (version 1.5.9) [45] for LTR discovery and annotation,  LTR_retriever (version 2.8) 

[46]  for LTR filtering and annotating,  and CD-HIT (version 4.8.1) [47], MAFFT (version 7.453) [48], and 

Ninja (0.95-cluster_only) [49] for LTR clustering and family classification. All discovered TE families were 

then consolidated into a single FHM-specific TE library by clustering and removing redundancy by the 

RepeatClassifier module of RepeatModeler.  

Potentially non-TE protein coding sequences in this FHM-specific TE library constructed by 

RepeatModeler was then filtered out by the following procedure.  First, we obtained the known protein 

sequences of the FHM genome from the UniProt Knowledgebase (UniProtKB), which yielded only 283 
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protein sequences. To expand the protein dataset, we combined it with the uniprot zebrafish genome 

protein set (62,372 sequences) for a total of 62,655 sequences.  We then removed known TE found in the 

RepeatMasker TE database from the protein sequence set by searching with BLASTP (NCBI-BLAST 

version 2.10.0+) and filtered out all hits with an E-value <1e-5.    After that, we searched potential non-TE 

coding sequences in the FHM-specific TE library by BLASTing against this TE-filtered protein dataset and 

filtered out non-TE sequences from this FHM-specific TE library of hits with an E-value < 1e-5.  

Using this FHM-specific TE library together with the existing repeat databases including the Dfam and 

RepBase,  RepeatMasker (version 4.1) (http://www.repeatmasker.org) was used to carry out the whole-

genome repeat analysis of this FHM genome assembly, identifying all repetitive regions including low-

complexity regions and simple repeats.  Specifically, RepeatMasker was run under the sensitive mode (-

s) with the searching engineer RMBlast (version 2.10.0+) from http://www.repeatmasker.org, and Tandem 

Repeats Finder (version 4.09) [50].  The two known repeat databases used for the analysis were: 1) Dfam 

(version 3.1 June 2019, 6915 entries), an open database of transposable element (TE) profile HMM 

models and consensus sequences [51], and 2) RepBase ( RepeatMaskerEdition-20181026) from Genetic 

Information Research Institute (http://www.girinst.org), which is an interspersed repeat database including 

all representative repetitive sequences from eukaryotic species [52].  

Gene prediction 

Ab initio prediction   

The ab initio gene prediction was carried out by the latest version of AUGUSTUS (Version 3.3.3) [53], 

which produces an ab initio gene prediction based on a Generalized Hidden Markov Model (GHMM).   

For the ab initio gene prediction, RepeatMasker was used to generate soft-masked version of the FHM 

genome assembly, and AUGUSTUS was then run for prediction using the built-in zebrafish model on both 

DNA strands (parameter setting --strand=both --softmasking=1 --species=zebrafish  --genemodel=partial). 

Gene prediction with RNA-Seq data 

RNA-seq reads were used to help define coding gene regions and exon boundaries. In order to facilitate 

this process, we assembled the RNA reads using Trinity [54] in genome-guided mode and on de novo 

mode. First, sequence reads were error corrected using rCorrector (version 1.0.3.1) [55]. Next, read pairs 

with one or both reads flagged as 'unfixable_error' by using FilterUncorrectabledPEfastq.py 

(github.com/harvardinformatics/TranscriptomeAssemblyTools) were removed. TrimGalore (version 0.6.1) 

[56] and the Cutadapt [57] were then used to remove adapter sequences from the RNA reads at the 

cutoff of stringency 1 and evalue 0.1.  Trinity (version 2.5.0) was employed for both de novo and genome-

guided assembly of the RNA-seq reads. For the genome-guided assembly, STAR (version 2.6.0a) [58] 

was used in two-pass mode to map processed RNA-seq reads to the genome assembly. Two annotation 

pipelines, Maker [59] and PASA/EVidenceModeler (EVM) [60] were employed to predict protein coding 

gene models. 

Annotation pipelines 

Two iterations of Maker (version 2.31.9) were run first, using as inputs the genome sequence, a repeat 

library identified with RepeatModeler (version 1.0.11), the Trinity genome-guided RNA assembly, ~22.5K 

non-redundant FHM ESTs and a set of reference proteins.  The FHM ESTs were obtained from the Joint 

Genome Institute (JGI).  The reference proteins were downloaded from the European Bioinformatics 

Institute (EBI) and they were from the following 17 species: A thaliana, B subtilis, B floridae, C elegans, C 

intestinalis, D rerio, D discoideum, D melanogaster, E coli, G gallus, H sapiens, M musculus, L oculatus, 

O latipes, S cerevisiae, S pombe, and X tropicalis.  Augustus [61], SNAP [62], and GeneMark-ES [63] 

were all used for gene prediction, employing FHM-specific hidden markov models (HMM) trained with  

gene models obtained from a preliminary Maker run. SNAP was retrained for the second iteration using 

all the gene models output from the first iteration of Maker. PASA (version 2.3.3, employing blat (version 

36.1) [64] was used together with gmap (version 2017-11-15) [65], TransDecoder (version 5.5.0) [66], and 

EVidenceModeler (EVM, version 1.1.1) as an alternative path to produce protein coding gene models.  

Inputs to EVM included gene predictions and alignment information generated during the Maker runs, and 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 25, 2021. ; https://doi.org/10.1101/2021.02.24.432777doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.24.432777
http://creativecommons.org/licenses/by-nd/4.0/


   
FHM Reference Genome 

8 
 

gene/transcript predictions and alignments from PASA. Maker and TransDecoder models producing 

proteins with perfect BLAST alignments to reference proteins were included as highly weighted inputs to 

EVM. EVM output models were processed back through PASA (two iterations) in annotCompare mode to 

add UTR sequence and/or generate alternative transcripts. The software tools employed as part of Maker 

and PASA/EVM are listed in the Suppl Table 2.  

Selection of preferred model set and additional processing through Maker 

Transcript and protein models from both pipelines were assessed using BUSCO [40]. The 37,190 

PASA/EVM models exhibited ~11% more complete BUSCOs than the Maker models and were selected 

as the preferred model set (Suppl Figure 1). Mapping rates for the two model sets were also compared 

using ~6.43 (about 2.5%) million randomly selected paired-end RNA reads by USEARCH (version 9.2) 

[67] from the full RNA-seq dataset of ~320M pairs of 150bp paired-end reads, which had been 

adapter/quality trimmed by BBDuk (version 37.41) [68]. The sampled reads were mapped by STAR to 

transcripts corresponding to the longest model protein sequences (exemplars) from any given gene. 

Mapping rates were equivalent even though there were ~17% fewer models in the Maker set, so we 

elected to run the PASA/EVM models back through Maker as input predictions attempting to add 

additional UTR information to boost per gene mapping rates. Due to not invoking the “keep_preds” 

parameter during the Maker run only ~69% of the input PASA/EVM models were returned, so original 

PASA/EVM models exhibiting no coding sequence overlap with the new Maker models were returned to 

the model set. The unique mapping rate increased by ~6% in the modified set relative to the input set, 

while BUSCO scores remained the same. 

Gene model filtering  

36,881 models remained, which was higher than the number of genes expected based on the number of 

genes in zebrafish.  To address this, models were filtered using a process based on mapping evidence 

and homology to reference proteins.  Transcripts representing complete single-copy BUSCOs were 

identified, and Bowtie2 (version 2.3.5.1) [69] was used to map, in unpaired  mode, the full dataset of 

RNA-seq paired-end reads to exemplar transcript models. The tenth percentile of correct strand 

mappings/total mapping was calculated for the exemplar transcripts representing single-copy BUSCOs, 

and the resulting value was 0.842. This value was used as a cut-off for a 2-sided lower 95% CI binomial 

estimate of the ratio of correct strand counts/total counts for non-BUSCO genes (transcripts); genes with 

an estimated lower CI boundary >=0.842 were retained in the final models. A homology criterion was also 

applied to evaluate models that may be valid but that represented genes that were not highly expressed 

in our data. Diamond (version 0.9.22.123) [70] was used to do a BLASTX search where the query 

sequences were exemplar transcript models meeting the mapping criterion above but that were not 

identified as single-copy BUSCOs, and the targets were our EBI reference proteins. Using only positive 

frame alignments, the tenth percentile of percent ID to the reference proteins was 0.503, and the tenth 

percentile of percent overlap to the best hit reference protein was 0.404. These values were used as 

homology cut-offs. Models that met both homology criteria were also kept as the final models. 

Manual curation of select models 

The original EVM protein sequences were compared to their corresponding proteins in the 26,150 filtered 

gene models (26,150 genes resulting in 47, 578 proteins) to identify any that had been changed as a 

result of being run back through Maker. Any that had changed had both their original EVM protein 

sequence and post-Maker protein sequence BLASTed (version 2.6.0+) [71, 72] against our EBI reference 

proteins and the coverage to both query sequence and subject sequence of the best hits was assessed. 

Original EVM proteins exhibiting better coverage were restored to be part of the final protein sequences. 

To maintain mapping improvements (i.e., UTR additions) that might have been gained by the passage 

through Maker, the restoration was done by manually adjusting CDS and/or UTR start/stop coordinates 

and/or CDS phase as necessary in the corresponding Maker transcript model so that the CDS 

segments/phases mirrored those in the original EVM models;  any additional sequence segments added 

by Maker were designated as UTR sequence. Based on this assessment, a relatively small number (303) 

of proteins were manually adjusted.  

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 25, 2021. ; https://doi.org/10.1101/2021.02.24.432777doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.24.432777
http://creativecommons.org/licenses/by-nd/4.0/


   
FHM Reference Genome 

9 
 

Gene annotation assessment 

We benchmarked our gene prediction models for the FHM by comparing FHM2’s BUSCO scores and 

RNA-seq read mapping rates to ZF.  For the analysis, we downloaded the ZF reference genome 

(GCF_000002035.6_GRCz11_genomic) and its gene annotation gff file from NCBI  at 

https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/002/035/GCF_000002035.6_GRCz11. For the 

comparison to FHM, we extracted the 992 ZF scaffolds with ‘Primary Assembly’ in their definition lines 

(992) and the single sequence dubbed “mitochondrion, complete genome” from the ZF sequence file and 

also extracted the corresponding scaffold records from the ZF gff file. Transcript and protein sequences  

were then produced from the extracted gff file using gffread (v0.11.4) from 

https://github.com/gpertea/gffread from [73]. Transcripts without corresponding proteins were removed, 

so the final numbers of transcripts and  proteins was the same, 47,834. 

To perform the mapping rate comparison, ~326M paired-end ZF RNA-seq data were downloaded from 

NCBI’s short read archive (SRA) (see Suppl Table 3). The RNA-seq reads selected for download 

represented different tissues and life stages of ZF roughly mimicking the total number and tissue 

composition of our in-house FHM reads. All reads in the downloaded datasets were trimmed to 50 bases, 

the minimum read length in any of the sets; reads pairs where either read was <50 bases were discarded. 

From each trimmed dataset, five different random samplings, each representing 5% of the sequences in 

that dataset using USEARCH. The reads selected from each iteration of USEARCH from each 

downloaded dataset were then combined, resulting in the end in five datasets of randomly selected reads, 

each with ~16M 50 bp paired-end reads. These five sets of ~16M reads were them mapped, as both 

paired-end and single-end, with STAR (version 2.7.1), to the 62,884 extracted transcripts (47,834 protein-

coding) from the ZF primary assembly. Default STAR parameters were used with the exception of “--

outFilterMultimapNmax 20”. Mean mapping rates across the five datasets were calculated for both the 

paired-end and two single-end mapping runs. For comparison, we also trimmed our ~320M 150bp paired-

end FHM RNA-seq reads to length 50 and again used USEARCH to randomly select five sets of 16M 

reads from the trimmed reads. The reads were then mapped to the 47,578 FHM2 transcripts in the same 

manner as the ZF reads had been mapped. As an additional comparison between the two species 

BUSCO (version 3.1.0) analyses were performed on both transcripts and proteins from FHM2 and ZF 

using BUSCO’s Actinopterygii reference set.   

Identification of short non-coding RNAs  

FHM tRNAs were identified using tRNAscan-SE (v. 2.0.5), employing the program's 

EukHighConfidenceFilter for a high confidence tRNA gene set (i.e., estimated most likely to be involved in 

ribosomal translation) [74].  Comparisons of high confidence tRNA gene sets across species used data 

from GtRNAdb2 (http://gtrnadb.ucsc.edu). 

FHM microRNAs (miRNA) were identified using the command-line version of miRDeep*, 

MDS_command_line_V37 [75].  Small RNA-Seq reads for the miRDeep* run were pooled (1.07 billion 

reads total) from two separate FHM sources: 1) smRNA-Seq reads from FHM 48-hour post-hatch larva 

that had been statically exposed for 48 h to 0 (10 samples) or 10 ng ethinylestradiol/l (10 samples) (694 

million reads sub-total), and 2)  four separate samples of adult FHM liver (both sexes mixed), brain (both 

sexes mixed), unfertilized eggs from a pre-spawn female, and a pool of 4 96 h post-hatch fry (377 million 

reads sub-total).  miRDeep*'s MD.jar was run under default conditions (Min score: -10; miR length: 18-23) 

and using the TruSeq (RA3) adapter sequence TGGAATTCTCGGGTGCCAAGG.  The score is the log-

odds probability of a sequence being a genuine miRNA precursor versus the probability that it is a 

background hairpin. The resulting "mature sequences" were sorted by score and duplicate sequences 

removed to yield 11,069 unique miRNAs.  These miRNAs were further sorted by score and probed for 

exact matches with 347 D. rerio miRNAs from mirbase.org (release 22).  The sorted miRNAs were also 

analyzed by BLASTing against the general mirbase.org cross-species database to evaluate change of E-

value distribution at different score cutoffs. The final miRNA prediction results were based on the stringent 

cutoff 100, which was selected by testing different cutoffs on impact on the number of predicted miRNAs 

exactly matched to those reported in the ZF.  
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FHM piwi-interacting RNAs were identified using two separate programs: Piano [76] which predicts 

transposon-related piRNAs and piRNN [77] which identifies piRNAs globally by using a neural network 

piRNA prediction model.  Piano uses a Drosophila-trained model for prediction and requires a species-

specific transposon file as well as a smallRNA file.  piRNN provides the code to develop a species-

specific prediction model trained with species-specific piRNA (along with miRNA and tRNA for negative 

controls).  piRNA sequences for this development came from a combination of FHM Piano output and ZF 

piRNA sequences to which FHM smRNA sequences aligned.  Trimmomatic-trimmed smRNA sequences 

were then used for the primary piRNN python program to predict global FHM piRNN sequences.  piRNN 

output was further processed to enable removal of sequences which aligned with FHM miRNAs and 

removal of sequences smaller than 25 nucleotides and greater than 40 nucleotides. 

A general analysis of FHM short non-coding RNAs was done using Infernal-1.1.2 [78], employing the 

Rfam (v 14.0) library of covariance models, to search for homologues to known non-coding RNA families 

(e.g., small nuclear RNA (snRNA), small nucleolar RNA (snoRNA), tRNA, ribosomal RNA (rRNA), 

miRNA).   

GO terms and KEGG pathways annotation 

Gene  functional annotation was based on both sequence homology found BLAST search and protein 

domains and motifs identified by InterProScan  [79]. The NCBI BLAST (version 2.10.1) [72] was used to 

search all predicted FHM protein sequences against the NCBI landmark proteome database, which 

consists of taxonomically diverse non-redundant set of proteins from 27 best annotated model organisms 

spanning a wide taxonomic range including zebrafish, human and mouse. We used the “subject_besthit” 

option for the BLASTP search and kept only hit sequences with <BLAST e-value 10-5.  BLAST results 

were then entered into Blast2GO (version 5.2.5) (https://www.blast2go.com)[80], which retrieves GO 

terms associated the homologous BLAST hits. GO terms associated to only the top 20 homologous hits 

were kept.  For GO assignment and annotation, we first used BLAST e-value 10-6 as the cutoff to filter out 

mapped GO terms, and then used the Blast2GO’s default annotation rule to assign GO terms to each 

query protein sequence. The cutoff of the Blast2GO annotation score, which is based on the sequence 

similarity score, weights of evidence codes, and number of children GO terms, was 55 for the GO term 

annotation. 

Independently, we ran InterProScan (version 5.45-80) to retrieve domain/motif information in a sequence-

wise manner for each predicted FHM protein sequence.  We then loaded the InterPro annotation results 

into Blast2GO and obtained the GO terms associated with InterPro annotation.  InterPro-based GO term 

annotations were then merged with the GO term annotations from the BLAST homolog-search using 

Blast2GO’s augmentation and annexing processes to generate the final full GO annotation data. An 

abbreviated version of the GO annotation data, GO slim, containing a subset of terms, which is useful to 

produce a better overview of the ontology content, was also created from the regular GO annotation data.  

For KEGG pathways annotation, we used Blast2GO to retrieve Enzyme commission (EC) numbers 

associated with annotated GO terms, and then mapped these ECs to the corresponding KEGG pathways 

for each FHM protein sequence.  

Gene name annotation 

Gene names were assigned based on the top-hit homologous genes from the BLAST search results used 

for GO annotation.  Specifically, for a protein sequence where a top blast hit had an e-value <= 10-6 and a 

Blast2GO annotation score >=55, the gene associated with the protein was assigned the same name, as 

defined in UniProtKB database (https://www.uniprot.org/uniprot), of the top-hit homologous gene. For a 

protein sequence with a top BLAST hit e-value <= 10-6 but an annotation score <55 or with blast e-

value >10-6 but <= 10-5 , the gene was assigned the name of top-hit homologous gene, but “-like” added 

to the original gene name.  If the top hit was already appended with “-like”, it was kept the same, i.e., no “-

like -like” gene names were generated; for genes without a blast hit or with hit e-value > 10-5, no name 

was assigned.     
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Comparative genomic analysis 

Comparative genomic analysis between FHM and zebrafish was primarily conducted using CoGe 

(https://genomevolution.org/coge/) [81]. The ZF reference genome used for the comparison is the 

Tuebingen strain (vUCSC, id23058) version, soft-masked by RepeatMasker. The FHM reference genome 

uploaded to CoGe (ID# id58916) was hard-masked by RepeatMasker. Using repeat-masked version 

helps to improve and speed up the synteny analysis between the two genomes.   The syntenic analyses 

were performed on CDS and genomic sequences, separately.  The default fastest but sensitive aligner 

LAST (version 744) [82]  was selected as the alignment tool for identifying syntenic region.  For CDS-

based syntenic analysis, the algorithm for merging syntenic blocks and for syntenic depth were both set 

to be Quota align [83]. For genomic-based syntenic analysis, syntenic path assembly (SPA) [84] analysis 

was used to create a better visualization of the syntenic map of the two reference genomes. All syntenic 

plots were generated by SynMap2 [85].  

RESULTS 

De novo assembly of the FHM genome 

Genome assembly  

The whole FHM genome assembling process included eight major steps (Figure 1). In the first step, 

CANU (version 1.8) was used for base correction, read trimming, and assembly of the initial diploid 

reference genome from long PacBio reads.  Two different sets of long PacBio sequencing data, which 

include a total 9,361,408 reads with about 75 giga base pairs (Gbps), were generated for the de novo 

assembly of the FHM genome. As the estimated FHM genome size is 1.1 Gbps [20, 86], the coverage 

depth of PacBio reads is more than 70X, providing enough depth coverage for the assembly of FHM 

genome of reasonable quality.  The size of the initial draft diploid genome assembly was 1,454,900,621 

with a contig N50 (the shortest contig length needed to cover 50% of the genome) of 141,276 bps.  In the 

second step, the diploid draft assembly was polished by Pilon (version 1.23), using 2X100 bps Illumina 

paired-end reads (SRR1304883 and SRR1301972) and 2-lanes of Illumina 2X250 bps reads generated 

in-house (see Materials and Methods for more details) , to correct base calling errors and fill mini gaps in 

the draft.   Over 99% reads in both Illumina datasets were mapped to the draft assembly, indicating the 

completeness of the assembly. In the third step, redundant haplotigs, resulting from heterozygous regions 

of haplotype copies not recognized by the assembler, were purged from the polished draft. This resulted 

in a haploid assembly of 926,182,690 bps with a contig N50 of 297,600 bps (see Figure 2 and Figure 3). 

The removal of haplotigs reduced the size of the assembly by almost 520Mbps. In the fourth step, the 

haplotigs-purged draft was polished using the same sets of llumina reads as used to do the initial 

polishing. There was little change in the read mapping rate, i.e., remaining over 99%, in polishing run for 

the assembly before and after purging haplotigs, suggesting only duplicated haplotigs were purged.   

To achieve chromosome/sub-chromosome scale assembly, the assembly was then subjected to four 

rounds of scaffolding (steps 5-8), each increasing scaffold N50 (the shortest scaffold length needed to 

cover 50% of the genome) of the assembly substantially (Figure 3). The initial scaffolding step with HiC 

data (14,719X genome overage) drastically increased scaffold N50 of the assembly by eight-fold.  

Scaffolding with long mate-pair Illumina reads increased N50 only slightly, but it helped to correct some 

initial scaffolding errors.  The incorporation of Bionano data (113X effective coverage) increased scaffold 

N50 an additional four-fold and helped correct mis-assembled and scaffolded regions (Suppl Figure 2).  

The final scaffolding with HiC data identified and utilized more long-chromosome interaction sites (Suppl 

Figure 3), which further improved the assembly to the chromosome/sub-chromosome level with scaffold 

N50 reaching over 13.5Mbps.  After trimming Ns at beginnings and ends of all scaffolds, the scaffold N50 

of the final FHM assembly was reduced to 12.0Mpbs.  The longest scaffold (over 60Mbps) of the FHM 

assembly was equivalent in size to the longest chromosome (about 62Mbps) of the closely related 

zebrafish, suggesting the assembly approaches the chromosome scale.   

The final haploid FHM assembly contains 910 scaffolds and 6281 contigs with a total 1,066,412,313 bps 

in length.  Among the 910 scaffolds, 133 (14.6%) of all scaffolds are longer than 1Mbps.  The first 15 
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scaffolds are of chromosome/sub-chromosome size, each >15Mbps, and comprise about 40% the 

genome sequences (Figure 4, see Suppl Figure 4 for the full distribution).  Approximately 90% of the 

genome is contained on the first 125 scaffolds with greater than 50% on the first 23 scaffolds.  The 

remaining 785 scaffolds accounts for less than 10% genome. For convenience, we henceforth refer our 

final haploid FHM assembly as FHM2 and the previously published FHM assembly as FHM1.  

Genome assembly assessment 

We evaluated the FHM2 assembly in three aspects: 1) contiguity by contig/scaffold N50, the shortest 

contig/scaffold length in the assembly to cover 50% of the total genome, 2) completeness by BUSCO 

(Benchmarking Universal Single-Copy Ortholog) score, which checks the presence or absence of highly 

conserved genes in an assembly, and 3) base accuracy by mapping rates of short Illumina reads to the 

genome.  The contig N50 of the assembly is about 300Kbps and scaffold N50 reaches 12.0Mbps, both of 

which are much greater than those of FHM1, indicating substantial improvement of FHM2 over FHM1.   

The BUSCO analysis indicated that the FHM2 assembly is over 95% complete, which approximates the 

quality of the latest version of the ZF assembly (GRCz11) as shown in Table 1. In addition, the complete 

and single-copy BUSCOs score of the FHM2 assembly is near 90%, suggesting the high degree of 

completeness of the FHM2 assembly is coupled with few duplications. The base accuracy of the 

assembly was assessed indirectly by measuring mapping rate of Illumina genome sequencing reads, 

assuming a low error rate of bases in assembly lead to a high mapping rate.  The overall mapping rates 

were over 99.4% for both 2X250bps Illumina paired-end datasets that were used to polish the assembly, 

indicating a low base error rate of the assembly.  

Repeat annotation 

We used RepeatModeler (version 2.0.1) and RepeatMasker (version 4.1.0) to annotate repetitive regions 

of the FHM2 genome assembly (see Methods for the details). Overall, we found that more than 461Mbp 

genome sequences, or 43.27% of the FHM2 genome assembly, were repetitive regions (Table 2).  

Among all repeat elements, DNA transposons were the most abundant, accounting for 21.47% of the 

whole genome. In contrast, only 9.09% of the genome were of retroelements, which were dominated by 

long terminal repeats (LTR) that represented about 6.62% of the genome.   

We compared the repeat distribution of the FHM2 assembly to those of repeats statistics [87] reported for 

four other teleost genomes, zebrafish, medaka (Oryzias latipes), stickleback (Gasterosteus aculeatus), 

and pufferfish (Tetraodon nigroviridis).  The five teleost species differ substantially in terms of the 

distribution of repeat elements ( 

Suppl Table 4).  The zebrafish genome has the highest proportion (56.49%) of total interspersed repeats, 
while the FHM genome is the second highest (38.90%).  In contrast, the AT-rich FHM genome contains 
the highest proportion of simple repeats and low complexity regions among all five species.  

Gene annotation 

Gene prediction 

The ab initio gene prediction by AUGUSTUS (Version 3.3.3), conducted without using any RNA-seq or 
EST data as evidence, identified a total of 251,638 coding exons and 26,985 genes in the FHM2 
assembly. The BUSCO analysis of the resulting proteins showed 95.6% BUSCO genes were present, but 
10.7% were fragmented, indicating that the predicted genes for the FHM2 were relatively complete.  In 
order to improve gene prediction further, a pipeline consisting of the popular gene prediction tools Maker 
and EVidenceModeler (EVM) was developed for predicting gene models with RNA-seq data (Suppl 
Figure 5). 
 
Maker produced 30,909 gene models with 47,716 transcripts/proteins, and the BUSCO analysis of its 

exemplar protein set, which contains only the longest protein from each gene, showed the complete 

BUSCO score at 84.8% with 5.8% duplication.  RNA-seq read mapping analysis reported the overall 

mapping rate to Maker’s exemplar transcript set (transcripts corresponding to the longest proteins of each 

gene) was 77.9% and unique mapping rate was 71.7%.  Performed better than Maker, EVM predicted a 
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total of 37,190 gene models, of which the exemplar transcripts had a complete BUSCO score of 94.1% 

with 6.7% duplication. The total RNA-seq mapping rate to EVM’s exemplar transcripts was 77.9% with the 

unique mapping rate at 72.9%. To refine EVM gene models with UTR information, the 37,378 EVM gene 

models were run back through Maker.  36,881 gene models were retained, including those EVM models 

that have no overlapping coding sequences (CDS) with the Maker 30,909 gene models.   The new set of 

36,881 genes had a complete BUSCO score of 94.2% with 6.6% duplication, and the overall RNA-seq 

read mapping rate of 85.3% with 78.5% unique mapping rate, which were better than either of the original 

EVM or Maker sets.   

We applied a filter, based on mapping evidence and homology to reference proteins (see gene models 

filtering section in Methods) to the 36,881 gene models to remove potential pseudo genes or non-

functional paralogs.  After filtering, the number of remaining gene models was 26,150 with 47,578 

transcripts/proteins.  Little change in either complete BUSCO score or overall read mapping rate was 

observed.  The filtered gene models were then manually curated to generate the final set of gene models, 

transcripts, and protein sequences.  In our manual curation, if an original EVM protein sequence’s best 

BLAST  [88] hit to a reference protein was better than that of the corresponding protein from the final 

Maker run, the original EVM protein was returned to the final models, replacing the protein that the final 

Maker run had modified. 303 of the total 47,578 protein sequences were changed back to their original 

EVM sequences based on this criterion.  Most protein changes were due to different translation of 

existing transcripts. Only six transcripts were changed in the manual curation.  One to six bases were 

either added or removed from five of those six transcripts while one exon of 206 bases was added to the 

last one. The final curated gene set has a complete BUSCO score of 94.3%, slightly improved compared 

to pre-curation (Suppl Figure 1), while maintaining the read mapping rate at 84.9% (Suppl Table 5).   

Benchmark comparison with zebrafish 

In order to determine the quality of the FHM gene models, a benchmark analyses were carried out in 

comparison with the zebrafish, which is closely related to the FHM and has the best characterized gene 

models in fish species.  For this comparison, the full set of protein or transcript sequences rather than the 

exemplar set were used for both BUSCO and read mapping rate analysis.  

The results show comparable overall BUSCO scores between FHM and ZF (Table 3).  The complete 

BUSCO score for FHM proteins is 94.3% and for FHM transcripts is 94.7%, which are only slightly lower 

the corresponding score for ZF. However, the complete and duplicated BUSCO scores for FHM are 

noticeably lower (8.2% and 6.1% lower for proteins and transcripts, respectively) than those for ZF, 

suggesting our FHM gene models potentially have a lower duplication level. 

The read mapping analysis shows similar overall mapping rates of 50bp RNA-seq reads (Table 4).  The 

transcriptome mapping rates for FHM are all slightly better than those for ZF. In particular, the unique 

transcriptome read mapping rates for FHM are 4-5% higher than the corresponding ones for ZF.  Whole 

genome mapping rates were consistent, though slightly less pronounced, i.e., about ~3% difference, with 

transcriptome read mapping results.  Together, BUSCO and mapping rate analysis indicates that the 

FHM2 genome assembly and gene prediction models are of at least similar quality to ZF.  

The number of predicted protein coding genes and transcripts in the FHM2 genome is very close to that 

in the ZF genome, which has 25,638 protein genes and 47,834 corresponding transcripts ( 
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Table 5). The two species are also similar in the number of transcript isoforms per gene (1.87 for ZF and 

1.82 for FHM). There are, however, some noticeable differences. First, the proportion of transcripts 

without 5’ or 3’ UTR in FHM2 is over 18%, which is far greater than about 5% in ZF.  This large difference 

could reflect incomplete UTR prediction in FHM rather than, the actual biological differences between the 

two species.  Second, the median protein coding gene length in FHM2 is 10,177bps, much shorter than 

13,569bps in ZF. The gene length difference is likely to due to more compact gene structure in the FHM2 

genome, which is further supported by the observation that the median intron length in FHM2 (469bps) is 

also much shorter than in ZF (984bps).  

Gene name and functional annotation 

Gene names and functions of predicted genes were annotated through BLAST-searching homologs in 

reference species and through InterProScan-searching functional domain signatures against the InterPro 

database.  In the BLAST search against the 27 species in the NCBI landmark database, zebrafish (Danio 

rerio) was the species returning the highest number of top BLAST hits (Figure 5); 93% of predicted FHM2 

transcripts had a top-matched homologous gene in the ZF genome, confirming  the species high degree 

of evolutionary relatedness.  InterProScan signature search also successfully found matched functional 

domain signatures in the InterPro database for 96% of all predicted FHM2 transcripts.  Overall, 22,743 

(87%) among the all 26,150 predicted FHM protein coding genes were assigned a gene name, and 

42,940 (90%) transcripts representing 22,469 genes (86%) were annotated with at least one GO term.  

Two versions of GO annotation were provided: the regular full GO version including all GO terms and the 

GO slim version with a reduced number of GO terms.  The full GO version provides details about the 

function of a gene while the GO slim version is better for the overview functional enrichment analysis.  

The full GO version has 873,774 GO terms while the GO slim version has only 498,616 terms.  Figure 6 

shows the comparison of number of GO terms in three GO categories: biological process (BP), cellular 

component (CC), and molecular function (MF).  In the GO slim version, the largest number of GO terms 

assigned to a transcript is 50. Figure 7 shows the detailed distribution of GO terms in the GO slim version 

among all predicted FHM transcripts.  

In addition, our KEGG pathway annotation identified 148 KEGG metabolic pathways, in which 8,166 

transcripts were mapped to at least one KEGG pathway. Furthermore, our annotation found 50,800 

enzyme-transcript mapping pairs including 1,401 unique enzyme commission (EC) numbers associated 

with 12,176 different transcripts.   

Prediction of short non-coding RNAs 

tRNA prediction  

A total of 2670 tRNAs, as a “high-confidence” set, were predicted in the FHM genome by tRNAscan-SE 

(v. 2.0.5)[74] using the EukHighConfidenceFilter (Table 6, Suppl Table 6). The high confidence set was 

generated from the initial prediction set with 3776 tRNAs after filtering out pseudogenes and potentially 

false hits.  The high confidence set of tRNAs are most likely to be functional in the translation process 

[74].  The detailed list of FHM tRNAs by anticodon counts is given in Suppl Table 7, which can be used as 

a reference for codon usage bias analysis. 
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miRNA prediction  

A total of 620 miRNAs were predicted in the FHM genome by miRDeep* using a stringent cutoff of 100. 

This cutoff was chosen to minimize false positive hits while retaining most predicted mRNAs with exact 

matched ones in the zebrafish.  BLAST search against the total miRNA database at miRbase.org found at 

least one significant match for 618 of the 620 predicted miRNAs, suggesting most predicted miRNAs are 

likely to be functional.  Compared with the other species, FHM has more miRNAs than most fish species, 

e.g. zebrafish with only 374 miRNAs, except Oreochromis niloticus, however, the mammal species tend 

to have a far greater number of miRNAs than FHM (Suppl Table 8).  The abundance of miRNAs in the 

FHM genome suggest that post-transcriptional regulation including RNA silencing may play an important 

role in gene expression regulation in the FHM. 

piRNA prediction 

Piwi interacting RNAs (piRNAs) were also identified in the FHM genome.  piRNAs are small non-coding 

RNAs of length about 24–32 nucleotides. piRNAs typically play regulatory roles by binding to members of 

the PIWI proteins, and they can also regulate signaling pathways at the transcriptional or post-

transcriptional level.  In addition, piRNAs and PIWI proteins may be used as biomarkers for a various of 

cancers as they also often abnormally expressed in cancer tissues. Prediction of piRNAs were 

accomplished using both Piano [76] and piRNN tools [77].  In the FHM genome, 87,498 transposon-

interacting piRNAs were predicted by Piano (see Suppl Figure 11 for length distribution), and a total of 

392,936 all piRNAs of length between 25-40 bps were predicted by piRNN (Suppl Figure 12).  Based on 

the prediction, FHM has far fewer piRNAs than ZF, which has about 1.33 million piRNAs in piRBase 

(http://www.regulatoryrna.org).  The abundance level of piRNAs in FHM is nevertheless similar to that (> 

300,000 piRNAs) of many other species reported in the study by Ozata et al [89].  

Other small RNAs prediction   

The Infernal/Rfam (IR) programs were used for prediction of other non-coding RNA genes, including  
rRNA, snRNA, snoRNA, small Cajal body-specific RNA (SCARNA), RNase_MRP), nuclear RNAse P 
(RNaseP_nuc), and signal recognition particle RNA (Metazo_SRP)(Table 6 and Suppl Table 9).  
 

Data visualization with the UCSC genome browser  

We took the advantage of the powerful data visualization functions of the UCSC genome browser for 

visualization of the FHM2 reference genome and annotation. We built a fully functional FHM assembly 

hub for the UCSC genome browser (Figure 8).  Users can use the assembly hub to visually explore the 

FHM2 genome reference and annotation with their own experimental data by adding customized browser 

tracks of data. Such data visualization with the UCSC browser is a critical and popular approach for 

manually validating analysis results of large sequencing data and/or generating new hypotheses.  By 

using our UCSC assembly hub, the UCSC genome browser can generate a detailed view of gene 

annotation including both ab initio gene prediction track and the final gene annotation track, searchable 

by gene symbol or gene accession number. In addition, it has the repeat annotation track, allowing to 

explore repetitive regions.  Our UCSC assembly hub data hosted at CyVerse Discovery Environment 

(https://de.cyverse.org/de/) are available at (https://data.cyverse.org/dav-

anon/iplant/home/myepa/FHM/FHM2assembly_hub.txt).  

Data visualizations  with the FHM2 reference genome is also available on CoGe with the EPIC-CoGe 

browser (https://genomevolution.org/coge/GenomeView.pl) [90]. The EPIC-CoGe brower allows users to 

visually explore GC content of the reference genome and generate a bird's-eye view of gene annotation 

as shown in Figure 9. 

Comparison with the Zebrafish genome 

Synteny analysis   

The comparison analysis of the ZF and FHM genome reveals that they share extensive syntenic regions. 

In some cases, syntenic regions are almost of the same length of an entire scaffold or chromosome as 

shown by syntenic dot-plots (Figure 10 and Suppl Figure 6). The CDS-based syntenic analysis shows 
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there are 117,846 high-scoring segment pairs (HSPs) from the LAST [82] alignment after filtering out 

tandem duplicates. The total length (74,989,746) of HSPs accounts for over 7% or 8% if excluding 

scaffolding gaps) of the FHM2 reference genome. The average length of HSPs is 636 bps with the mean 

percent identity at 71% the maximum at 31,479bp (Suppl Figure 10).  Such large syntenic regions shared 

between the two species indicates the two species are closely related evolutionarily.  Upon closer 

inspection of these syntenic regions using the GEvo tool, however, we found that genomic regions 

containing syntenic blocks are substantially different between two species. Particularly, genomic regions 

in the FHM genome are often much shorter than the corresponding regions in the ZF genome. In most 

syntenic genomic regions that we examined with the GEvo tool, the length of an FHM region is only about 

one half of the corresponding ZF region. For example, the plot of syntenic blocks (Figure 11) shows that 

the genomic region surrounding the transcript FMt022379 in FHM is only about 90kbps in length while the 

corresponding region surrounding the transcript ENDART00000132491 (gene ENSDARG00000025554) 

in ZF is 200kbps, more than twice as long (see Suppl Figure 8 and Suppl Figure 9 for additional 

examples).  Such difference in length can be also seen in the syntenic dot-plot shown in Figure 10, where 

lengths of FHM syntenic regions represented by the y-axis are much shorter than those of the 

corresponding ZF represented by the x-axis. The results suggest that FHM and ZF have diverged 

substantially from their last common ancestor, and ZF may have gained much more intergenic or intron 

regions than FHM, which has either gained little or lost such non-coding regions in the evolutionary 

process from their ancestor. This also indicates that FHM has a much more condensed genome than ZF 

as the two species have a similar number of genes.    

The synteny analysis also revealed the mutation rates of syntenic regions between the two species with 

the synonymous substitution rate (Ks) being 0.62 and the nonsynonymous substitution rate (Ka) being 

0.10 (see Suppl Figure 7). The Ka/Ks ratio (0.16) between FHM and ZF is far less than 1, indicating 

strong purifying/negative selection pressure in their evolutionary process. 

Conservation of estrogen response and exposure biomarker genes  

FHM and ZF are among the most widely used model fish species in environmental toxicogenomics.  In 

particular, toxicogenomic approaches have been applied to the endocrine-disrupting chemicals (EDCs), 

e.g.,17α-ethynylestradiol (EE2) to better characterize the cellular responses underlying their adverse 

effects on reproduction and development [1].  Many studies have measured the differential expression of 

known estrogen responsive genes across species as a means of determining estrogenic exposure, 

however, these studies have largely been done without consideration of the underlying genomic structure.  

For this reason, we selected two well-studied estrogen-responsive genes, estrogen receptor 1 gene 

(ESR1), a critical gene for regulating estrogen response and the vitellogenin gene (VTG), an egg yolk 

precursor and a biomarker indicating exposure to estrogen-like chemicals in male fish, to determine the 

degree of conservation between the two species. Both FHM and zebrafish genomes contain a single copy 

of the ESR1 gene, however, eight transcript isoforms were identified in the FHM compared to four in ZF. 

The syntenic alignment of the ESR1 genes shows they are highly conserved in exon order and all CDS or 

CDS flanking region sequences, but differ markedly in their intron regions with large deletions and 

insertions (Figure 12).  In contrast to ESR1, seven copies of the VTG gene are found in both species.  

Both their sequence and genomic arrangement appears to be highly conserved between the two species.  

In both species, six of the seven VTG genes are tandemly arrayed within a tight region of a single 

chromosome or scaffold (chr22 in ZF, scaf140 in FHM)(Figure 13).  The high copy number is likely the 

result of gene duplication events in the evolutionary process. Another VTG gene, VTG3, is in a different 

chromosome, chr11 and scaf62 in ZF and FHM, respectively.  Sequences of the ortholog VTG genes are 

highly conserved in all exons.  Conservation of intron sequences was also observed except for the largest 

intron in the ZF, which is greatly reduced in the FHM (Figure 14).   

DISCUSSION 

We describe here the de novo assembly and annotation of a highly contiguous and near-complete 

reference genome and annotation for the FHM genome. The new reference genome, with a scaffold N50 
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of 12Mb and complete BUSCO score >95%, is a drastic improvement over the current FHM1 reference 

with respect to assembly contiguity and completeness.  Several factors helped to achieve the highly 

contiguous FHM reference. First, we used a combination of the latest technologies to generate primary 

sequencing and scaffolding data for assembly.  The FHM has a highly AT-rich (>60%) and repetitive 

genome, which is difficult, if not impossible, to be assembled with short Illumina reads alone.  The FHM2 

assembly relied on long PacBio reads as the primary genome assembly data, enabling assembly of long 

repetitive introns or intergenic regions.  Illumina paired-end reads were then used to correct the relatively 

high sequencing error rate of PacBio reads and improve base-level accuracy of the assembly. The use of 

a combination of three different forms of scaffolding data, long mate-pair and fosmid Illumina reads, HiC 

sequencing data, and Bionano optical mapping data, enabled better connection of neighboring 

contigs/scaffolds and the correction of assembly/scaffolding errors during the multiple-step scaffolding 

process. 

Second, we selected the best available software tools for assembling and scaffolding.  In order to identify 

the best assembly tool, we evaluated several de novo assemblers including CANU [25, 26], 

FALCON/FALCON-Unzip [33], DBG2OLC [34], and Miniasm [36].   CANU was based on the well-known 

Celera assembler that was developed by Celera Genomics for assembling the human genome from the 

old Sanger sequencing data. CANU can handle both PacBio SMRT and Oxford Nanopore sequencing 

data. FALCON/FALCON-Unzip is a diploid assembler specifically designed for PacBio sequencing data.  

DBG2OLC is a hybrid assembler that takes advantage of long read PacBio data and high accuracy 

Illumina data. Miniasm is an OLC-based assembler for noisy long reads. Compared to the other 

assemblers, Miniasm is a very fast assembler but does not correct base-call errors in the assembly 

process. CANU and FALCON/FALCON-Unzip performed best in terms of Illumina read mapping rate, 

N50, and the complete BUSCOs in our test runs.  In the tests, CANU achieved the highest mapping rate 

and the highest the complete BUSCO while FALCON/FALCON-Unzip was much faster than CANU and 

attained the longest contig N50, which was more than twice the N50 achieved by CANU.  For these 

reasons, both CANU and FALCON/FALCON-Unzip were chosen as candidates to produce the final FHM 

genome assembly.  Finally, we evaluated software parameter settings in order to optimize the overall 

assembly process. For example, we tested the CANU assembler with both diploid and haploid genome 

assembly settings, and found that CANU performed better in the diploid assembly mode than in the 

haploid mode based on three evaluation criteria: N50, read mapping rate and complete/single BUSCO 

coverage.  Using the same evaluation criteria, we developed a customized  scaffolding process, instead 

of following the established scaffolding routine (scaffolding first with mate-pair reads, followed by optical 

mapping data, and finally with HiC data) used by many published genome assembly studies [91-94], to 

accomplish the best genome assembly. Particularly, our procedure ran HiC scaffolding twice as the first 

and last steps in scaffolding process.   The first HiC-scaffolding mainly used short-distance interaction 

data while the last one primarily utilized long-distance interactions in the HiC data. By using Illumina and 

optical mapping data as the intermediate scaffolding steps, we were able to correct scaffolding errors 

introduced during the initial HiC scaffolding.   

Many genome assemblies were generated during the optimization process. Benchmark analyses were 

critical in the optimization of parameter settings for assembling and for selecting the final FHM genome 

assembly.  As discussed above, our evaluation of genome assembly quality was based on three 

benchmarking analyses: N50 for assessing genome contiguity, BUSCO analysis for completeness, and 

Illumina read mapping rate analysis for correctness.  The results from these three criteria, however, were 

not always consistent, making the selection of the best assembly a non-trivial problem.  For example, in 

the comparison between one FALCON assembly and the corresponding CANU assembly, FALCON had 

much longer contig N50 at 628,999 than CANU of which the N50 is 360,780. However, CANU had much 

higher BUSCOs than FALCON as the results showed that the complete BUSCOs for the CANU and 

FALCON assemblies are 4373 and 4302. respectively. To deal with these contradictory results, we 

adopted a ranking rule where single and complete BUSCOs were given the greatest weight, followed by 

N50 and finally read mapping rate for assembly quality comparison and selection.  In addition to these 

three benchmarking scores, other factors were also considered, e.g., genome duplication level measured 
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by single and complete BUSCO score, and the closeness of the assembly size to the estimated genome 

size 1.11Gbps based on cytological analysis [86].  For the reason, the final FHM assembly we selected is 

not the one with the highest complete BUSCOs (4379/95.5%), nor it has the longest scaffold N50 at 47.6 

Mbps with only 34 scaffolds (the assembly is available upon request), but is one with the highest single 

and complete BUSCOs with the assembly size 1.07Gpbs, which is acceptably close to the previous 

estimate.   

With the complete BUSCOs over 95.1% and N50 at 12.0Mbps, the FHM2 reference genome was far 

more contiguous and complete than the FHM1 assembly.  Nevertheless, the FHM2 reference genome 

was not fully complete and could be further improved.  13.2% of the genome is still represented by gaps 

though this is much smaller compared to the 33.5% gaps found in the FHM1 reference. Since most of 

these gap regions are very likely of highly AT-rich repetitive regions, closing these gaps require longer 

reads and/or deeper coverage of sequencing data from the latest third-generation sequencers, e.g., 

PacBio or Oxford Nanopore.  Also, many scaffolds of the FHM2 reference are still at the sub-chromosome 

level. One likely reason is that we did not have enough tissue sample from a single fish to generate all 

data for genome assembly and scaffolding. So instead we used two different fish, one for generating 

PacBio and Illumina reads, and the other fish for the Bionano optical mapping data and HiC scaffolding 

data.  There was large genetic variation between the two fish, which made it difficult to scaffold the 

assembly to the full chromosome level, however, this does have the advantage of FHM2 assembly acting 

as a consensus reference which benefits downstream data analysis.  

We were able to comprehensively annotate the FHM2 reference genome, providing new details about its 

composition. In our repeat analysis, 19.3% of the FHM genome was found to be interspersed repeats by 

using only the known repeat libraries (data not shown) while 38.9% of the genome was identified to be 

interspersed repeats when combining de novo repeat discovery and known-library search. The result 

suggests that many interspersed repeats are new and may be unique to the FHM genome.  In addition, 

our repeat analysis results show that FHM has a substantially higher proportion of simple repeats or low 

complexity regions compared to other teleost species, a distinguishing feature of the FHM genome.  

There is great interest in using the genome assembly for the interpretation of transcriptional and 

epigenetic data, to this end we annotated 26,150 protein coding genes.  The completeness of the protein 

gene annotation is indicated by the high percentage of complete BUSCOs for both the transcript (94.7%) 

and the genome (95.1%).  The number of annotated protein coding genes in the FHM is very similar to 

the well-annotated zebrafish reference genome (25,638), which also has similar BUSCO scores and 

mapping rates.  Given that the zebrafish genome is likely the most well-characterized published fish 

genome and is closely related to the FHM, this comparison provides strong evidence that our gene 

prediction and annotation is relatively complete and of high quality.  Nevertheless, the UTR annotation 

may be incomplete as many gene models are without any UTR.  We are currently working to address this 

issue using full-length mRNA sequencing, which will also serve to further improve gene annotation.  Our 

annotation of small RNAs offer a glimpse of the scale of post-transcription regulations in the FHM and 

their potential differences among difference species. Limited by performance of prediction tools, our small 

RNAs annotation, especially miRNAs and piRNAs, remains preliminary at this point. Further improvement 

could be made with additional smRNA-seq data and experimental functional validation in future.      

The comparison between the FHM and ZF reference genomes confirmed that FHM and ZF are the 

closest related fish species reported by the published phylogenetic study of the more than 20 vertebrates 

on evolution distance of neurokinin B (NKB) receptor genes (Tachykinin 3a, tac3a)[95]. This is supported 

by three observations from the study: 1) large syntenic genome regions shared between the two species, 

far more than that shared with other teleost fish species (results not shown here), 2) the majority (93%) of 

FHM transcripts got top BLAST-hits from the ZF genome among 27 landmark species, and 3) the high 

similarity of the large vitellogenin gene in gene sequence level, number of  paralogs, and their 

chromosome arrangement.  Despite the close evolutionary relationship between FHM and ZF, we found 

that FHM is a clearly distinguished species from ZF with respect to the following aspects: 1) large 
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difference in GC content in intron regions with ZF at 50.6% while FHM only at 37.1%, 2) a substantial 

number (3350 or 7%) of FHM transcripts without any good homologous match in ZF, and 3) more 

compact gene structure, i.e., shorter more AT-rich intron/intergenic regions, in the FHM than ZF.  All the 

evidence suggests that FHM and ZF have diverged substantially from their last common ancestor. 

In conclusion, we de novo assembled a highly contiguous and complete reference genome of the fathead 

minnow and provided detailed annotation of the genome.  Our study reveals that the FHM genome has 

generally much more compact gene structure than the closely related ZF though there is a high-degree 

similarity in coding genes between them. The new FHM reference genome, together with the 

comprehensive annotation, represent a major advance in environmental genome research,  providing a 

robust framework for gene expression and regulation studies, opening the door for a much deeper 

understanding of changes going on at the molecular level in response to toxins and other environmental 

stressors.    

DATA AVAILABILITY 

The FHM genome assembly and annotation data have been submitted to the NCBI Genome database 

with the accession number WIOS00000000. All raw DNA and RNA sequencing data associated with the 

project have been deposited to NCBI under the BioProject PRJNA565199, which includes 30 BioSamples 

(ID# SAMN12766224-SAMN12766252, and SAMN12875914), 103 SRA datasets (accesion#: 
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TABLES 

Table 1: Comparison of three genome assemblies. FHM1 is the first FHM genome assembly currently 
publicly available.  ZF assembly (GRCz11 primary assembly) is the latest version available at the NCBI 
and the Ensembl.         

Assembly statistics FHM1 
(GCA_000700825) 

FHM2 
(WIOS00000000) 

ZF 
(GRCz11)  

Number of scaffolds 73,057 910 993 

N50 contig 7,513 300,151 1,428,257 

N50 scaffold 60,380 11,952,773 54,304,671 

Complete BUSCOs 3,506 (76.5%) 4,357 (95.1%) 4,384 (95.7%)   

Complete and single-copy BUSCOs 3,324 (72.5%) 4,115 (89.8%) 4,215 (92.0%)   

Complete and duplicated BUSCOs 182 (4.0%) 242 (5.3%) 169 (3.7%)   

Fragmented BUSCOs 507 (11.1%) 73 (1.6%) 66 (1.4%) 

Missing BUSCOs 571 (12.4%) 153 (3.3%) 134 (2.9%) 

Total contig size 811,183,656 925,375,343 1,368,782,359 

Total scaffold size 1,219,326,373 1,066,412,313 1,373,471,384 
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Table 2:  Repeats analysis summary report of the FHM2 genome assembly    

Type sub-group  # elements* length (bp) % genome 

Retroelements   249678 96792759 9.08% 

SINEs  22354 2714953 0.25% 

    Penelope 1207 265815 0.02% 

LINEs  78893 23445138 2.20% 

      L2/CR1/Rex 59637 15291306 1.43% 

      R1/LOA/Jockey 2299 857151 0.08% 

      R2/R4/NeSL 2263 1224253 0.11% 

      RTE/Bov-B 4905 1780570 0.17% 

      L1/CIN4 2184 1032311 0.10% 

LTR elements  148431 70632668 6.62% 

      BEL/Pao 9750 6260165 0.59% 

      Ty1/Copia 406 234805 0.02% 

      Gypsy/DIRS1 89802 47549943 4.46% 

        Retroviral 17549 7893150 0.74% 

DNA transposons 1138712 228911213 21.47% 

hobo-Activator  256864 54737880 5.13% 

Tc1-IS630-Pogo  71534 14918781 1.40% 

PiggyBac  19182 5854328 0.55% 

Tourist/Harbinger 89007 19615220 1.84% 
Other (Mirage,P-element, 
Transib) 8307 2261427 0.21% 

Rolling-circles   43452 22236361 2.09% 

Unclassified   583472 89130569 8.36% 

Total interspersed repeats   414834541 38.90% 

Small RNA   3015 513354 0.05% 

Satellites   30422 5491099 0.51% 

Simple repeats   354572 16612360 1.56% 

Low complexity   35283 1920018 0.18% 

*most repeats fragmented by insertions or deletions have been counted as one element 
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Table 3:  Comparison of protein and transcript BUSCO scores between FHM and ZF.  The numbers in 

parentheses are the corresponding percentages of the BUSCOs.    

  Proteins Transcripts 

FHM zebrafish FHM zebrafish 

Complete BUSCOs  4325 (94.3) 4356 (97.2) 4341 (94.7) 4423 (96.5) 

Complete and single-copy 
BUSCOs 

2821 (61.5) 2577 (56.2) 2743 (59.8) 2543 (55.5) 

Complete and duplicated 
BUSCOs  

1504 (32.8) 1879 (41.0) 1598 (34.9) 1880 (41.0) 

Fragmented BUSCOs 120 (2.6) 57 (1.2) 110 (2.4) 85 (1.9) 

Missing BUSCOs  139 (3.1) 71 (1.6) 133 (2.9) 76 (1.6) 

 

 

 

Table 4: Comparison of RNA-seq read mapping rates between FHM and zebrafish.  To make comparison 
fair, zebrafish primary assembly (GRCz11 primary assembly) was used and only protein transcript 
sequences from the primary reference were used. Reported values in each cell are total mapping rate, 
unique mapping rate, multimapping rate, respectively 

 

 WHOLE GENOME TRANSCRIPTOME 

 FHM Zebrafish FHM Zebrafish 

BOTH READS 90% (80%, 10%) 87% (79%, 8%) 74% (45%, 29%) 69% (39%, 30%) 

1ST READ 94% (81%, 13%) 91% (80%, 11%) 81% (45%, 36%) 75% (40%, 35%) 

2ND READ 92% (80%, 12%) 90% (79%, 11%) 78% (45%, 33%) 75% (40%, 35%) 
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Table 5: Comparison of FHM model transcripts/proteins to transcripts/proteins extracted from primary 

assembly of Danio rerio (GCF_000002035.6_GRCz11) 
 

Zebrafish FHM 

number of protein coding genes  25,638 26,150 

number of protein coding transcripts 47,834 47,578 

unique protein sequences 36,644 (77%) 32,848 (69%) 

# of transcripts with no 5' UTR 2533 9900 

# of transcripts with no 3' UTR 2621 8680 

median protein coding gene length 13,569 10,177 

median transcript length 2486 2967 

median CDS length 1476 1371 

median 5'UTR length 180 259 

median 3' UTR length 531 816 

median protein length 491 456 

median # unique exons per gene 8 8 

median intron length 984 469 

 

Table 6: Numbers of different small RNAs predicted in FHM in comparison to reported values for 

zebrafish  

Type FHM Danio rerio Source 

tRNA 2670 8676 gtRNAdb 

miRNA 620 387/374 rfam.xfam.org/mirbase.org 

piRNA 392,936            1,330,692                regulatoryrna.org 

SSU_rRNA_eukarya 47 36 rfam.xfam.org 

LSU_rRNA_eukarya 16 52 rfam.xfam.org 

snoRNA 201 283 rfam.xfam.org 

scaRNA 13 11 rfam.xfam.org 
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FIGURES 

 

 

Figure 1: Flowchart for assembling the final FHM2 reference genome.  The assembling process includes 
eight main steps in the order from top to bottom. The assembly steps and order were optimized to 
achieve the best assembly. For convenience, the brief phrase in parentheses of each step is henceforth 
used to refer to the corresponding assembly step.   

Assembling the draft diploid genome reference (diploid draft) 

Polishing draft, correcting bases, and filling in mini gaps (polish-1)  

Purging haplotigs form the assembly (haplotigs-purged) 

Scaffolding with mate-pair Illumina read data (scaffold-MatePair) 

Scaffolding with Hi-C Illumina paired-end read data (scaffold-HiC-2) 

Scaffolding with Bionano optical mapping data (scaffold-Bionano) 

Polishing assembly draft, correcting bases, filling in mini gaps (polish-2) 

Scaffolding with Hi-C Illumina paired-end read data (scaffold-HiC-1) 
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Figure 2: Dotplot of FHM genome assemblies before and after purging haplotigs. The x-axis is the original 
FHM diploid genome assembly (1.45Gbps) by CANU (version 1.8), and y-axis is the one (0.93Gbs) after 
purging haplotigs. The removal of haplotigs reduce the size of the FHM genome assembly by almost 
520Mbps. 
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Figure 3:  Number of scaffolds and N50 of FHM assemblies at different assembly steps. The x-axis shows 
different assembly steps from the initial assembling of diploid daft to the final scaffolding with HiC data.  
The primary y-axis (blue solid line with the round dot marker) is of the number of scaffolds, and the 
secondary y-axis (red dotted line with triangle marker) is N50.  Both Y-axes are in the log2 scale.    

 

 

Figure 4: Scaffold length distribution of the FHM genome assembly. The blue dots are lengths of 
individual scaffolds, and yellow ones are the cumulative percentage of the total genome length. The plot 
shows only the first 125 scaffolds.   
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Figure 5: Distribution of 27 landmark species with respect to the number of top-blast hits in homolog 
search.  

 

Figure 6: Number of annotated GO terms in BP (Biological Process), MF (Molecular Function) and CC 
(Cellular Compartment) categories.  
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Figure 7: GO term distribution among all predicted transcripts in the FHM2 genome.  

 

 

 

 

Figure 8: Visualization of FHM2 genome annotation on UCSC genome browser.  Tracks are as follows 
from top to bottom: ab initio gene prediction track; final gene annotation track; the repeat annotation tract 
shown in the dense mode.  Both gene annotation tracks are displayed gene model in the pack mode; 
genes in red are in the plus strand while those in blue are minus strand of DNA.  
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Figure 9: EPIC-CoGe genome browser’s bird's-eye view of the first scaffold of the FHM2 genome 
assembly. The top dense color bar indicates GC content, and yellow regions with 0%GC are repeat-
masked or gapped region. The arrowed lines are of annotated genes with arrow pointing the direction of 
genes.        

 

 

Figure 10: Syntenic dot-plot of CDS regions of FHM and Zebrafish. x-axis is zebrafish and y-axis is FHM. 
The plot was generated by SynMap2.  
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Figure 11: GEvo syntenic map of the genomic region surrounding the FMt022379 in FHM2 and the 
ENDART00000132491 in zebrafish. The genomic region containing the syntenic region in the ZF is 
approximately 200kbps, more than twice the length of the corresponding region (about 90kbps) in the 
FHM2 genome.  In this syntenic region, the FHM genome has much shorter introns or intergenic regions. 
The yellow regions in the FHM genome are repeat-masked or gap regions.  

 

 

 

 

Figure 12: Syntenic alignment map of the ESR1 genes between zebrafish and FHM2 
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Figure 13: Genomic map of vitellogenin (VTG) genes in the Zebrafish and FHM.    The UCSC gene map 
plot on the top shows the cluster of six VTG genes in the chromosome 22 of the Zebrafish genome, while 
the one on the bottom shows a similar cluster of six VTG genes in the scaffold 140 of the FHM2 genome.    

 

 

Figure 14:  Syntenic alignment map of the VTG1 genes between zebrafish and FHM.   
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