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Summary 28 

It is a general assumption of molecular biology that the ensemble of expressed molecules, their activities 29 

and interactions determine biological processes, cellular states and phenotypes. Quantitative abundance 30 

of transcripts, proteins and metabolites are now routinely measured with considerable depth via an array 31 

of “OMICS” technologies, and recently a number of methods have also been introduced for the parallel 32 

analysis of the abundance, subunit composition and cell state specific changes of protein complexes. In 33 

comparison to the measurement of the molecular entities in a cell, the determination of their function 34 

remains experimentally challenging and labor-intensive. This holds particularly true for determining the 35 

function of protein complexes, which constitute the core functional assemblies of the cell. Therefore, the 36 

tremendous progress in multi-layer molecular profiling has been slow to translate into increased 37 

functional understanding of biological processes, cellular states and phenotypes. In this study we 38 

describe PCfun, a computational framework for the systematic annotation of protein complex function 39 

using Gene Ontology (GO) terms. This work is built upon the use of word embedding— natural language 40 

text embedded into continuous vector space that preserves semantic relationships— generated from the 41 

machine reading of 1 million open access PubMed Central articles. PCfun leverages the embedding for 42 

rapid annotation of protein complex function by integrating two approaches: (1) an unsupervised 43 

approach that obtains the nearest neighbor (NN) GO term word vectors for a protein complex query 44 

vector, and (2) a supervised approach using Random Forest (RF) models trained specifically for 45 

recovering the GO terms of protein complex queries described in the CORUM protein complex database. 46 

PCfun consolidates both approaches by performing the statistical test for the enrichment of the top NN 47 

GO terms within the child terms of the predicted GO terms by RF models. Thus, PCfun amalgamates 48 

information learned from the gold-standard protein-complex database, CORUM, with the unbiased 49 

predictions obtained directly from the word embedding, thereby enabling PCfun to identify the potential 50 

functions of putative protein complexes. The documentation and examples of the PCfun package are 51 

available at https://github.com/sharmavaruns/PCfun. We anticipate that PCfun will serve as a useful tool 52 

and novel paradigm for the large-scale characterization of protein complex function.53 
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INTRODUCTION 54 

Proteins are known to catalyze and control the vast majority of the reactions of cellular biochemistry 55 

(Aebersold and Mann, 2016). Frequently they exert their function only if they stably interact in precise 56 

stoichiometric ratios with other proteins in the form of complex macromolecular structures, a notion that 57 

has been encapsulated in the term “modular cell biology” (Hartwell et al., 1999). With the advent of high 58 

throughput ‘OMICS’ technologies for the study of complex biological systems, it is now possible to 59 

accurately quantify and identify different types of biologically relevant molecules across various 60 

conditions. However, determining the biological functions and phenotypes of these assemblies has 61 

remained challenging and requires a functional understanding of the molecular functions of its 62 

components and associations. Detailed biochemical and cell biological studies have identified the 63 

composition and even the atomic structures of numerous protein complexes with well-defined roles in a 64 

variety of fundamental biological processes (Hewick et al., 2003), such as in their participation in 65 

transcriptional regulation (Aranda et al., 2015; Simonis et al., 2004; Tan et al., 2007; Webb and Westhead, 66 

2009), cell cycle control (Becher et al., 2018; Chen et al., 2019; D'Avino et al., 2009) and signal 67 

transduction (Pawson and Nash, 2000; Rebois and Hebert, 2003). Protein complexes can, therefore, be 68 

considered essential agents and indicators of cellular functionality.  69 

Recent technical advances, particularly in mass spectrometry (MS) - based proteomics have 70 

greatly enhanced our capacity to determine the composition, stoichiometry and abundance of known 71 

protein complexes and to identify new entities. These methodologies also support the systematic 72 

identification of compositional or quantitative changes in complexes as a function of cellular state. These 73 

include methods such as BF-MS (Biochemical Fractionation Mass Spectrometry) (Carlson et al., 2019; 74 

Heusel et al., 2019; Heusel et al., 2020; Rosenberger et al., 2020; Stacey et al., 2017; Szklarczyk et al., 75 

2019), Affinity Purification MS (AP-MS), Cross-Linking MS (XL-MS) (Leitner et al., 2016; Leitner et 76 

al., 2012; Liu et al., 2015) and limited proteolysis (LiP) (Schopper et al., 2017) and thermal proteome 77 

profiling (TTP) (Mateus et al., 2020). Compared to the experimental detection of new protein complexes, 78 

the determination of their biochemical or cellular function has significantly lagged behind because 79 

experimentation with specific complexes is highly challenging. Given the challenge of characterizing 80 
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the function of protein complexes, hypotheses regarding the functional roles in which a newly discovered 81 

protein complex participates are typically generated by careful manual review of prior literature. 82 

The standard approach to manual literature review for identifying the putative function of a 83 

protein complex consists of the search for publications and database entries about the individual protein 84 

subunits and followed by the consolidation of the retrieved information. However, this manual curation 85 

presents several limitations that cam make it highly inefficient and highly biased. First, exhaustive 86 

literature curation for all proteins belonging to even a single complex can easily become prohibitively 87 

time-consuming due to the sheer volume of publications required to parse through. Given that the manual 88 

curation for retrieving high-confidence functional annotations of a single protein complex can be 89 

extremely laborious, performing such annotation on dozens or hundreds of novel entities discovered in 90 

large scale complex centric proteomic fractionation experiments quickly becomes prohibitive. Second, 91 

although protein complex databases, such as CORUM (Giurgiu et al., 2019) and Complex Portal (Meldal 92 

et al., 2019) offer experimentally and manually validated functional annotations for better-studied 93 

protein complexes (i.e. the ground truth), the literature-based functional annotations for the same protein 94 

complexes can be highly dissimilar across different databases. Third, some proteins are multifunctional 95 

and may have unique roles in different protein complexes, thereby highlighting that the function of 96 

protein complexes is not simply the aggregate of their subunits’ functions (Jeffery, 2015; Matalon et al., 97 

2014; Nakabayashi et al., 2014). As a case in point, we conducted a preliminary examination of the Gene 98 

Ontology (GO) terms annotated for whole protein complexes in the CORUM database compared to each 99 

individual subunit’s GO term annotations in the QuickGO database (Binns et al., 2009). The results 100 

showed that 2155 (61.4%), 319 (9.1%), and 169 (4.8%) heteromeric protein complexes in CORUM 101 

contained at least one novel biological process, molecular function, or cellular component term that was 102 

not annotated for any individual subunit’s QuickGO entry, respectively. In other words, certain proteins 103 

may participate in emergent functionality when assembled in a macromolecular complex that would be 104 

non-obvious based on the known functions of the individual protein complex’s subunits. We therefore 105 

argue that it is of great importance to employ computational techniques that can assist large-scale 106 
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predictions of protein complex functions and provide useful insights and guidance for the follow-up 107 

functional characterization experiments. 108 

Given that the nature of information encoded in natural language-based functional descriptions 109 

of protein complexes is fundamentally unstructured, tit is challenging for traditional bioinformatic and 110 

data mining approaches to meaningfully distill the information from specific publications. However, 111 

computational methods from text-mining — the field concerned with computationally extracting 112 

information from unstructured natural language text— have been also successfully applied to a variety 113 

of biomedical problems and provide a promising avenue to address our task. These include extraction of 114 

protein-protein relations and functions (Islamaj Dogan et al., 2019; Li et al., 2019b; Manica et al., 2019; 115 

Subramani et al., 2015; Yu et al., 2018), determination of protein structure (Gaizauskas et al., 2003), 116 

protein localization (Cejuela et al., 2018), and gene-disease relationships (Pletscher-Frankild et al., 2015). 117 

However, to the best of our knowledge, no computational tool designed specifically for annotating the 118 

functions of protein complexes has been described to date. 119 

To address this dearth in direct functional annotation methods for protein complexes, in this work 120 

we integrate text-mining and machine-learning techniques into a hybrid computational framework, 121 

termed PCfun, that can be applied to large scale complex-centric proteome experiments for predicting 122 

the function of protein complexes. At a high level, PCfun is developed based upon word embedding 123 

generated from the machine reading of >1 million open access PubMed Central (PMC) articles, whereby 124 

both unsupervised and supervised machine learning algorithms were used to generate two separate lists 125 

of predicted functional Gene Ontology (GO; biological process, molecular function and cellular 126 

component) terms for a queried protein complex. Following, a supervised machine-learning model 127 

trained on the associations between protein complexes and their GO terms documented in the CORUM 128 

database was used to predict a second list of candidate functional terms. Hence, the unsupervised 129 

candidate list provides functional predictions solely based upon the word vector relationships observed 130 

within the embedding that are unbiased to protein complex-function associations while the supervised 131 

candidate list tailors the annotations to relationships similar to the CORUM database. In order to leverage 132 

the insights provided by both approaches we attempted to consolidate the two lists by leveraging the 133 
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hierarchical structure of the Gene Ontology by testing for enrichment of certain supervised terms within 134 

the unsupervised list. An adapted leave-one-out cross-validation scheme was used to test the system’s 135 

performance and suggested that PCfun achieved outstanding prediction performance with AUC values 136 

of 0.895, 0.927, and 0.957 for biological process, molecular function, and cellular component terms, 137 

respectively.  In addition, we compared the prediction outcomes by PCfun and the GO annotations from 138 

the Complex Portal database (Meldal et al., 2019) using protein complexes not documented in the 139 

CORUM database. For the biological function and cellular component categories, PCfun predicted 140 

similar (i.e. semantic similarity >= 0.5) GO terms that covered more than half of the Complex Portal’s 141 

ground-truth annotations for 52.8% and 69.7% of the protein complexes in the biological process and 142 

cellular component categories respectively. In contrast, the molecular function category only achieved 143 

12.9% coverage, which might be explained by the lowest similarity between the CORUM and Complex 144 

Portal annotated GO terms for this category. Taken together, we anticipate that PCfun will serve as an 145 

accurate annotation tool for protein complex function and increase our better understanding of the 146 

functional roles of protein complexes in biological systems. 147 

 148 

RESULTS 149 

The Architecture of PCfun for Predicting the Function of Protein Complexes  150 

PCfun development consisted of two main steps. The first step, as shown in Figure 1A, was based on 151 

the building of the word embedding itself. Approximately 1 million open access articles were 152 

downloaded from the PubMed Central Repository and their full texts were processed (STAR Methods) 153 

as described in Manica et al. (Manica et al., 2019) to populate a text corpus. After consolidation of the 154 

text corpus, the fastText implementation of the skip-gram context prediction embedding algorithm was 155 

employed onto the text corpus (STAR Methods) to construct a word-embedding representation of the 156 

text: 500-dimensional, continuous real-valued vector representations based on the subwords extracted 157 

from the corpus. These word vectors were constructed for character n-grams allowing for the creation of 158 

a word vector for any natural language query (see Figure 2A for a graphic illustration of the word 159 

vectors). Using this property of character n-gram embeddings, we next extracted sub-embeddings 160 
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consisting of all protein complex and GO term (split into biological process, molecular function, and 161 

cellular component classes) queries. As a result of this first step (Figure 1A) we obtained five-word 162 

vector sub-embeddings corresponding to protein complex queries (sub-embedding for each naming 163 

scheme used for a protein complex name: canonical vs. subunit name) and GO term queries (three sub-164 

embeddings corresponding to biological process, molecular function, and cellular component terms). 165 

The next step was then to construct the models for functional annotation of protein complex 166 

queries. As depicted in Figures 1B and C, we employed two strategies capable of returning ranked 167 

protein complex – GO associations: (i) an unsupervised nearest-neighbor approach illustrated in Figure 168 

1B, and (ii) a supervised machine learning approach displayed in Figure 1C. The first algorithm is 169 

agnostic to the question of functional annotation of protein complexes and was based solely upon 170 

contextual relationships. In contrast, the second algorithm is a tailored approach trained specifically to 171 

recover functional terms for a protein complex query. The rationale for using two distinct approaches is 172 

that they are likely to produce complementary, and potentially, if combined, more informative outputs. 173 

As seen in Figure 1B, we built a k-d tree (k-dimensional tree) (Freidman et al., 1977), a space-174 

partitioning structure for storing the sub-embeddings’ vectors of GO terms to enable rapid application 175 

of a nearest neighbor algorithm that was able to shortlist GO terms ranked by cosine similarity between 176 

the queried protein complex vector and each word vector for a GO term, for recovering CORUM’s 177 

ground-truth annotations of each protein complex. The supervised machine-learning models (Figure 1C), 178 

on the other hand, learned from the experimentally verified protein complex – GO term associations and 179 

were therefore able to accurately cover these ground-truth in the CORUM database. We constructed and 180 

evaluated four widely applied machine-learning algorithms: RF (Breiman, 2001), Logistic Regression 181 

(LR) (Lecessie and Vanhouwelingen, 1992; Yu et al., 2011), and Naïve  Bayes (NB) classifier a with 182 

Gaussian distribution and a Bernoulli distribution (Zhang, 2004) classifiers. A ranked list of GO term 183 

annotations was generated by both the unsupervised k-d tree algorithm (Figure 1B) and the supervised 184 

machine learning models (Figure 1C). 185 

 Finally, to combine the prediction outcomes from the RF and the k-d tree, a hypergeometric test 186 

was conducted to test for the functional enrichment of k-d tree terms within the child nodes of each RF 187 
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predicted term (Figure 1D). A visualization of a GO direct acyclic graph (DAG) structure for 188 

functionally enriched predicted GO terms was performed to represent the contextual information of 189 

predicted GO terms of biological process, molecular function and cellular component, respectively 190 

(Figure 1E). Given a protein complex of interest, PCfun first applies the two models to generate two 191 

prediction lists using k-d tree and RF, and then visualizes the prediction outcome via the functional 192 

enrichment analysis and the GO DAG structure (STAR Methods). 193 

 194 

Benchmarking the prediction performance of PCfun 195 

We systematically evaluated the prediction performance of PCfun. We first separately assessed the 196 

predictive ability of the unsupervised k-d tree and the RF model, for annotating protein complex 197 

functions. Further, we independently compared the prediction outputs from the enrichment analysis of 198 

PCfun with the functional annotations documented in the Complex Portal database (Meldal et al., 2019). 199 

 200 

The word-embedding and k-d tree facilitated the ranking of potential GO terms for protein complexes 201 

A useful property of word-embeddings is that words with related semantic meanings have corresponding 202 

word vectors that exist closer to each other in the word vector space - as measured by the cosine similarity 203 

(i.e. same orientation) – compared to words that have very different meanings. Therefore, one can find 204 

words with a similar meaning to an input query word by simply finding the nearest neighbors of the input 205 

query word vector. To aid in rapid nearest-neighbor calculations for these large sub-embeddings, we 206 

stored each sub-embedding into a k-d tree, allowing us to efficiently retrieve word vectors that were 207 

similar to the input query vector. To evaluate the quality of the word-embeddings, we performed 208 

principal component analysis (PCA) of the word vectors for each extracted sub-embedding of different 209 

types, including biological process vectors, molecular function vectors, cellular component vectors, and 210 

the protein complex vectors with the two naming schemes (STAR Methods). Figure 2B demonstrates 211 

that the sub-embeddings’ word vectors of each type are well clustered, indicating the reliable quality of 212 

the word-embedding. 213 
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We measured the ability of each GO term class sub-embedding to recover the ground-truth 214 

functional annotations for a protein complex from CORUM by recording the number of nearest 215 

neighbors (ranked by their cosine similarity) required to recover 100% of the ground-truth functional 216 

annotations for an input protein complex query. We hypothesized that the results might change 217 

depending on the name used to represent a protein complex. Additionally, considering that de novo 218 

detected protein complexes will not be characterized with an accepted name, we proposed the subunit 219 

naming scheme for a protein complex that would still allow for the functional annotation of even newly 220 

identified protein complexes by PCfun. Therefore, we tested the two protein complex naming schemes’ 221 

sub-embeddings (STAR Methods). Figures 2C, D indicate that the sub-embeddings required on average 222 

13487, 5119, 2692, and 11044, 5214, 1894 nearest neighbors to recover the ground truth for biological 223 

process, molecular function, and cellular component categories using the canonical names and subunits 224 

names, respectively. It is evident that in order to recover CORUM’s ground-truth annotations, a large 225 

number of nearest neighbors are required. We therefore subsequently performed manual literature search 226 

based on the top nearest neighbor GO terms for certain protein complexes and observed that the predicted 227 

GO terms were actually still quite informative and were recovering known biological knowledge. 228 

We chose a representative example protein complex, namely “SMAD2-SMAD4-FAST1-TGIF-229 

HDAC1 complex, TGF (beta) induced”, for a manual literature review comparison to the k-d tree nearest-230 

neighbor results. We used the subunit naming scheme (“smad4 tgif1 smad2 hdac1 foxh1”) for generation 231 

of its corresponding word vector and then queried the vector into the biological function, molecular 232 

function and cellular component sub-embedding k-d trees. While the k-d trees required 27400, 2182 and 233 

990 nearest neighbor terms in the biological function, molecular function and cellular component trees, 234 

respectively, to recover the six CORUM annotated GO terms (DNA topological change; negative 235 

regulation of transcription, DNA-templated; DNA binding; transforming growth factor beta receptor 236 

signaling pathway; chromosome organization; nucleus) for this protein complex, the top returned k-d 237 

tree nearest neighbors (Supplemental Table S1) still provided relevant GO terms that had related 238 

biological meanings. For example, the top 10 nearest neighbors for the biological function category are 239 

terms all related to the TGFβ or bone morphogenic protein response. According to Massague et al 240 
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(Massague et al., 2005), the SMAD proteins accumulate in the nucleus to execute transcriptional control 241 

in response to TGFβ signal transduction and may be co-activated or co-repressed by various DNA-242 

binding co-factors. We observed that “negative regulation of Smad protein signal transduction” was the 243 

8th nearest neighbor term for the queried protein complex vector, which recovers the role of the co-244 

repressor activity of HDAC1 and TGIF that act to repress the transcriptional control of the activated and 245 

nuclear localized SMAD2:SMAD4 subcomplex (Liberati et al., 1999; Wicks et al., 2000). The ranking 246 

of GO terms by the k-d tree for this protein complex is listed in Supplementary Files 1-3. In summary, 247 

the top-nearest neighbor results of the k-d tree do provide insights into the relevant biology, but 248 

demonstrate poor ability to recover CORUM’s ground-truth annotations. This suggests the necessity of 249 

building supervised-learning models to systematically and statistically improve the predictive outcomes. 250 

 251 

Supervised machine-learning models greatly improved the performance of ground-truth recovery of GO 252 

terms in CORUM 253 

In order to improve the performance of ground-truth recovery of CORUM, we implemented supervised 254 

machine-learning classifiers based on the word vectors for a ‘protein complex-GO association’ pair 255 

(termed ‘PC-GO’). In our study, the annotated association of a PC-GO term was regarded as a positive 256 

sample, whereas randomly sampled synthetic pairs of a protein complex and other GO terms that were 257 

not associated in CORUM were regarded as negative ones. As the negative samples significantly 258 

outnumbered the positive samples in the resulting datasets, we generated five different training datasets 259 

with randomly selected negative samples and all positives for each protein complex to ensure an equal 260 

distribution of positive and negative samples for training the classifier (STAR Methods). This process 261 

was conducted for both naming schemes. With the training datasets, we assessed the performance of 262 

three machine-learning classification algorithms, including RF, LR, and NB with a Gaussian or Bernoulli 263 

prior (NB_Gauss or NB_Bernoulli, respectively), through the adapted ‘protein complex’-leave-one-out 264 

cross-validation strategy using standard performance measures (STAR Methods). 265 

Across these classifiers, RF consistently performed the best as measured by all performance 266 

metrics (Figure 3, Supplementary Table S2, and Supplementary Figures S1 and S2) and achieved a 267 
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robust performance across the two naming schemes. For example, via the ‘protein complex’-leave-one-268 

out cross-validation strategy, the RF classifier achieved AUC values of 0.885 and 0.895 for biological 269 

function, 0.925 and 0.927 for molecular function, and 0.951 and 0.957 for cellular component category 270 

for protein complexes with conventional and gene combinational names, respectively. In addition, we 271 

also observed that the resulting GO term lists predicted by the RF classifiers were able to significantly 272 

reduce the number of nearest neighbors needed to recover the majority of the ground-truth GO term 273 

annotations for a protein complex when compared to the nearest-neighbor results from querying the k-d 274 

tree (Figure 3D). For example, for protein complexes with subunit names, the RF classifier predicted 275 

terms were able to recover 80.5%, 83.6%, and 89.2% of CORUM’s ground-truth in 102, 49, and 11 276 

positively predicted terms for biological process, molecular function, and cellular component, 277 

respectively. 278 

While the RF classifiers performed well to recover the ground-truth as documented in the 279 

CORUM database, performance of the supervised approach may belie the inherent bias to the database 280 

that it was trained upon. Although protein complexes within CORUM have been extensively studied and 281 

the GO term annotations have been manually curated, there is an extant right skew in the frequency of 282 

GO terms with low to middle depth, based on the GO DAG structure. As shown in Supplementary 283 

Figure S3, we observed that the logged frequency of a particular GO term (i.e. the number of times a 284 

GO term has been annotated in CORUM) versus each GO term’s depth in the GO DAG structure reveals 285 

a biased annotation distribution for GO terms in CORUM. For example, the biological process term 286 

‘Regulation of transcription DNA templated’, molecular function term ‘DNA binding’ and cellular 287 

component term ‘Nucleus’ were annotated in 233, 278, and 702 protein complexes respectively out of 288 

3511 total protein complexes in the CORUM database. Such over-annotated GO terms could bias 289 

machine-learning algorithms in favor of selecting these highly abundant annotations. Therefore, to 290 

address the biases of the dataset that the RF classifier was trained upon, we supplemented the predicted 291 

terms from the RF classifier with the predicted nearest neighbors from the k-d tree. A graphical 292 

illustration of the combination of the RF and k-d tree prediction lists together as well as an example is 293 

shown in Figure 4 (STAR Methods). 294 
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 295 

Independent test demonstrates divergent GO term predictions by PCfun compared to Complex Portal 296 

We accessed the prediction performance of PCfun (trained on CORUM) with the testing data from a 297 

different database, Complex Portal. We first identified that only 110 annotated human protein complexes 298 

(i.e. complexes with identical subunits) were shared by CORUM and Complex Portal. We subsequently 299 

interrogated the semantic similarity of the biological process, molecular function and cellular component 300 

terms for these complexes between the two databases (STAR Methods). The heatmaps of the pairwise 301 

similarity scores using the method reported by Wang et al (Wang et al., 2007) are shown in the left panel 302 

of Figure 5. The average semantic similarity scores of biological process, molecular function and 303 

cellular component categories were 0.40, 0.34 and 0.54, respectively, suggesting that even for complexes 304 

with the same subunit composition the annotations of CORUM and Complex Portal are dissimilar. More 305 

stringently, we examined the numbers of identical GO terms used for each overlapping protein complex. 306 

As a result, less than one GO term across all categories (0.22 biological process term, 0.05 molecular 307 

function term and 0.13 cellular component term, respectively) was shared on average per protein 308 

complex between CORUM and Complex Portal. This means that the annotations for protein complexes 309 

are extremely divergent across the two databases, making it challenging for PCfun (built on CORUM) 310 

to accurately cover the GO annotations in Complex Portal. We then sought to gauge the approximate 311 

similarity of GO terms predicted by PCfun with Complex Portal annotations by assessing the pairwise 312 

semantic similarity (STAR Methods). The right panels of Figure 5 show the comparison between 313 

predicted biological process, molecular function and cellular component terms by PCfun and the 314 

Complex Portal annotations for the non-overlapping protein complexes (i.e. with <50% of overlapping 315 

subunits). For biological process as shown in Figure 5A, 15 (approximately 44.1%) non-overlapping 316 

complexes covered 90-100% of similar terms (semantic similarity ≥ 0.5) compared to Complex Portal 317 

biological process annotations, while 14 complexes (41.2%) had divergent predictions (i.e. coverage 318 

between 0-10%) compared to the annotations in the Complex Portal. Similarly, for cellular component 319 

(Figure 5C), approximately 69.7% (23) of the complexes covered 90-100% of similar terms compared 320 

to Complex Portal cellular component annotations 30.3% (10). In contrast, PCfun demonstrated highly 321 
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divergent predictions for the molecular function category with only 1 (3.2%) complex covering 90-100% 322 

of similar terms and 27 (87.1%) complexes demonstrating 0-10% coverage of similar terms when 323 

compared to Complex Portal’s annotations. The low coverage of PCfun prediction for the molecular 324 

function category might be related to the limited overlap between the molecular function annotations 325 

from CORUM and Complex Portal (the left panel of Figure 5B). It is noteworthy that different studies 326 

and databases may have divergent annotations for a protein or protein complex. Despite the low semantic 327 

similarities of all the biological process, molecular function and cellular component terms between the 328 

two databases, PCfun still demonstrates its ability to accurately recover and reliably predict functions 329 

accurately in the context of the database it was trained. 330 

 331 

DISCUSSION 332 

Advances in high throughput omics techniques have allowed for fast and deep identification and 333 

quantification of functional macro-molecules in the cell. Understanding the functions of these molecules, 334 

particularly for protein complexes, is a crucial step to understand and model biological activities in the 335 

cell. However, annotating the function of a protein complex is a great challenge, given the huge and 336 

occasionally contradictory volume of literature on each of its subunits. Currently, manual literature 337 

review is still the most common way to annotate the functions of protein complexes in major databases, 338 

such as CORUM and Complex Portal. Computational methods for gene function prediction (Barutcuoglu 339 

et al., 2006; Guan et al., 2008; Stojanova et al., 2013) have greatly broadened our understanding of single 340 

gene functions. However, combining the functional annotations of genes to infer the functions of the 341 

complex remains challenging and there is no such work published, to the best of our knowledge. In this 342 

study, we describe PCfun, the first hybrid computational framework for function prediction of protein 343 

complex, powered by the integration of machine-learning and text-mining techniques. PCfun was built 344 

based on large-scale publications obtained from PubMed Central (approximately one million full-text 345 

articles and their abstracts). The resulting word-embedding matrix was then used to build two 346 

complementary computational models, a supervised RF model for the prediction of function based on 347 

the annotations in the CORUM database, and an unsupervised k-d tree model for nearest-neighbor 348 
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queries. The adapted protein complex leave-one-out cross-validation demonstrated the accurate 349 

prediction performance of the supervised RF model for predicting the PC-GO associations with respect 350 

to the ground-truth annotations provided in CORUM. On the other hand, we also constructed the k-d tree 351 

model, which is able to shortlist top-ranked nearest-neighbors, including terms not annotated in the 352 

CORUM database. Through enrichment analysis of the functional terms predicted by both models, 353 

PCfun is able to provide the final predicted GO terms associated with the input protein complex. Its 354 

representation of a contextual GO dendrogram structure along with the embedded predicted GO terms 355 

illustrates the hierarchal relationships of all predicted GO terms for the given protein complex. 356 

 As discussed in the ‘Results’ section, one issue during the construction of the machine-learning 357 

models is the biased functional annotations in the CORUM database, as shown in Figure S3. Therefore, 358 

the predictive power of the RF model in PCfun is limited to the CORUM annotations, demonstrating 359 

that it is crucial to combine the ‘non-biased’ prediction results of unsupervised k-d tree method with RF 360 

predictions via enrichment analysis, in order for PCfun to deliver non-biased predicted functions for a 361 

given protein complex. Another noteworthy issue is the negative data for training the supervised RF 362 

model of PCfun. Traditional supervised-learning models for binary classification require accurate 363 

labeling of classes (e.g. positive vs. negative) for each sample in the training dataset. However, labelling 364 

negative training samples is practically challenging in biological context due to the lack of experimental 365 

data. Oftentimes a previously labelled negative sample can be relabeled as positive with the acquisition 366 

of new data from novel biological techniques or identification methods. We will re-train the PCfun model 367 

once the annotations in the referred databases are updated, in order to continually improve the prediction 368 

performance.  369 

 PCfun can be applied to broad biological and personalized medicine applications. As 370 

demonstrated in this work, PCfun is easily accessible and offers utility to a variety of proteomic 371 

technologies. Prior to the prediction, the potential protein complexes with clearly defined subunits (either 372 

UniProt accessions or gene names) can be provided using the methodology described in the study of 373 

McBride et al (McBride et al., 2019). It is also possible to compare the functional differences by 374 

examining the prediction outputs of PCfun for a protein complex across different biological/medical 375 
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conditions. In the future, we also plan to incorporate the differential analysis, similar to gene set 376 

enrichment analysis, for differentially regulated protein complexes that may have the ability to leverage 377 

both compositional (i.e. stoichiometric) and abundance differences. Additionally, prior to delivering the 378 

prediction results, PCfun first searches the given protein complex within the CORUM database for 379 

possible annotations. The documented annotations in CORUM and newly predicted GO terms are 380 

separated in the final outputs in an effort to facilitate the generation of novel hypotheses regarding the 381 

function of the protein complex. Taken together, we anticipate that PCfun can serve as an instrumental 382 

computational approach for the prediction of novel functions of protein complexes to provide reliable 383 

computational evidence for further experimental validation. 384 
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STAR METHODS 406 

KEY RESOURCES TABLE 407 

REAGENT OR RESOURCE SOURCE IDENTIFIER 

Deposited Data   

CORUM Database (Giurgiu et al., 2019) https://mips.helmholtz-muenchen.de/corum/ 

Gene Ontology Resource 
(Ashburner et al., 2000; The Gene 
Ontology, 2019) 

http://geneontology.org/ 
 

QuickGO database (Binns et al., 2009) https://www.ebi.ac.uk/QuickGO/ 

Complex Portal (Meldal et al., 2019) https://www.ebi.ac.uk/complexportal/home 

PubMed Central - https://www.ncbi.nlm.nih.gov/pmc/ 

UniProt Database (UniProt, 2019) https://www.uniprot.org/ 

Software and Algorithms   

Scikit-learn (Pedregosa et al., 2011) https://scikit-learn.org/stable/ 

fastText (Joulin et al., 2017) https://fasttext.cc/ 

PCfun This work https://github.com/sharmavaruns/PCfun 

 408 

LEAD CONTACT AND MATERIALS AVAILABILITY 409 

Further information and requests for resources should be directed to and will be fulfilled by the Lead 410 

Contact, Chen Li (Chen.Li@monash.edu).  411 

 412 

METHOD DETAILS 413 

Text corpus generation and data processing 414 

Approximately 1 million articles (including open-access full-text articles and their abstracts) were 415 

downloaded from PubMed Central in February 2018. Note that these publications are not 416 

species/organism specific, which means that the developed PCfun, built on the corpus, is a generic tool 417 

for protein complex function prediction. For processing the articles into a text corpus, we followed the 418 

text processing pipeline described in the study of Manica et al (Manica et al., 2019). All of the natural 419 

language queries were pre-processed by removing all punctuation characters, by fixing Unicode 420 

mojibake and garbled HTML entities, and by converting all uppercase characters into lowercase. For the 421 

extraction of a single word vector from a natural language query (e.g. a protein complex or GO term 422 

name), L2 normalized vectors of the query individual words were extracted from the embedding and 423 

averaged. The final averaged vector of the component vectors of the name were L2 normalized again 424 

and subsequently used as the final word vector for the natural language query. 425 
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 426 

Word-embedding and similarity calculations 427 

Word-embedding refers to a class of approaches developed in the fields of text mining and natural 428 

language processing that embed natural language texts into high-dimensional, continuous real-valued 429 

vector representations (Manica et al., 2019). The word-embedding in this study was achieved by training 430 

the unsupervised version of ‘fastText’ (Joulin et al., 2017) with a skip-gram model on the publications 431 

corpus. Briefly, the skip-gram model attempts to minimize the negative sum of the log probability that a 432 

word exists within the context of a target word. The fastText unsupervised training parameters used were 433 

the default values as declared in the fastText package except for 500-dimensions for the embedding layer, 434 

a context window of size 9, and the usage of bi-grams as chosen from the study of Manica et al (Manica 435 

et al., 2019). After training, the word vectors were normalized to a unitary norm. We utilized the cosine 436 

similarity between two vectors, which measures the cosine of the angle between the two vectors as the 437 

normalized dot product of the two vectors. 438 

 439 

Calculating sub-embeddings of topics and nearest neighbors 440 

We extracted sub-embeddings (a data frame consisting of the word vectors for a particular class of terms, 441 

such as all biological process GO terms) for protein complex names (extracted from CORUM- one sub-442 

embedding for each naming scheme: canonical or subunit names) and GO terms (extracted from GO 443 

resource split into biological process, molecular function and cellular component classes). For example, 444 

to obtain the GO terms most similar to a protein complex query in the embedding space, we calculated 445 

of the nearest neighbors to the protein complex query vector within the extracted GO term sub-446 

embedding space. A nearest-neighbor calculation involves calculating distances between vectors within 447 

the sub-embedding of interest and the query vector, and then sorting the neighbors by their similarity by 448 

descending order. The calculation for nearest neighbors can be quite time intensive depending on the 449 

size of the embedding due to the time requirements for pairwise calculation of the distances between 450 

each vector in the sub-embedding and the query vector. Therefore, we stored the sub-embedding vectors 451 

into a pre-computed k-d tree (k-dimensional tree), which is a space-partitioning data structure that stores 452 
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the vectors into buckets determined by hyperplane splits over each dimension of the vector (Freidman et 453 

al., 1977). Therefore, calculation of n-nearest neighbors to a query vector requires only placement of the 454 

query vector into its corresponding location within the pre-calculated k-d tree and then subsequent 455 

querying of its ancestors in the tree until the closest n-nearest neighbors have been calculated. 456 

 457 

Databases for protein complex annotations 458 

For this work we employed the CORUM database (Giurgiu et al., 2019) as the main resource for the 459 

ground-truth annotation of protein complexes with GO terms, as CORUM is a compendium of manually 460 

curated and experimentally validated protein complexes for various organisms (Giurgiu et al., 2019). 461 

Annotations in CORUM for the function of protein complexes have been collected from various types 462 

of evidence, including experimental evidence (‘exp’), evidence from literature (‘lit’), known mammalian 463 

homologs (‘kmh’), high-throughput experiments (‘htp’), and predicted function (‘pred’). Here the 464 

‘predicted function’ refers to the potential function suggested by the experimental results. In this work, 465 

we utilized annotations from all species in the CORUM database to keep as much information as possible 466 

for constructing an accurate supervised machine-learning model, given that the corpus we obtained from 467 

PubMed are not species/organism specific. In our study, non-redundant 3414 core protein complexes 468 

(downloaded in March 2019) from the CORUM database were used. 469 

In addition to CORUM, we utilized the annotated Homo sapiens protein complexes (downloaded 470 

in November 2019) from the Complex Portal database (Meldal et al., 2019) to independently assess the 471 

prediction performance of PCfun. Similar to CORUM, the Complex Portal contains the protein 472 

complexes and their annotations of GO terms. As the Complex Portal has fewer number of protein 473 

complexes documented, we did not use it for training the model. For the independent test, only the protein 474 

complexes annotated as ‘physical interaction evidence used in manual assertion’ with the evidence code 475 

‘ECO:0000353’ coupled with experimental evidence from the IntAct database (Orchard et al., 2014) 476 

were retained. To objectively benchmark the performance of PCfun on the Complex Portal, we further 477 

removed those protein complexes from the Complex Portal that had a subunit overlap of larger than 50% 478 

compared to the complexes in the CORUM database. As a result, the numbers of protein complexes from 479 
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the Complex Portal for the independent test were in total 34, of which 34, 31, and 33 protein complexes 480 

have biological process, molecular function and cellular component annotations, respectively. 481 

 482 

Gene name extraction for protein complex subunits 483 

As each unique natural language query has its own unique word vector, it is important to standardize the 484 

natural language name used for each protein complex when extracting its word vector. A protein complex 485 

can be either represented as its documented name, as written into the protein complex database, or as its 486 

subunits’ gene names strung together. In this study, we tested the performance of the algorithms using 487 

two different naming schemes: (1) canonical name (as documented in CORUM), and (2) subunit name 488 

(composed by UniProt gene names of each subunit). To obtain the gene names of the subunits, we 489 

extracted the subunits of the protein complexes from CORUM and queried the UniProt database 490 

(downloaded in May 2019) (UniProt, 2019) for their corresponding gene names using the organism 491 

identifier from the CORUM database. We then represented the protein complex name with its text pre-492 

processed subunits’ gene names, strung together with spaces demarcating each individual gene name. 493 

Due to the fact that there might exist multiple names for a single gene, only its canonical name was 494 

extracted and used in our model. Gene names were extracted by downloading the UniProt FASTA-495 

formatted sequence file, with respect to the appropriate species, which was then subsequently parsed for 496 

each relevant UniProt ID - gene name pair. The resulting work has tested the performance of the 497 

algorithm when using each naming scheme independently from each other. Importantly, use of the 498 

subunit UniProt gene name scheme also allows for greater flexibility as one can still gain functional 499 

insight into a newly detected protein complex even if the complex has not been officially named yet. 500 

 501 

Preparation of protein complex - GO (PC-GO) pair datasets for supervised learning 502 

To enable the accurate prediction of protein complex function annotations, we have formulated our task 503 

as a supervised binary classification problem, for which we created a labelled dataset based on the 504 

CORUM annotations. To create the labelled dataset, we first extracted PC-GO term pairs and then 505 

labelled each pair as positive if its annotation was observed in the CORUM database. The GO terms and 506 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 25, 2021. ; https://doi.org/10.1101/2021.02.24.432789doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.24.432789
http://creativecommons.org/licenses/by-nd/4.0/


 21 

their DAG structures were collected from the Gene Ontology Resources platform (Ashburner et al., 2000; 507 

The Gene Ontology, 2019). To label the negatives, we first generated a pool of all possible negative PC-508 

GO pairs to sample from by taking the GO terms (split by biological process, molecular function and 509 

cellular component categories) that were used in CORUM and not annotated for a particular protein 510 

complex. Since only a few GO terms were annotated for each protein complex, this negative sample pool 511 

significantly outnumbered the positive sample pool. This issue of having a huge number of negatives 512 

compared to positive labels is a common problem shared by a variety of bioinformatics studies and have 513 

been discussed in the recent studies of Li et al (Li et al., 2018b; Li et al., 2019a). To build an unbiased 514 

supervised classifier, it is common practice to train on an approximately equal distribution of positive 515 

and negative labels. To ensure this, we randomly selected an approximately equal number of negative 516 

PC-GO pairs from the pool of negatives as there were positives for each protein complex. This random 517 

selection was repeated five times, resulting in five training datasets, where only negative samples were 518 

different. 519 

 520 

Supervised machine-learning classifiers 521 

Supervised binary classification was performed with the RF (Breiman, 2001), LR (Lecessie and 522 

Vanhouwelingen, 1992; Yu et al., 2011), and NB (with Gaussian and Bernoulli distributions, 523 

respectively) (Zhang, 2004) classifiers with the default parameters. The feature space consisted of 1,000-524 

dimensional vectors (500-dimensional protein complex vector prepended to a 500-dimensional GO term 525 

vector) with each vector corresponding to a PC-GO pair labelled with either positive or negative. RF 526 

classification uses the ensemble of decision trees that randomly bootstraps over the training data and 527 

features for each decision tree in order to classify the input vector space. After construction of the random 528 

decision trees, the classifier outputs a class membership (positive or negative for binary classification) 529 

prediction dependent on the community-wide vote from the random trees constructed. LR utilizes the 530 

logistic function for the binary classification of a dependent variable. This method outputs a probability 531 

score ranging from 0 to 1 where values of >0.5 are considered to be of the positive class membership. 532 

NB classifiers are probabilistic classifiers built upon Bayesian statistics. These classifiers attempt to learn 533 
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the distributional fit for each labelled class and accordingly assign probability values for each class when 534 

given a new input vector. The priors we tested were the Gaussian and Bernoulli distributions. Briefly, 535 

the Gaussian distribution assumes that the continuous data values are distributed according to a normal 536 

distribution, whereas the Bernoulli distribution assumes that the features are independent binary 537 

variables and can be considered as a special case of the binomial distribution. These two classifiers are 538 

termed NB_Gauss and NB_Bernoulli in the following sections, respectively. For PCfun’s machine 539 

learning classifier predicted terms we used a majority voting scheme over the five datasets to provide an 540 

averaged predicted probability for each GO term. For this majority vote, we equally weighted the 541 

contribution of each dataset’s model to achieve a final combined probability score for particular GO 542 

terms. If the combined probability score was >0.5, the GO term was classified as a positive term, 543 

otherwise classified as a negative. 544 

 545 

Performance assessment of supervised binary classification 546 

To assess the predictive performance of the supervised binary classifiers, we introduced an adaptation 547 

on traditional leave-one-out cross-validation, which we termed ‘protein complex’-leave-one-out cross 548 

validation. The ‘protein complex’-leave-one-out cross validation first pre-removed every row that had 549 

the particular protein complex being tested (including both positive and negatively labelled rows).  550 

Afterward, the model was then trained on the remaining dataset and tested on the pre-removed protein 551 

complex of interest’s rows. This complex-wise evaluation strategy was applied to each protein complex 552 

in the dataset. To measure the performance, we used widely established performance metrics used in a 553 

variety of bioinformatics and computational biology studies (Li et al., 2018a; Manavalan et al., 2019; 554 

Song et al., 2018), including accuracy, AUC (Area Under the Curve), precision, recall, MCC (Matthews 555 

Correlation Coefficient) (Matthews, 1975), and F1 score. All metrics reported in this study are the 556 

average of five datasets of ‘protein complex’-leave-one-out cross-validation. For plotting the Receiver 557 

Operating Characteristic (ROC) curves, we followed the recommendations of the interpolation scikit-558 

learn package (please refer to the scikit-learn tutorial). These scores are calculated from the elementary 559 
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scores of true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN). The 560 

formulas for each performance metric are shown as follows: 561 

!""#$%"& =
()	 + 	(,

() + 	-) + -, + (,	, 562 

)$/"01023 =
()

() + -), 563 

4/"%55 =
()

() + -,, 564 

677 =
() × (, − -) × -,

:(() + -,)(() + -))((, + -))((, + -,)
, 565 

-1 = 2 ×
?$/"01023 × $/"%55
?$/"01023 + $/"%55. 566 

 567 

Semantic similarity calculation between GO terms 568 

To compare the GO terms predicted by PCfun and the annotations from Complex Portal, we did not 569 

perform the direct comparison/matching of the GO terms, due to the low number of intersecting GO 570 

terms between CORUM and Complex Portal. Instead, we exploited the semantic similarity introduced 571 

by Wang et al (Wang et al., 2007). This method considers both biological meanings and hierarchical 572 

relationships in the GO DAG structure of the given GO term pair. Any GO term pairs with a semantic 573 

similarity ≥0.5 were considered similar. When comparing the predicted GO terms by PCfun and the 574 

annotations from Complex Portal, for each protein complex, we first calculated the similarities for all 575 

possible GO term pairs between the PCfun outputs and Complex Portal annotations. The pairs with 576 

similarity score ≥ 0.5 were selected and the unique Complex Portal GO terms (N) in the pairs counted. 577 

Then the percent coverage of the predicted GO terms to the Complex Portal annotation for the particular 578 

protein complex was calculated using 72A/$%B/ = (, 6⁄ ) × 100, where M denotes the number of GO 579 

terms annotated in Complex Portal for the particular protein complex. 580 

 581 

 582 
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GO term enrichment analysis of predicted functional terms 583 

This step aims to systematically and comprehensively combine the two predicted GO term lists in each 584 

category (i.e. biological process, molecular function, and cellular component) by RF and the k-d tree for 585 

a given protein complex, respectively, due to the fact that this shortlist of terms predicted by RF that 586 

recovers CORUM database well but tends to predict broader GO terms for a protein complex. Given the 587 

predicted GO term list by RF with the size N (N≤10), we supplemented the information from this list 588 

with the list of GO terms (i.e. the nearest neighbors) obtained directly by querying the GO term sub-589 

embedding. To accomplish this, we developed a functional enrichment analysis pipeline based on the 590 

hypergeometric test to assess if all the child nodes of the GO term by RF are significantly enriched in 591 

the predicted GO terms by the k-d tree, using the following formula: 592 

? = E!"#$%&$'($)%*+(F − 1,6, 3, ,) 593 

where M denotes the number of total GO terms for a particular GO term class, n denotes the number of 594 

child terms of a parent GO term plus the parent term predicted by the supervised classifier that exists 595 

within the specific GO term class, where N denotes the sample size which is the mean number of GO 596 

terms required for the nearest neighbor list to recover all GO terms annotated for a protein complex 597 

(biological process = 11044, molecular function = 5213, and cellular component = 1896, respectively), 598 

and x denotes the number of child terms for a particular supervised term that exist in the set of the sample 599 

size list. The function E!"#$%&$'($)%*+ 	was the survival function for the hypergeometric distribution as 600 

implemented in the SciPy package. If the child nodes/terms are significantly enriched in the predicted 601 

list by the k-d tree, 10 top ranked terms based on cosine similarity from the k-d tree list are selected. We 602 

could therefore obtain a ‘combined’ predicted list that not only accurately recovers CORUM database 603 

but also supplements the list by RF using the detailed GO terms predicted by the k-d tree. To visualize 604 

the results, PCfun plots a GO tree structure of predicted GO term by RF (in green) and the 10 top ranked 605 

GO terms by the k-d tree (in purple) to demonstrate the hierarchical relationships of these terms. For the 606 

cellular component category, in addition to the combination of the two lists from the k-d tree and the RF 607 

model by functional enrichment analysis, we also considered adding the overlap of cellular component 608 
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annotations of all the subunits to the final outputs. The cellular component annotations for each subunit 609 

was downloaded from the QuickGO database (Binns et al., 2009).  610 

 611 

PCfun prediction output organization 612 

In total, there are six output lists (two for each GO category) for a given protein complex generated by 613 

PCfun. For each GO category (i.e. biological process, molecular function, and cellular component), one 614 

list contained the RF predictions and the top 10 significantly enriched GO terms by the k-d tree, while 615 

the other lists provided the top 20 GO terms by the k-d tree only. In addition, for each RF predicted term, 616 

a GO DAG structure is plotted to illustrate the hierarchical relationships between the RF prediction and 617 

the top 10 significantly enriched terms from the k-d tree. 618 

 619 

DATA AND CODE AVAILABILITY 620 

Data and code availability statement 621 

Data availability 622 

The full-text articles and their abstracts (in the non-commercial use collection) were extracted from the 623 

PubMed Central under a Creative Commons or similar license. The training dataset and the validation 624 

test (i.e. the PC-GO association) were obtained from the CORUM database (Giurgiu et al., 2019) and 625 

the Complex Portal database (Meldal et al., 2019), respectively. The full GO lists were downloaded from 626 

the Gene Ontology Resource platform (Ashburner et al., 2000; The Gene Ontology, 2019). For 627 

evaluation purposes, we downloaded the GO annotations for individual proteins from the QuickGO 628 

database (Binns et al., 2009). 629 

 630 

Code availability 631 

PCfun is an open-access software and is freely available for academic use under the ‘Academic Free 632 

License v3.0’. The source code, user instruction, and example inputs can be downloaded from 633 

https://github.com/sharmavaruns/PCfun. 634 

 635 
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 791 

Figure 1. The overall framework of PCfun. (A) A word-embedding containing a 500-dimentional vector 792 

for each word was first generated based on the open-access full-text articles and their abstracts using the 793 

‘fastText’ with a skip-gram model. Based on the word-embedding, two machine-learning algorithms 794 

were used, including (B) a k-d tree for nearest-neighbor search, and (C) a supervised RF model for PC 795 

association with MF, BP and CC, respectively. A simplified k-d tree example is shown in the top panel 796 

of (B). To combine the outputs of the two models, GO terms enrichment analysis (D) was performed. 797 

PCfun utilizes the enrichment analysis and GO DAG structure (E) to represent and visualize the predicted 798 

GO terms for a given protein complex. The testing protein complex (i.e. ‘PC’) is given to illustrate the 799 

usage of PCfun.800 
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 801 
 802 
Figure 2. Using the word-embedding and k-d tree to shortlist GO terms for protein complexes. (A) A 803 

graphical illustration of the vectors of phrases ‘Proteasome’, ‘E3 Ubiquitin Ligase’ and ‘DNA synthesis’ 804 

in a 3D space using simplified vector representation, for example, < %, H, ", … > denotes the numerical 805 

word vector for the natural language query ‘Proteasome’. (B) The principal component analysis (PCA) 806 

results of different types of sub-embeddings, including molecular function, biological process, cellular 807 

component, protein complexes with canonical names, and subunit names. (C) The numbers of nearest 808 

neighbors required from the k-d tree search outputs for protein complexes using canonical names to cover 809 

the CORUM ground-truth. (D) The numbers of nearest neighbors required from the k-d tree search 810 

outputs for protein complexes using subunit names to cover the CORUM ground-truth. 811 

 812 
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 813 
Figure 3. Prediction performance of RF model trained on the ground-truth protein complex – GO term 814 

annotations in the CORUM database for biological process, molecular function, and cellular component 815 

using canonical and subunit naming schemes for protein complexes, respectively, including (A) 816 

performance measures of RF models; (B) ROC curves and mean AUC values; (C) the precision-recall 817 

curves of the RF models via the adapted protein complex leave-one-out cross-validation, and (D) the 818 

numbers of predicted GO terms by the RF models to recover the CORUM database annotations.  819 

 820 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 25, 2021. ; https://doi.org/10.1101/2021.02.24.432789doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.24.432789
http://creativecommons.org/licenses/by-nd/4.0/


 33 

 821 

Figure 4. Utilizing functional enrichment analysis to combine the prediction lists from the k-d tree and 822 

the supervised RF model. (A) Hypergeometric enrichment test based on the RF prediction list. For each 823 

term in the list, all the child nodes of the term were collected and used for the statistical significance test 824 

with the terms from the k-d tree. If significant, the top ten terms from the k-d tree that are the child nodes 825 

of the RF term were selected and visualized in the GO DAG structure. (B) An example of prediction 826 

results for the protein complex ‘hspa9 grpel1 grpel2 complex’ illustrating the enrichment analysis 827 

procedure. 828 

 829 
 830 
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 831 

Figure 5. Semantic similarity comparison of (A) biological process, (B) molecular function, and (C) 832 

cellular component terms for the Complex Portal annotations with the CORUM annotations on identical 833 

protein complexes (left panel) and PCfun predictions on non-overlapping protein complexes (right panel). 834 

The right panel illustrates the percentage breakdowns of the predicted similar biological process and 835 

molecular function terms by PCfun to the Complex Portal annotations, respectively. Any GO term pairs 836 

between PCfun predictions and Complex Portal annotations with the semantic similarity ≥ 0.5 were 837 

considered similar.838 
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Supplementary information 839 

 840 

Table S1. Top 10 GO terms shortlisted by the k-d tree for the protein complex “SMAD2-SMAD4-841 

FAST1-TGIF-HDAC1 complex, TGF(beta) induced”. 842 

Number GO term Cosine distance Cosine similarity GO ID 

Biological process 

1 jun phosphorylation 0.90142032 0.52592264 GO:0007258 

2 common partner smad protein phosphorylation 0.91515871 0.52214994 GO:0007182 

3 smad protein signal transduction 0.9206383 0.52066024 GO:0060395 

4 pathway restricted smad protein phosphorylation 0.92724758 0.51887469 GO:0060389 

5 regulation of histone h3 t3 phosphorylation 0.93482421 0.51684282 GO:2000281 

6 regulation of smad protein signal transduction 0.93509793 0.51676971 GO:0007184 

7 histone h3 t3 phosphorylation 0.93731143 0.51617927 GO:0072355 

8 negative regulation of smad protein signal transduction 0.94274921 0.51473448 GO:0060392 

9 
regulation of pathway restricted smad protein 
phosphorylation 

0.9430544 0.51465363 GO:0060393 

10 negative regulation of histone h3 k27 trimethylation 0.94409184 0.51437899 GO:1902465 

Molecular function 

1 smad binding 0.81312028 0.55153539 GO:0046332 

2 i smad binding 0.88015558 0.53187088 GO:0070411 

3 r smad binding 0.89042146 0.52898257 GO:0070412 

4 co smad binding 0.89897215 0.52660067 GO:0070410 

5 bmp (bone morphogenic protein) binding 0.93230116 0.51751767 GO:0036122 

6 activin binding 0.95586228 0.51128344 GO:0048185 

7 histone deacetylase activity h3 k14 specific 0.96414003 0.50912867 GO:0031078 

8 bmp receptor binding 0.96599249 0.50864894 GO:0070700 

9 transcription corepressor binding 0.97184839 0.50713838 GO:0001222 

10 bmp receptor activity 0.97334295 0.50675429 GO:0098821 

Cellular component 

1 pdx1 pbx1b mrg1 complex 0.84789228 0.54115709 GO:0034978 

2 gata2 tal1 tcf3 lmo2 complex 0.86410241 0.53645121 GO:0070354 

3 rgs6 dnmt1 dmap1 complex 0.86604966 0.53589142 GO:0070313 

4 gata1 tal1 tcf3 lmo2 complex 0.87113766 0.53443422 GO:0070353 

5 heteromeric smad protein complex 0.8795976 0.53202877 GO:0071145 

6 smad protein complex 0.88390432 0.53081252 GO:0071141 

7 maml3 rbp jkappa icn1 complex 0.89328291 0.52818308 GO:0071179 

8 maml1 rbp jkappa icn1 complex 0.89389121 0.52801343 GO:0002193 

9 homomeric smad protein complex 0.90011405 0.5262842 GO:0071143 

10 fhl2 creb complex 0.90109935 0.52601144 GO:0034980 

 843 

 844 
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 845 

Table S2. Performance comparison of the Logistic Regression (LR) and Naïve Bayes (NB_Gauss and NB_Bernoulli) classifiers trained on the CORUM 846 

database via the adapted protein-complex leave-one-out cross-validation, for biological process, molecular function and cellular component categories, 847 

respectively. 848 

Naming 
scheme 

Biological process   Molecular function   Cellular component 

Acc.1 AUC Precision Recall MCC F1   Acc. AUC Precision Recall MCC F1   Acc. AUC Precision Recall MCC F1 
LR 
Canonical 
name 

73.05% 
±0.47% 

0.764 
±0.006 

0.613 
±0.008 

0.638 
±0.010 

0.419 
±0.009 

0.602 
±0.009   81.2% 

±0.33% 
0.842 
±0.005 

0.69 
±0.007 

0.708 
±0.006 

0.599 
±0.007 

0.688 
±0.007   87.55% 

±0.34% 
0.914 
±0.005 

0.785 
±0.005 

0.801 
±0.007 

0.735 
±0.007 

0.785 
±0.006 

Subunit 
name 

73.4% 
±0.30% 

0.77 
±0.003 

0.623 
±0.006 

0.642 
±0.008 

0.428 
±0.004 

0.609 
±0.007   82.36% 

±0.55% 
0.858 
±0.004 

0.71 
±0.005 

0.727 
±0.005 

0.625 
±0.007 

0.708 
±0.004   87.71% 

±0.40% 
0.919 
±0.004 

0.789 
±0.007 

0.808 
±0.007 

0.741 
±0.009 

0.79 
±0.008 

NB_Gauss 
Canonical 
name 

64.66% 
±0.36% 

0.702 
±0.004 

0.503 
±0.009 

0.547 
±0.012 

0.249 
±0.008 

0.497 
±0.009   73.89% 

±0.375% 
0.783 
±0.007 

0.594 
±0.014 

0.648 
±0.013 

0.467 
±0.010 

0.602 
±0.012   83.15% 

±0.10% 
0.867 
±0.007 

0.687 
±0.003 

0.704 
±0.005 

0.638 
±0.002 

0.687 
±0.004 

Subunit 
name 

64.82% 
±0.39% 

0.699 
±0.001 

0.485 
±0.007 

0.529 
±0.009 

0.245 
±0.008 

0.479 
±0.008   73.54% 

±0.672% 
0.796 
±0.008 

0.581 
±0.012 

0.641 
±0.009 

0.46 
±0.014 

0.593 
±0.010   82.47% 

±0.98% 
0.872 
±0.005 

0.661 
±0.022 

0.674 
±0.022 

0.619 
±0.022 

0.66 
±0.022 

NB_Bernoulli 
Canonical 
name 

64.89% 
±0.36% 

0.701 
±0.004 

0.500 
±0.009 

0.534 
±0.008 

0.252 
±0.009 

0.489 
±0.007   72.56% 

±0.658% 
0.784 
±0.006 

0.563 
±0.013 

0.622 
±0.011 

0.438 
±0.013 

0.575 
±0.011   81.98% 

±0.21% 
0.871 
±0.007 

0.645 
±0.002 

0.650± 
0.0 

0.604 
±0.002 

0.642 
±0.001 

Subunit 
name 

64.33% 
±0.64% 

0.694 
±0.003 

0.475 
±0.007 

0.515 
±0.008 

0.236 
±0.012 

0.468 
±0.008   72.46% 

±0.640% 
0.796 
±0.007 

0.558 
±0.004 

0.621 
±0.0 

0.437 
±0.014 

0.572 
±0.003   82.18% 

±0.21% 
0.875 
±0.002 

0.647 
±0.001 

0.654 
±0.0 

0.609 
±0.002 

0.644 
±0.001 

1Acc: Accuracy 849 

 850 

 851 
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 852 

Figure S1. ROC curves and the average AUC values of (A) NB_Gauss, (B) NB_Bernoulli and (C) LR 853 

models on biological process, molecular function and cellular component categories via the adapted 854 

protein complex leave-one-out cross-validation. These models were trained using the CORUM ground-855 

truth PC-GO associations, where the protein complexes were represented using both canonical and 856 

subunit naming schemes. 857 
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 858 

Figure S2. Precision-recall curves of (A) NB_Gauss, (B) NB_Bernoulli and (C) LR models on biological 859 

process, molecular function and cellular component categories via the adapted protein complex leave-860 

one-out cross-validation, where the protein complexes were represented using both canonical and 861 

subunit naming schemes. 862 

 863 
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 864 

Figure S3. Statistical analyses of the annotated GO terms in the CORUM database, including (A) the 865 

distributions of depth of annotated biological process, molecular function and cellular component terms 866 

in the GO DAG structures and (B) the frequencies of biological process, molecular function and cellular 867 

component terms that were assigned to the CORUM protein complexes. The top over-annotated 868 

biological process, molecular function and cellular component terms are respectively indicated. 869 
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