Abstract
The success of Mycobacterium tuberculosis (Mtb) is largely due to its ability to withstand multiple stresses encountered in the host. Here, we present a data-driven model that captures the dynamic interplay of environmental cues and genome-encoded regulatory programs in Mtb. The model captures the genome-wide distribution of cis-acting gene regulatory elements and the conditional influences of transcription factors at those elements to elicit environment-specific responses. Analysis of transcriptional responses that may be essential for Mtb to survive acidic stress within the maturing macrophage, identified regulatory control by the MtrAB two-component signal system. Using genome-wide transcriptomics as well as imaging studies, we have characterized the MtrAB circuit by tunable CRISPRi knockdown in both Mtb and the non-pathogenic organism, M. smegmatis (Msm). These experiments validated the essentiality of MtrA in Mtb, but not Msm. We identified that MtrA regulates multiple enzymes that cleave cell wall peptidoglycan and is required for efficient cell division. Moreover, our results suggest that peptidoglycan cleavage, regulated by MtrA, is necessary for Mtb to survive intracellular stress. Further, we present MtrA as an attractive drug target, as even weak repression of mtrA results in loss of Mtb viability and completely clears the bacteria with low-dose isoniazid or rifampicin treatment.
Competing Interest Statement
The authors have declared no competing interest.