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Abstract

Musical improvisers are trained to categorize certain musical structures into functional classes, which is

thought to facilitate improvisation. Using a novel auditory oddball paradigm (Goldman et al., 2020) which

enables us to disassociate a deviant (i.e. musical cord inversion) from a consistent functional class, we

recorded scalp EEG from a group of musicians who spanned a range of improvisational and classically

trained experience. Using a spatiospectral based inter and intra network connectivity analysis, we found that

improvisers showed a variety of differences in connectivity within and between large-scale cortical networks

compared to classically trained musicians, as a function of deviant type. Inter-network connectivity in the

alpha band, for a time window leading up to the behavioural response, was strongly linked to improvisation

experience, with the default mode network acting as a hub. Spatiospectral networks post response were

substantially different between improvisers and classically trained musicians, with greater inter-network

connectivity (specific to the alpha and beta bands) seen in improvisers whereas those with more classical

training had largely reduced inter-network activity (mostly in the gamma band). More generally, we interpret

our findings in the context of network-level correlates of expectation violation as a function of subject

expertise, and we discuss how these may generalize to other and more ecologically valid scenarios.

Keywords: Musical Improvisation, Brain Network Connectivity, Electroencephalography (EEG), Phase

Slope Index (PSI)

1. Introduction1

Improvisation has received scholarly attention in recent years from a variety of disciplinary perspectives.2

While often associated with musical performance, improvisation is theorized to underlie a wide variety of3

human behaviors ranging from artistic practices to organizational management to the performance of gender4

(Lewis & Piekut, 2016). Following from definitions of creativity in the psychology literature, improvisation5
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can be characterized as the spontaneous formation of novel, high quality output, that is novel and useful6

(Sternberg et al., 2004). Recent work has begun to coalesce knowledge and models from electroencephalogra-7

phy (EEG) studies (Stevens Jr & Zabelina, 2019), the involvement of the motor system (Bashwiner & Bacon,8

2019), the importance of expertise (Pinho et al., 2014; Braun, 2008), perception-action coupling (Loui, 2018),9

top-down and bottom-up networks (Faber & McIntosh, 2020), and network neuroscience (Beaty et al., 2019;10

Belden et al., 2020).11

Western musical improvisation offers an important model for the more general study of improvisation.12

Western musical improvisers can create and play music spontaneously, guided only (if at all) by notation13

that does not specify exact notes, but instead specifies functional classes of harmonies and melodies with14

multiple possible realizations, or instantiations as notes (e.g., jazz lead sheets, or figured bass notations).15

Improvisers are free to play any notes that fit these functional classes, subject to certain constraints, such16

as musical syntax, aesthetic considerations, and style or appropriateness for the audience (Berliner, 1994).17

Intriguingly, Western classically trained musicians, following a musical aesthetics that reifies specific series18

of notes as musical works (Goehr, 1992), are trained to perform these works strictly following the musical19

score and rarely ever improvise harmonic or melodic aspects of the music; to change those aspects would20

be to change the work of music, contradicting the aesthetics of the classical music tradition. Presumably as21

a result of the specific nature of this training, a classically trained musician who may have trained playing22

an instrument just as many years as an improviser - just in a different way - may not be able to improvise23

music.24

Previous work found that jazz improvisers showed more pronounced, larger early right anterior negativ-25

ity (ERAN) to rare and unexpected targets (Przysinda et al., 2017). Magnitudes of these ERAN responses26

correlated with metrics for improvisation experience and P3b and ERAN correlated with fluency and orig-27

inality in divergent thinking tasks. Aligned with these findings Zabelina & Ganis (2018) reported that28

individuals with greater ability in divergent thinking showed shorter response times and a stronger N2 ERP29

deflection for rare target trials which the authors interpret as higher attentional flexibility and stronger30

engagement of cognitive control processes in divergent thinkers. Musicians with higher improvisation ex-31

perience were further found to show lower BOLD activation in the right motor area (inferior frontal gyrus32

or IFG, anterior insula), regions associated with the default mode network or DMN (angular gyrus), the33

dorsolateral prefrontal cortex or DLPFC (Pinho et al., 2014) and higher upper-alpha power frontally during34

improvisation relative to control conditions (Lopata et al., 2017). These findings are supported by studies35

which contrasted brain activity during musical improvisation relative to control tasks within individuals in36

fMRI (Limb & Braun, 2008; Bengtsson et al., 2007; de Manzano & Ullén, 2012; Liu et al., 2012; Kouneiher37

et al., 2009), and complemented by electro- and magnetoencephalography-based studies which, in slightly38

different tasks, reported increased theta, alpha and beta power (Sasaki et al., 2019), decreased theta, alpha39

and beta power (Adhikari et al., 2016), or increased alpha and theta, but decreased beta power (Boasen40

et al., 2018).41
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When studying improvisation experience in terms of differences in brain connectivity, Pinho et al. (2014)42

reported that individuals with more improvisation experience showed greater connectivity between DLPFC43

and motor regions (dorsal premotor cortex or dPMC, pre-supplementary motor area or pre-SMA) based on44

BOLD-based functional connectivity. Work by the same authors (Pinho et al., 2015) supported the original45

findings when brain connectivity was studied within-subject during improvisatory activity relative to control46

conditions. Work by other authors in fMRI (Dhakal et al., 2019) and EEG (Adhikari et al., 2016) on the47

other hand reported on evidence for decreased granger causality-based connectivity.48

Very recent work has focused on studying connectivity between large-scale cortical networks with Belden49

et al. (2020) showing that musical improvisation experience can be predicted from resting state fMRI in50

that improvisers showed higher connectivity between primary visual network and DMN/ECN (executive51

control network) as well as higher connectivity between DMN and ECN while classically trained musicians52

on the other hand showed higher connectivity between vDMN and frontal pole. Earlier studies on creativity53

in non-music related contexts support these findings, reporting that creative individuals may be able to54

simultaneously engage large-scale networks that normally work in opposition, like default mode, salience55

and executive control networks (Beaty et al., 2018b). Further support comes from studies that showed that56

the interaction between large-scale networks predicted openness (Beaty et al., 2018a), was associated with57

high figural creativity (Liu et al., 2018) and may underlie the inhibition of prepotent responses (Beaty et al.,58

2017).59

Goldman et al. (2020) theorized that the specific way western musical improvisers are trained to categorize60

notes into higher level structures like functional-harmonic classes of chords may facilitate their ability to61

improvise. In music theory, harmonies can be classified by their function; roughly, in a series of harmonies,62

various chords play the role of ”tonic” harmonies, some can function as ”pre-dominant harmonies” and some63

as ”dominant harmonies,” depending on their placement within syntactically ordered series of harmonies.64

Different chords can play these different functional roles: for example, in some musical contexts, an improviser65

can substitute a chord with the notes G-B-D for one with the notes Db-F-Ab; these two chords share no66

notes, but can serve the same dominant function. Being able to substitute one harmony for another within67

the same functional class constitutes an important part of widely practiced forms of improvisation, and68

would underlie other important skills like recognizing a bandmate’s substitutions in order to more fluently69

respond and interact with them. Thus, in the study, the authors hypothesized that trained improvisers70

may perceive different chords within a functional class as more similar than chords that belong to different71

functional classes, whereas musicians without improvisatory training would not show the influence of such72

categorizations on their harmonic perception.73

The authors tested this hypothesis in an EEG study using an auditory oddball paradigm where impro-74

visers and classically trained musicians listened to progressions of three chords where the middle chord was75

either a deviant in terms of its musical inversion, but still picked from within the same functional class,76

referred to as ”exemplar deviant” (7.5 % probability), a deviant that also lay outside the functional class,77
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referred to as ”function deviant” (7.5 % probability), or a standard (no change in inversion; same functional78

class; 85 % probability). In support of their hypotheses, Goldman et al. found that musicians with more79

improvisation experience were slower and less accurate at detecting exemplar deviants relative to function80

deviants, i.e., deviant harmonic stimuli outside of the functional class were more salient than deviants within81

the functional class. In addition, more experienced improvisers also showed less pronounced N2c and P3b82

event-related potential (ERP) responses to exemplar deviants relative to function deviants, interpreted as a83

relatively lower violation of expectancy.84

Here we build on the data collected by Goldman et al. (2020) to investigate whether connectivity between85

cortical networks could help explain how musicians perceive and process musical structures, and whether86

improvisatory training leads to characteristic differences in such processing. We use connectivity and band87

power to isolate and measure spatiospectral brain networks and processes related to how musicians perceive88

chords within and across functional-harmonic categorical boundaries. We focus on whether the amount of89

improvisatory training can predict differences between these measurements. Again, as described by Goldman90

et al. (2020), this difference helps explain an important aspect of improvisatory training, perception, and91

performance. We focus on canonical cortical networks (Williams, 2016), some of which have been implicated92

in improvisation by previous studies (Belden et al., 2020), specifically networks related to attention (including93

frontoparietal network and dorsal attention network; e.g. Marek & Dosenbach (2018), Fornito et al. (2012)94

and Vossel et al. (2014)), cognitive control (e.g. Niendam et al. (2012)), salience (also including cingulo95

opercular network; e.g. Seeley (2019), Seeley et al. (2007) and Dosenbach et al. (2006)) and the default mode96

network (e.g. Fornito et al. (2012)). In an analysis inspired by Hanada et al. (2019) we derived connectivity97

within and between these networks as follows: We first recovered neuroelectrical source activity for every98

constituent region of given networks (e.g. ACC, DLPFC, etc.) using inverse methods (cortically constrained99

low resolution tomography; Pascual-Marqui et al. (2002)). We then computed directed connectivity between100

regions within and between networks using a validated signal processing pipeline (Mahjoory et al., 2017)101

that made use of a connectivity metric (phase slope index, PSI, Nolte et al. (2008)) that was theoretically102

and empirically shown (Nolte et al., 2008) to be robust to volume conduction effects as they appear in103

EEG (Haufe et al., 2013). These network metrics were then separately computed for exemplar and function104

deviants and the difference between these scalar values was used to linearly predict self-reported weekly105

improvisation hours, weekly hours spent training classical music and a behavioral metric (Goldman et al.,106

2020; Townsend & Ashby, 1978) that reflected the difference in task performance between exemplar and107

function deviants. We analyzed the resulting spatiospectral networks for three time windows: 1) between108

presentation of the second and third chord (between chords), 2) prior to the response (pre-response) and 3)109

after the response (post-response) (see Fig. 1).110
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2. Materials and Methods111

2.1. Study participants112

The data for this analysis has been collected by Goldman et al. (2020): A total of 40 musicians with113

formal training and/or significant professional experience (mean age 25.3, s.d. 5.5; 24 male) completed the114

experiment, with 25 of the subjects reporting ≥ 1 hour/week improvisation training on average since age 18.115

The musicians’ primary instruments were piano (Np=14), wind (Nw=15) and string instruments (Ns=11).116

Eight musicians reported being able to perfectly assess pitch of musical notes in absence of a reference tone117

(”absolute pitch”, Ward (1999)). All participants reported normal hearing and no history of neurological118

disorders. The study was approved by the institutional review board of Columbia University (NY, USA)119

and all subjects provided written informed consent prior to participation in the experiments.120

2.2. Auditory oddball task121

The musicians were instructed to listen to chord progressions, that each consisted of three chords. We122

refer to one instance of such a progression in the recording as a trial. Every one of the three chords in one trial123

sounded in sequence, each for 400 ms in piano timbre, after which each trial ended with another 400 ms silence.124

This resulted in a fixed, total trial length of 1600 ms. The only progressions used in the experiment were125

ii-IV-I, ii-V-I, ii-IV6-I and ii-V6-I (this notation reflects chord configurations as shown in Figure 1A). Each126

experimental block consisted of 180 trials. For each such block one of the four aforementioned progressions127

were chosen as ”standard”, resulting in four types of blocks (see Goldman et al. (2020) for details). These128

”block types” were used to counterbalance the effect of other features of the individual progressions such129

as intervallic content that may have been in themselves salient (refer to Goldman et al. (2020) for further130

explanation). An experimental block always started with at least eight ”standard” trials for the purpose of131

allowing participants to learn what type of progression would be the standard for the current block. There132

were two types of deviant trials that each occurred at a probability of 7.5 % (in total 15 %). Every deviant133

trial was followed by at least three standard trials. Deviant trials only differed from standard trials in terms134

of the middle chord: (1) Exemplar deviants, where the middle chord was replaced with a chord of identical135

notes but different inversion. For example, if the middle chord for a standard trial in that experimental136

block was V then the middle chord for the exemplar deviant in that block would be V6. For (2) function137

deviants, the middle chord was replaced by a chord from a different functional class. For example, if the138

middle chord for a standard was again V, then the middle chord for the corresponding function deviant in139

that block would be IV (again, see Figure 1A). Importantly, the key for each trial’s chord progression was140

picked at random. This meant that musicians needed to examine the second chord of every trial relative to141

the first and/or third to identify whether the trial was a standard or deviant. The order of standards and142

deviants within every one of the four types of experimental blocks was generated once only, and was thus143

identical across subjects within these block types. For the experiment, every one of the block types occurred144

twice, thus resulting in a total of eight blocks per subject. The order of the eight blocks was shuffled for every145
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subject. In total, there were 1440 trials per subject of which 222 were functional and 218 were exemplar146

deviants. See Goldman et al. (2020) for further details.147
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Figure 1: Experimental Paradigm. (A) Subjects (all musicians) where instructed to listen to chord progressions, each consisting

of three chords, and respond with a button press if they heard a deviant. There were two types of deviants, one being

”exemplar” and one ”functional” (see main text for details). Each chord progression was considered a trial and EEG was

recorded during the entire experiment. (B) Analysis of the data, with respect to differences in network connectivity between

exemplar (Ψ(Ex)) and functional (Ψ(Fu)) deviants, was focused on three time windows, the 400 ms between the second and third

chord (between chords), the 400 ms before the behavioural response (pre-response) and finally the 400 ms after the behavioural

response (post-response). (C) The canonical brain networks investigated, both in terms of inter and inter-network connectivity,

using phase-slope index measures (PSI). Networks include the left (FPN-L) and right (FPN-R) fronto-parietal network, the

visual network (VN), the dorsal attention network (DAN) the default mode network (DMN) the cognitive control network

(CCN) the cingulo opercular network (CON) and the salience network (SN). Three compound networks were also considered:

the compound DAN, the compound SN and the compound attention network (AN). Networks were fully connected.

2.3. Data collection148

While the musicians performed the oddball task, their EEG was recorded from 64 gel-based, active149

electrodes at standard scalp locations (10/20 system; Oostenveld & Praamstra (2001)) at a sampling rate150
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of 2048 Hz using a biosignal amplifier (Biosemi ActiveTwo, Biosemi, The Netherlands). The subjects were151

seated comfortably at a desk inside a shielded room as the auditory oddball paradigm was played to them152

via noise-cancelling, in-ear headphones (Quiet Comfort 20, Bose Corp., MA, USA). Subjects were instructed153

to respond to deviant chords as quickly and accurately as possible, by pressing the space-bar on a computer154

keyboard on the desk in front of them using the index finger of their right hand. This auditory stream was155

also recorded as a separate channel via the biosignal amplifier to assure highly accurate synchronization of156

paradigm timing, EEG and behavioral responses.157

2.4. Preprocessing158

Figure 2 shows an overview of the signal processing pipeline, where every participant’s EEG was first159

filtered bi-directionally with the pass-band configured from 0.5 to 45 Hz (finite-impulse response filter; order160

6144, tripling the raw sampling rate). The filtered signal was then down-sampled from 2048 to 256 Hz.161

2.5. Reconstruction of electrical activity at specific brain regions162

Neuroelectrical signals at specific cortical regions of interest (ROIs) in the brain, from hereon referred163

to as cortical current source density (CSD) signals, were inferred from the observed EEG by applying164

the inverse method anatomically constrained low resolution brain electromagnetic tomography (cLORETA,165

Pascual-Marqui et al. (2002)) to a boundary element method (BEM) based ”forward model” of how current166

propagates from a cortical neuronal source through neural tissue, cerebrospinal fluid, skull and out to the167

scalp. The first step in the procedure was automatic epoch-based outlier rejection based on the Matlab168

toolbox EEGLAB (Delorme & Makeig, 2004), where the subject’s EEG was split into epochs of 0.5 s and169

epochs were rejected when their signal exceeded commonly used thresholds for amplitude (smaller or greater170

200µV ), kurtosis (> 5.5× SD for the subject) or probability (> 4.0× SD for the subject). The procedure171

for estimating CSD was identical to Garćıa-Cordero et al. (2017), where the BEM solution was computed172

using OpenMEEG (Gramfort et al., 2010; Kybic et al., 2005) using the MRI based brain anatomy model173

”Colin 27” (Holmes et al., 1998) that was non-linearly mapped into MNI305 space (Evans et al., 1993) and174

associated with standard EEG electrode locations using BrainStorm (Tadel et al., 2011). Inverse modelling175

was accomplished through cLORETA, by which the 64 scalp EEG channels were first linearly mapped to176

a 5003-vertex cortical mesh and from there to 202 regions according to a sub parcellated version of the177

Desikan-Killiany atlas (Desikan et al., 2006).178

2.6. Trial based outlier rejection179

After outlier rejection was first performed prior to source reconstruction, the obtained source space180

projection matrix was then applied to raw EEG signal. Prior to actual analysis of experimental trials, outlier181

epochs were identified separately for the three conditions of standards, function and exemplar deviants. For182

each condition, epochs were extracted from -400 to 1200 ms relative to the onset of the second chord in a183

progression and epochs were rejected according to the previously mentioned criteria for amplitude, kurtosis,184
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probability and additionally as per a custom iterative band power based method (Faller et al., 2012). For185

the iterative method log-transformed band power was computed for frequency bands in delta, theta, alpha,186

beta and gamma up to 50 Hz. Trials were marked as outliers if average log-transformed power for the trials187

in any of the bands fell outside the mean ± 4 standard deviations of how all trials in that band and subject188

were distributed. If more than 0 outlier trials were marked, then the procedure was repeated based on a189

mean and standard deviation that did not take the outlier trials into account.190

2.7. Connectivity estimation between brain regions191

Conceptually, our analysis starts with four top-level brain networks (related to attention, cognitive con-192

trol, default mode and salience; see Figure 1C). Some of these top-level networks (e.g. the network we193

refer to as the ”compound” Attention Network), are composed of sub-networks, and ultimately of eight194

”core” networks (see Figure 1C). When statistically significant effects (post FDR) are observed in top-level195

networks, we continue analysis in sub-networks in an effort to localize effects. Specifically in terms of com-196

putation, the first step in our approach is to calculate the directed connectivity metric PSI separately for197

every subject, every trial type (standards and both deviants), for every brain network (starting with the198

four top-level networks), for twelve EEG frequency bands, three time windows (0 to 400 ms, relative to the199

second chord, as well as -400 to 0 and 0 to 400 ms relative to the response) and for every edge within the200

fully connected networks. CSD time series for the nodes in every network were obtained by averaging across201

signals that corresponded to subparcellations as per the mapping from reconstructed source signals using202

the Desikan-Killiany atlas (Desikan et al., 2006) as described above. A separate multivariate autoregressive203

model (order 10) was then fit to these CSD time series separately for every network, every time window204

and trial type using the Levinson-Wiggens-Robinson algorithm (Morf et al., 1978) as implemented in the205

Biosig toolbox (Vidaurre et al., 2011) used by Fieldtrip (Oostenveld et al., 2011). Through Fourier trans-206

form, we obtained cross spectral densities for the pairs of source time series for which we wanted to study207

connectivity relationships (i.e. edges in the network graphs; see Fig. 1C). The phase of these cross spectral208

densities was then analyzed to derive PSI (denoted as Ψ)for the corresponding network edges according to209

Nolte et al. (2008) using default parameters in Fieldtrip for EEG frequency bands ± 2 Hz relative to the210

center frequencies shown in Table 1.211

δ θ α1 α2 α3 β1 β2 β3 β4 γ1 γ2 γ3

Center frequency (Hz) 3 6 8 10 12 16 20 24 28 32 36 40

Table 1: Center frequencies for each band used in the PSI analysis

PSI makes use of the fact that if a signal in a frequency band that spans the adjacent frequencies f1 to fn212

in xa(t) is reproduced with a time delay τ later in another signal xb(t), then the phase spectrum of complex213

coherency is linear over this contiguous range of frequencies f1 to fn with a positive slope proportional to214
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the time delay τ . If signal xb(t) instead would lead signal xa(t) in time, then a negative slope would be215

observed. A more formal definition for PSI as per Nolte et al. (2008) is216

Ψk,m = =(
∑
f∈F

Ck,m
∗(f) Ck,m(f + δf) ) (1)

where k and m indicate the indices of the signals between which to calculate connectivity, Ck,m =217

Sk,m(f)/
√
Sk,k(f)Sm,m(f) represents complex coherency, S the cross-spectral density matrix, f is one out218

of a set F of frequencies in a small band for which to calculate PSI, f the frequency resolution, the asterisk219

denotes taking the conjugate transpose and =(·) denotes taking the imaginary part of a complex number.220

2.8. Estimation of connectivity within brain networks221

To capture connectivity regardless of directionality across edges over a whole cortical network in a robust222

manner we defined a simple metric ΨNW , for which the absolute value was taken for the PSI value for223

every edge of a network before all these absolute values were simply averaged. More formally, and based on224

definitions by Nolte et al. (2008) this can be represented as225

ΨNW = 〈 |Ψk,m| 〉 (2)

where Ψ, indexed by k and m represents the PSI between the brain signals k and m that correspond to226

pairs of nodes within the network, |·| denotes taking the absolute value and < · > denotes expected value.227

2.9. Estimation of connectivity between brain networks228

Connectivity between networks was assessed by first computing PSI between the nodes of different net-229

works. For example, connectivity was computed between one ROI in network 1 and every ROI in network230

2 and so forth. Then we again took the absolute value for all these PSI results, and finally averaged across231

all the results. That way we obtained one scalar value reflective of overall connectivity between one pair of232

networks.233

ΨN1⇔N2 = 〈 |ΨN1k,N2m | 〉 (3)

2.10. Estimation of band power within brain networks234

Average activity across a network as expressed in signal amplitude was captured by computing logarithm235

transformed bandpower for every region of interest (node) in the network and then averaging across the236

results for these nodes. More formally,237

log.BPNW = 〈 log(Pk) 〉 (4)

where P are the band power values, averaged across trials, for brain signals k that correspond to network238

constituent nodes and < · > again denotes the expected value.239
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Preprocessing
Bandpass filter EEG:

0.5 to 45 Hz (bidirectional FIR)
Downsampling
2048 to 256 Hz

Source reconstruction
Split EEG

into 0.5 s epochs

Outlier rejection 
(amplitude, kurtosis & 

probability) 

LORETA
(cortically constrained)

Outlier rejection

FOR stimuli {Fu & Ex dev.}

Extract epochs
(-400 to 1200 ms)

Outlier rejection
(amplitude, kurtosis, 

probability & bandpower)

Source projection weights
Outlier indices

Source connectivity estimation

FOR stimulus types { Fu & Ex dev. }

FOR networks

FOR 400 ms windows { post chord, pre & post resp. }

FOR frequency bands { 𝛿, 𝜃, 𝛼1 to 3, 𝛽1 to 4, 𝛾1 to 4 }

Fit multivariate 
autoregressive model to source signals 

at network ROIs (order 10)

Spectral estimation

Phase Slope Index (𝛹) 
for network edges

Exclude outlier epochs

Network connectivity (𝛹NW) & network level statistics

FOR networks

FOR 400 ms windows { post chord, pre & post resp. }

FOR frequency bands { 𝛿, 𝜃, 𝛼1 to 3, 𝛽1 to 4, 𝛾1 to 4 }

𝛹NW(Cond.) = mean ( abs ( 𝛹 of NW edges ) ) )

imp. hours 𝛹ΔNW + logBPΔNW
cl. hours    𝛹ΔNW + logBPΔNW
dIES          𝛹ΔNW + logBPΔNW

FDR
(Benjamini Hochberg)

𝛹ΔNW = 𝛹NW(Fu) - 𝛹NW(Ex) 

logBPNW(Cond.) = mean ( log. pow. at NW ROIs )

logBPΔNW = logBPNW(Fu) - logBPNW(Ex)

𝛹N1⇔N2(Cond.) = mean ( abs ( 𝛹 between NWs ) ) )

𝛹ΔN1⇔N2 = 𝛹N1⇔N2(Fu) - 𝛹N1⇔N2(Ex) 

Regression models:

imp. hours 𝛹ΔN1⇔N2
cl. hours    𝛹ΔN1⇔N2
dIES          𝛹ΔN1⇔N2

Summarizing results

FOR dependent variables { imp. hours, cl. hours & dIES }

FOR networks

FOR 400 ms windows { post chord, pre & post resp. }

FOR frequency bands { 𝛿, 𝜃, 𝛼1 to 3, 𝛽1 to 4, 𝛾1 to 4 }

IF pFDR < 0.05

FOR sub-networks

IF pall < 0.05

Figure 2: Flowchart summarizing data processing and analysis used in the study. Each block includes a summary of steps for the

data processing and analysis that was done: EEG Preprocessing, Source reconstruction, Outlier rejection, Source connectivity

estimation, Network connectivity and network level statistics and methodology for Summarizing results. The lower right figure

shows how the results are presented in terms of intra and inter-network interactions. This example network analysis is for the

dependent variable cl. hours, so the number of reported weekly hours spent training classical performance. Results of the PSI

analysis are shown with boxes (for intra-network connectivity) and edges (inter-network connectivity) with color indicating the

direction of the effect. Pink indicates that musicians with greater reported weekly hours spent training classical performance

(cl. hours) also showed greater connectivity for exemplar relative to function deviants. Green on the other hand indicates

lower connectivity for exemplar relative to function deviants. Each connectivity measure for a network (either box/intra or

edge/inter) is associated with one or more spectral bands, indicating the frequencies at which the connectivity is significant.

Black greek letters indicate significant effects (i.e. p < 0.05) across all musicians. Colored asterisks indicate which connectivity

(box/intra or edge/inter) is additionally significant for improvisers only (red *) or classical musicians only (blue *). One, two

and three * correspond to treshold levels for p-values of 0.05, 0.01 and 0.001. Further details are provided in the main text.
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2.11. Statistical prediction of experience and behavior from network connectivity240

Robust regression (Holland & Welsch, 1977) was used to separately predict improvisation experience241

and behavioral performance in the oddball task from two independent variables that were based on overall242

connectivity NW in large-scale canonical cortical networks for function and exemplar deviants. Improvisation243

experience (imp. hours) was represented by average weekly hours of practice in musical improvisation since244

age 18 as reported by the musicians in a questionnaire prior to the experiment, and non-improvisatory245

experience (cl. hours) was represented by average weekly hours of non-improvisatory (e.g., classical-style)246

practice (Goldman et al., 2020). As per the hypotheses of Goldman and colleagues, improvisers should247

react more slowly and less accurately to detecting exemplar relative to function deviants, since improvisers248

regularly train to substitute chords with other chords from the same functional class and standards and249

exemplar deviants were from within the same functional class. This was captured in the following behavioral250

metric251

dIES = log

(
RTEx

AccEx

)
− log

(
RTFu

AccFu

)
(5)

where RT and Acc represent average response time and accuracy for the respective deviant conditions252

of exemplar and function deviants. A positive value of dIES corresponds to function deviants being easier253

to detect, while a negative value corresponds to exemplar deviants being easier to detect. The following254

regression models were thus evaluated across networks (starting with the four top-level networks; see Fig 1C),255

three time windows and twelve frequency bands:256

imp.hours ∼ [ΨNW (Ex)−ΨNW (Fu)] + [log.BPNW (Ex)− log.BPNW (Fu)] (6)

cl.hours ∼ [ΨNW (Ex)−ΨNW (Fu)] + [log.BPNW (Ex)− log.BPNW (Fu)] (7)

dIES ∼ [ΨNW (Ex)−ΨNW (Fu)] + [log.BPNW (Ex)− log.BPNW (Fu)] (8)

257

where expressions in [·] represent one variable and the abbreviations Fu, Ex and Sta represent the three258

stimulus conditions.259

imp.hours ∼ [ΨN1⇔N2(Ex)−ΨN1⇔N2(Fu)] (9)

cl.hours ∼ [ΨN1⇔N2(Ex)−ΨN1⇔N2(Fu)] (10)

dIES ∼ [ΨN1⇔N2(Ex)−ΨN1⇔N2(Fu)] (11)

260

After false-discovery rate (FDR; Benjamini & Hochberg (1995)) based correction on model level (number261

of comparisons: 3 dependent variables x number of networks x 3 time windows x 12 frequencies), models262

that resulted in FDR-corrected p-values < 0.05 were further studied using robust regression directly on the263

independent variables; on that level p-values < 0.05 were considered statistically significant. Whenever we264

were fitting data for improvisers alone, three improvisers were conservatively excluded since we found that265
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they, on occasion, represented overly influential data points (represented as orange instead of red circles in266

scatter plots in the supplemental material).267

3. Results268

We present results in terms of the time windows of analysis, shown in Figure 1B: between chords, pre-269

response, post-response. As we are discussing greater or lower connectivity, we are specifically referring270

to greater connectivity for exemplar relative to function deviants (i.e. ψ(Ex) − ψ(Fu)), consistent with271

Equations (6) to (11).272

3.1. Stimulus locked analysis between chords273

A B

Greater  𝛹 

Smaller  𝛹
α … significant for all musicians, * improvisers, * classical musicians

Results - 
400 ms POST-CHORD

Greater
imp. hours

Greater
cl. hours

Between Within

α

α*, β 

β*

γ*(> log. pow.)

γ*
γ (> log. pow.)

δ*

γ**

γ**

γ*γ*

Figure 3: Spatiospectral networks for between chords analysis. Bottom right shows the time window of the analysis (refer back

to Fig 1B). (A) Musicians with greater improvisation experience showed lower inter-network connectivity between canonical

brain networks in the alpha and beta band for the exemplar relative to the function deviant. Specifically these effects were

found between cognitive control (CCN) and right frontoparietal (FRN-R) networks in the alpha band and between the cingulo

opercular (CON) and dorsal attention (DAN) networks in the beta band and between salience (SN) and visual (VN) networks in

the alpha and beta bands. Intra-network connectivity was lower in the FRN-P. In addition both the FRN-P and default mode

network (DMN) showed greater logarithmic gamma power. (B) Greater experience performing classical music was likewise

associated with lower inter-network connectivity between CCN and FPN-R, though the effect was in the delta rather than

alpha band. Greater inter-network connectivity was seen between DAN and CON and DAN and SN, both in the gamma band.

Increased intra-network activity was seen in both the DMN and CCN, once again specifically for the gamma band.
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3.1.1. Reduced connectivity between DAN and CON networks for improvisers relative to classically trained274

musicians275

In a time window of 400 ms directly following the onset of the audio of deviant chords, musicians with276

greater improvisation experience showed lower connectivity between canonical brain networks in the alpha277

and beta band for the exemplar relative to the function deviant (see Fig. 3A). Opposing effects between278

musical disciplines were observed for connectivity between cingulo opercular and dorsal attention network,279

where greater improvisation experience, was associated with lower connectivity in the beta band (pFDR =280

0.036, R2 = 17.8%; Fig. 3A), while greater experience with classical music, in comparison, was associated with281

greater connectivity in the gamma band (pFDR = 0.046, R2 = 15.5%; Fig. 3B). Further noteworthy effects282

were found when predicting improvisation experience between cognitive control and right frontoparietal283

network in the alpha band (pFDR = 0.036, R2 = 16.8%) and finally between salience and visual network in284

the alpha (pFDR = 0.044, R2 = 16.3%) and beta band (pFDR = 0.017, R2 = 25.5%), all shown in Fig. 3A.285

3.1.2. Greater experience irrespective of discipline was associated with reduced connectivity between CCN286

and FPN-R287

In this time window directly following the audio of the chord, we further found effects within the right fron-288

toparietal network (pFDR = 0.010, R2 = 40.8 %; see Fig. 3A). Specifically, greater improvisation experience289

was associated with lower connectivity within the network in the gamma band (p = 0.013, R2 = 16.7 %) and290

greater logarithmic power also in the gamma band (p = 0.007, R2 = 19.4 %). Within the default mode net-291

work, greater improvisation experience was associated with a significant effect (pFDR = 0.013, R2 = 40.8 %),292

specifically greater logarithmic power in the gamma band (p = 0.006, R2 = 24.6 %).293

Greater experience performing classical music was likewise associated with lower connectivity between294

cognitive control and right frontoparietal network for exemplar relative to function deviants (pFDR =295

0.049, R2 = 15.2%; Fig. 3B). However, the effect was found in the delta band whereas for improvisation296

experience the effect was found in the alpha band. In short, the higher the average weekly hours of ex-297

perience, irrespective of musical discipline, the lower the connectivity between cognitive control and right298

frontoparietal network for exemplar relative to function deviants (see Fig. 3A and B).299

Greater experience in performing classical music was also associated with greater connectivity within the300

cognitive control (pFDR = 0.049, R2 = 23.5 %) and within the default mode network (pFDR = 0.045, R2 =301

24.8 %; Fig. 3B).302

Furthermore, while musicians with more improvisation experience had exhibited lower connectivity be-303

tween salience and visual network in the alpha (pFDR = 0.044, R2 = 16.3%) and beta band (pFDR =304

0.017, R2 = 25.5%; Fig. 3A), musicians with greater experience in classical music showed greater connectiv-305

ity between salience and dorsal attention network in the gamma band (pFDR = 0.046, R2 = 15.0%; Fig. 3B).306

In this time window directly following the onset of the deviant chords, greater brain connectivity between307

networks for the exemplar relative to the function deviant tended to be associated with greater dIES, meaning308
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a slower and less accurate response to exemplar relative to function deviants (see Figures S.5 and S.6). We309

found behavioral effects for most connections where we found effects related to experience with improvisation310

and classical music, except between the cognitive control and right frontoparietal network. Results were less311

consistent for within-network effects in this time window. Specificially, it was only for the default mode312

network that we found a behavioral effect that also matched the finding related to self reported average313

weekly hours training classical music.314

In summary, musicians who reported greater average weekly hours of training for either musical disci-315

pline showed lower connectivity between cognitive control and right frontoparietal network in the 400 ms316

following the onset of an exemplar deviant relative to the same time window for a function deviant. Between317

cingulo opercular and dorsal attention network, greater improvisation experience was associated with lower318

connectivity, while greater experience in classical music was associated with higher connectivity. Finally,319

improvisers exhibited lower connectivity between salience and visual network, while musicians with greater320

classical experience showed greater connectivity between salience and dorsal attention network.321

3.2. Pre-response analysis: Improvisers show distinctive inter-network connectivity in the alpha band with322

robust effects between DMN and VN323

In the 400 ms before the motor response to an exemplar deviant chord - a chord that was experimentally324

manipulated to fall in the same functional class as the standard, but was otherwise like the function deviant325

chord - musicians with greater improvisation experience showed greater connectivity between brain networks,326

all relative to when the musicians responded to a function deviant and exclusively in the alpha band (see327

Fig. 4).328

The default mode network acted as a hub with greater connectivity to the left frontoparietal, cognitive329

control, dorsal attention and visual network. The effect between default mode and visual network stood out330

as it was not only significant for all musicians (10 Hz: pFDR = 0.042, R2 = 17.4%; 12 Hz: pFDR = 0.016, R2 =331

24.8%; Fig 4A) but also for the smaller subset of ”improvisers” alone (i.e. only musicians with self-reported332

average weekly hours spent improvising > 0.5), where the effect was most robust for a center frequency of333

12 hz (p = 0.008, R2 = 42.4 %), followed by a center frequency of 10 Hz (p = 0.050, R2 = 25.8 %). Notably,334

musicians with more improvisation experience also showed greater connectivity between the cognitive control335

and the right frontoparietal network (p = 0.003, R2 = 22.0 %; Fig. 4A).336

We also identified a group of three fully interconnected networks (i.e. a ”clique” or ”rich club” from337

a graph-theoretical perspective; Griffa & Van den Heuvel (2018)) that was composed of the default mode,338

cognitive control and dorsal attention network. Interestingly, when studying how between network connec-339

tivity related to musicians’ experience with classical music we observed the same sub structure such that340

musicians with greater self reported average weekly hours of practice in classical music since age 18 showed341

greater connectivity between default mode, cognitive control and dorsal attention network, so just like for342

improvisation experience - except in the beta rather than alpha band (see Fig. 4A and B).343
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      α
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β

β**

γ***
 β 

β
γ*

Results - 
400 ms PRE-BUTTON

Greater
imp. hours

Greater
cl. hours

Greater  𝛹 

Smaller  𝛹
α … significant for all musicians, * improvisers, * classical musicians

Between Within

Figure 4: Spatiospectral networks for pre-response analysis. Bottom right shows the time window of the analysis (refer back

to Fig 1B). (A) Musicians with greater improvisation experience showed greater inter-network connectivity between a number

of canonical brain networks in the alpha band for the exemplar relative to the function deviant. In this case the default mode

network (DMN) acted as a ”hub”. (B) Greater experience performing classical music was likewise associated with greater

inter-network connectivity between a number of the canonical networks, though this effect was found in the beta and gamma

bands. There were no significant intra-network connectivity changes seen for either (A) or (B).

Furthermore, in terms of associations with experience in classical music, we found no effect between344

default mode and visual network, but instead musicians with greater self-reported experience in clas-345

sical music showed greater connectivity between the cognitive control and visual network in the beta346

(pFDR = 0.048, R2 = 14.6%; Fig. 4B) and particularly the gamma band (pFDR = 0.021, R2 = 23.6%;347

Fig. 4B). Interestingly, the latter effect was particularly robust for the sub group of improvisers alone348

(p = 5.89e−4, R2 = 51.1 %).349

Statistically significant associations between task performance (dIES) and inter-network connectivity350

were found broadly in the alpha, beta and gamma band as well as less often (< 5 times) in the delta and351

theta band (see Fig. S.8). In almost all cases the association was such that greater connectivity between352

networks was associated with greater dIES, meaning a slower and less accurate response for exemplar353

relative to function deviants. Only less than five cases showed an effect in the opposite direction.354

Importantly, for all effects found for improvisation experience (i.e. self-reported hours of improvisation355

experience), except between default mode and dorsal attention network, we found effects for task performance356

that matched in timing, frequency and direction of the effect (see Fig. S.8). This means that connectivity357
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between these networks was not only directly proportional to self reported improvisation experience, but358

also directly proportional to slower and less accurate responding to exemplar deviants, thus supporting the359

hypothesized link between inter-network connectivity, improvisation experience and modified behavior.360

In summary, in the 400 ms before responding to a deviant chord that was experimentally manipulated361

to fall in the same functional class as the standard chord in an oddball task, musicians who reported362

greater improvisation experience showed greater connectivity between canonical cortical brain networks in363

the alpha band with the default mode network acting as a hub and particularly robust effects found between364

default mode and visual network. Greater experience in classical music was likewise associated with greater365

inter-network connectivity, however consistently in the beta and gamma as opposed to the alpha band. Inter-366

network connectivity effects between three networks, default mode, cognitive control and dorsal attention367

network overlapped between musical disciplines. Greater inter-network connectivity that was observed with368

greater improvisation experience, was consistently also associated with slower and less accurate responding to369

the manipulated exemplar deviant relative to the function deviant supporting the hypothesized link between370

improvisation experience and slower and less accurate responding to audio of chords that improvisers are371

trained to categorize differently (Goldman et al., 2020).372

3.3. Post-response analysis: For improvisers DAN and VN acted as network hubs whereas for classically373

trained musicians, CCN acted as a hub374

In the 400 ms after responding to an exemplar as compared to a function deviant, improvisers with greater375

improvisation experience tended to exhibit greater connectivity between networks with the dorsal attention376

and visual network acting as hubs (Fig. 5A), all mainly in the beta and gamma band, while they showed377

lower connectivity between the default mode and visual network (pFDR = 0.034, R2 = 18.6%).378

Meanwhile, the effects observed for musicians with greater experience in classical music tended to point in379

the opposite direction such that greater experience was associated with lower connectivity between networks380

where the cognitive control and visual network acted as hubs (Fig. 5B). Musicians with greater experience381

in classical music also exhibited greater connectivity between default mode and visual network, so again the382

opposite of what was found for improvisation experience.383

While connectivity from the cognitive control network to other networks was lower for greater self reported384

experience with classical music (Fig. 5B), we also found significant effects within the cognitive control network385

(pFDR = 0.035, R2 = 26.8 %), specifically lower within network connectivity (p = 0.032, R2 = 23.2 %) and386

lower logarithmic bandpower (p = 0.024, R2 = 13.0 %) in the gamma band.387

For this time window directly following the motor response, we further found that greater musical exper-388

tise was associated with greater connectivity between the salience and visual network both for improvisation389

(beta: pFDR = 0.034, R2 = 18.4%; gamma: pFDR = 0.016, R2 = 26.9%; Fig. 5A) and classical performance390

(pFDR = 0.050, R2 = 14.5%; Fig. 5B).391

Behavioral effects in this time window between default mode and visual network as well as between the392

salience and visual network and more broadly were such that greater connectivity for exemplar relative to393
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Figure 5: Spatiospectral networks for post-response analysis. Bottom right shows the time window of the analysis (refer back

to Fig 1B). (A) Musicians with greater improvisation experience showed greater inter-network connectivity (for the exemplar

relative to the function deviant) with the dorsal attention (DAN) and visual (VN) networks acting as hubs. This inter-network

connectivity was mainly in the beta and gamma band. The grey link between the cognitive control network (CCN) and VN

indicates a rare case where two frequency bands (γ1 and γ3) within the gamma range show an effect in opposing directions. (B)

We observed an opposite effect for musicians with greater experience performing classical music, namely lower inter-network

connectivity, with the CCN and VN acting as hubs. Also observed was lower intra-network connectivity in the CCN and reduced

low power in the CCN, both in the gamma band.

function deviants was associated with slower and less accurate responses to exemplar relative to function394

deviants. Hypothetically, slower and less accurate responses to exemplar relative to function deviants are395

linked to the training improvisers receive, so that we assumed a musician who responds slower and less396

accurately to an exemplar deviant may have received more training in improvisation. For the connection397

between default mode and visual network we observe that lower connectivity for exemplar relative to function398

deviants was associated with greater improvisation experience, which constitutes a disagreement (Fig. 5A).399

For the connection between salience and visual network as well as more broadly for other effects related to400

improvisation experience in this time window we tended to find agreement.401

In summary, for the 400 ms following motor response to the experimentally manipulated exemplar deviant402

as compared to a function deviant, we found that improvisers showed lower connectivity between default403

mode and visual network, greater connectivity between salience and visual network as well as an overall404

increased connectivity between networks, where the dorsal attention, the visual network and to a lesser405

degree the cognitive control network acted as hubs. Greater experience in classical performance training406
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was likewise associated with greater connectivity between salience and visual network, but also with greater407

connectivity between default mode and visual network as well as lower connectivity widely between networks408

where the cognitive control network acted as a hub. Within the cognitive control network, both connectivity409

and logarithmic power in the gamma band were lower for musicians with greater experience in training410

classical performance.411

4. Discussion412

Leveraging the high temporal resolution of EEG (Rosen et al., 2020; Zabelina & Ganis, 2018; Marek413

& Dosenbach, 2018), and through our focus on network connectivity guided by fMRI findings, (Belden414

et al., 2020; Beaty et al., 2018b; Pinho et al., 2014), we asked what networked neural processes, if any, may415

underlie how improvisers perceive and process chords differently, given their training to think about harmony416

categorically (Goldman et al., 2020). We took into account activity that manifests as average EEG band417

power across a network as well as connectivity within or between large-scale cortical networks (Cohen &418

D’Esposito, 2016).419

The exemplar deviant chord in the oddball task in this experiment was designed to be part of the same420

functional class as the frequent and expected standard chord, while the function deviant was equivalent421

to the exemplar deviant, except that the function deviant belonged to a functional class other than the422

standard. Improvisers are trained to substitute chords within a functional class, and thus we hypothesized423

that improvisers would categorize the exemplar deviant as being more similar to the standard, which we424

assumed should cause improvisers to respond slower and less accurately to exemplar relative to the function425

deviants. This idea is supported empirically also by findings by Goldman et al. (2020), who reported a426

statistically significant relationship such that greater dIES corresponded to greater self-reported weekly427

hours of improvisation training since age 18.428

In our purely auditory task, musicians responded with their right hand to chords that were deviants in429

terms of chord inversion, but musicians were successfully kept blind (as verified by post-experiment inter-430

views) to the fact that there were two types of deviants and that one of these types, referred to as exemplar431

deviant, was modified such that it fell within the same functional class as the standard chord (Goldman432

et al., 2020). Improvisers are trained to categorize chords within the same functional class separately, as433

being usable interchangeably in improvisatory performance. We studied neural responses surrounding ex-434

emplar deviants but specifically after subtracting the response for function deviants, such that we could435

expect that any effects we observe should be specifically tied to our experimental manipulation related to436

categorization of musical structures.437

One finding that stood out was that connectivity related effects between networks before improvisers438

responded to an exemplar relative to a deviant chord were consistently and exclusively found in the alpha439

band. In contrast, connectivity related effects associated with experience in classical music before the440
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response were only found in the beta and gamma band. It’s noteworthy that significant findings in the alpha441

band were otherwise rare and most findings were either in the beta or gamma band.442

To our knowledge this is the first report indicating that improvisers may exhibit greater between network443

connectivity specifically in the alpha band even by just responding to a rare chord that was manipulated to fall444

in the same functional class as the standard chord in an oddball task. In fact we are not aware of any report445

on connectivity between networks in improvisers in any brain-state occurring primarily in the alpha band.446

Finding an alpha related effect for improvisers in the connectivity between networks is not implausible though,447

given that there is ample evidence implicating the alpha oscillation in musical improvisation with reports of448

both increased (Sasaki et al., 2019; Boasen et al., 2018) or decreased (Adhikari et al., 2016) alpha power while449

musicians improvise in slightly different experiments. Beyond musical improvisation, amplitude changes in450

the alpha oscillation have been robustly linked to domain general creativity as measured for example by451

divergent thinking tasks (Zabelina & Ganis, 2018; Fink et al., 2007; Jauk et al., 2012; Schwab et al., 2014)452

or compound remote associates tasks (Rothmaler et al., 2017), with a relatively high heterogeneity in the453

direction of effects (Dietrich & Kanso, 2010; Arden et al., 2010) ascribed to the diversity in tasks and methods454

(Fink et al., 2014), but with findings overall leaning toward increased frontal and parietal alpha power for455

greater creativity (Dietrich & Kanso, 2010), where one interpretation pointed toward a hypothetical function456

of alpha in attenuating top-down control (Lustenberger et al., 2015). Given however, that our results are457

based on connectivity between brain regions rather than amplitude at certain regions, we think what we458

observe may be most consistent with changes in network organization and/or function that may be caused by459

intense training in musical improvisation. Results from graph-analyses based on fMRI (Belden et al., 2020)460

and EEG (N=4; Wan et al. (2014)) point to greater global network integration for improvisers as opposed461

to a more densely connected local organization for musicians with greater training in classical music. These462

findings in turn are consistent with the idea that improvisers may, through training, become very efficient463

at flexibly engaging and balancing a variety of mental processes with substrates in distributed brain regions464

(de Manzano & Ullén, 2012) related to executive control and accessing long-term/working memory in real-465

time (Lopata et al., 2017; Belden et al., 2020) without the necessity of conscious mediation (Limb & Braun,466

2008; Liu et al., 2012). Our findings of effects of inter-network connectivity in the alpha band for improvisers467

in contrast with effects in higher frequency bands for classically trained musicians, support the idea that long468

range oscillatory communication may be an important factor in creative cognition (Stevens Jr & Zabelina,469

2019). According to this idea, also referenced by Boasen et al. (2018), different EEG frequency bands are470

thought to be linked to different scales of cortical integration (Von Stein & Sarnthein, 2000) such that high471

frequency oscillations represent local communication while theta and alpha oscillations are linked to long-472

range/inter-areal integration (Haegens et al., 2010; Klimesch et al., 2007; Clayton et al., 2015). In summary,473

we interpret the observed effects in the alpha band for improvisers to indicate that even when improvisers474

merely respond to an ”in-class” chord (a chord in the same functional class as the standard) they co-engage475

cortical resources more broadly than classically trained musicians or musicians with less extensive training in476
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improvisation. This supports the idea that music genre specific training may be accompanied by significant477

genre-specific changes in neurophysiology (Loui, 2018; Bianco et al., 2017) and the outcome of our experiment478

indicates that this may extend to how improvisers categorize musical structures.479

Also leading up to the right handed response, we observed that greater reported weekly hours, irrespective480

of type of training were associated with greater connectivity between a group of three fully connected networks481

(a ”clique” or ”rich-club” in terms of graph theory; Griffa & Van den Heuvel (2018)) consisting of default482

mode, cognitive control and dorsal attention network was found for both disciplines, which we interpret to483

mean that connectivity between these networks is task related and linked to training in musical performance484

in general (Loui, 2018; Bianco et al., 2017), irrespective of discipline. We consider the existence of such485

an effect plausible and potentially scientifically interesting by itself. Given how improvisers and classically486

trained musicians are different groups with relatively little overlap in this sample of musicians, this finding487

might also be interpretable as evidence in support of the fidelity of this method.488

Given that our focus lies on neurophysiological differences specific to improvisation we direct our attention489

to effects outside this clique of networks leading up to the manual response. Another effect that stood out490

in that time window was that improvisers showed greater connectivity between default mode and visual491

network leading up to the response, but less connectivity between these two networks after the response.492

Classically trained musicians also showed greater connectivity between default mode and visual network,493

however only after the response.494

Activity in the default mode and other large-scale cortical networks including the dorsal attention network495

has typically been found to be anti-correlated in fMRI studies (Fornito et al., 2012). Finding increased496

connectivity between these networks here is consistent with the idea that creativity may depend on the497

flexible engagement of generative and evaluative processes (Sowden et al., 2015; Zabelina & Robinson, 2010)498

and aligns with reports in fMRI literature, where positively correlated engagement of large-scale cortical499

networks was linked to experience in musical improvisation (Belden et al., 2020), greater creativity (Beaty500

et al., 2018b, 2019) or openness to experience (Beaty et al., 2017).501

The default mode network specifically, is traditionally associated with self-referential processing (Kim &502

Johnson, 2014), but as outlined by Belden et al. (2020) also with musical behaviors like tracking of musical503

tonality (Janata et al., 2002), associating music with autobiographical memories (Janata, 2009) or aesthetic504

response to episodic memory retrieval (Schacter & Addis, 2007). Specifically, the DMN’s role in memory505

retrieval as part of a greater role in creative cognition (Benedek et al., 2014) may be of particular interest506

for this investigation. Overall, a number of studies have linked default mode network activity (Beaty et al.,507

2015; Rosen et al., 2017) and interaction between default mode and other networks such as the frontoparietal508

network (Beaty et al., 2018b, 2019; Belden et al., 2020) to creativity and musical improvisation.509

Occipital areas that overlap what we defined here as visual network on the other hand, have been510

previously implicated in creativity, as reviewed by Belden et al. (2020), where greater white (Takeuchi511

et al., 2017) or grey (Fink et al., 2014) matter density in the occipital lobe, as well as greater white matter512
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connectivity in the inferior occipitofrontal fasciculus (Zamm et al., 2013) were found to be associated with513

greater creativity. Belden et al. (2020) also found greater connectivity between the visual network and the514

default mode as well as a network similar to what we here defined as the frontoparietal network (Belden515

referred to it as executive control network), in resting-state recordings of musicians with improvisation516

experience. Belden et al. contrasted their findings to Beaty et al. (2018b) who had found no evidence for517

involvement of occipital regions in a network linked to creativity in resting-state fMRI.518

Given the findings of Belden et al. (2020) we assume that there may exist a baseline effect between519

default mode and visual network at rest for improvisers. However, since that should be present for function520

deviants as well, for which we correct by subtracting the signal acquired for function deviants, we assume521

that the observed effect is in fact tied to our experimental manipulation related to categorization of musi-522

cal structures. One explanation for the observed effects could be that connectivity between default mode523

and visual network reflects an access to long-term memory that is engaged only or stronger for ”in-class”524

chords and supports how improvisers categorize musical structures according to functional classes, maybe525

here concretely by supporting the comparison of categories between the standard chord in working memory526

and categorization related information about the just perceived exemplar deviant from long-term memory.527

However, the fact that classically trained musicians or less extensively trained improvisers show greater528

connectivity between default mode and visual network as well, but post-response, indicates that this cate-529

gorization related phenomenon may not by itself necessarily exclusively subserve creative demands reserved530

only for improvisers. Instead, a more plausible explanation could be that strongly trained improvisers adapt,531

through training, to prioritize this process to a degree where it is executed before the manual response since532

an improviser’s response in an ecologically valid setting may have to strongly depend on the result of this533

process. In other words, as per this theory, as a musician improvises they may permanently check that the534

chord they just heard (or played) is a constituent of the currently appropriate functional class and/or need535

to make sure the chord they are playing next is likewise part of that or whatever next appropriate functional536

class. Somebody who is not a strongly trained improviser may not or less strongly engage this process before537

a response to an ”in-class” chord.538

For improvisers we further observed greater connectivity between default mode and left frontoparietal539

network, which aligns with previous accounts that implicated these networks (Bashwiner et al., 2016; Mok,540

2014; Shi et al., 2018) and in particular increases in connectivity between them (Kenett et al., 2018) in541

supporting creative cognition (Belden et al., 2020) and high creative ability (Zabelina & Robinson, 2010).542

One idea is that these networks may represent cortical hubs that underlie the dual-process model of creative543

cognition (Sowden et al., 2015; Stanovich, 1999; Evans, 2008, 2009) with the default mode network sup-544

porting creative processes and the frontoparietal network, which includes lateral prefrontal brain areas like545

the dorsolateral prefrontal cortex, dorsal premotor cortex and inferior frontal gyrus, supporting evaluative546

processes (Belden et al., 2020). Given that this time window leads up to a right handed response, we think547

that this effect could be related to motor planning, which would imply that when improvisers are merely548
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asked to respond to an ”in-class” chord, they co-engage the default mode network pointing toward a context549

of this motor response that is biased toward creativity. Assuming a more ecologically valid context, this tight550

integration with the default mode network could enable a more direct and flexible access to musical structures551

and motor patterns which would seem conducive to greater mastery in musical improvisation. Post response,552

improvisers exhibited greater connectivity between the cognitive control and the left frontoparietal network553

which may be reflective of evaluative processes. The fact that we found no effects for the left frontoparietal554

network in association with classical training, supports the idea that the left frontoparietal network plays a555

particular role for improvisers here in this experiment and potentially more generally in more ecologically556

valid contexts.557

In the same time window leading up to the right handed response, improvisers further showed greater558

connectivity between the cognitive control and the right frontoparietal network.559

The cognitive control network is thought to be a superordinate network that supports executive control560

functions (Cole & Schneider, 2007; Niendam et al., 2012). As Cole and Schneider explain, this may include561

vigilance or sustained attention (Pennington & Ozonoff, 1996; Smith & Jonides, 1999), initiation of complex562

goal-directed behaviors (Lezak, 1995), inhibition of prepotent but incorrect responses (Smith & Jonides,563

1999; Luna et al., 2010), flexibility to shift easily between goal states (Ravizza & Carter, 2008), planning564

necessary steps to achieve goal (Smith & Jonides, 1999) and the ability to hold information in working565

memory and to manipulate the information to guide response selection (Goldman-Rakic, 1996).566

Since at this point in the trial, improvisers have not yet performed a motor action, it does not seem567

plausible that this phenomenon is related to an evaluative process in accordance with the dual-process568

model of creative cognition, even though cognitive control structures are involved. Thus it seems more likely569

that this phenomenon, which at this time point is specific to improvisers is also related to motor planning.570

After the manual response, improvisers showed greater connectivity between networks with the dorsal571

attention and visual network acting as hubs and consistent effects were being also observed between salience572

and dorsal attention related networks.573

The function of the dorsal attention network has been described as mediating top-down guided voluntary574

allocation of (primarily visual) attention to locations or features (Vossel et al., 2014) or the endogenous575

deployment of attention (Corbetta & Shulman, 2002), while Marek & Dosenbach (2018) suggest it may play576

a more general role in adaptive task control. The dorsal attention network has been found to be activated577

during voluntary attention shifts during search for salient visual stimuli (Shulman et al., 2003) and more578

recent findings indicate that the dorsal attention network may also play a role in external attention, either579

independently or in task-dependent interaction with the ventral attention network (Ahrens et al., 2019). The580

ventral attention network has been associated with (exogenous) re-orienting towards task-relevant events that581

appear at unexpected locations (Ahrens et al., 2019; Corbetta & Shulman, 2002). In experimental design,582

predictive (symbolic) cues are usually used to engage endogenous attention, as opposed to transient/non-583

predictive events to test exogenous attention (Ahrens et al., 2019).584
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One potential explanation of the observed effects around the dorsal attention network could be that585

for improvisers, a situation where the musician merely responds to an ”in-class” chord triggers increased586

deployment of endogenous attention. To an improviser an ”in-class” chord, particularly in the context of this587

experiment (where such chords are rare) but maybe more generally even during performance could represent588

something akin to a predictive cue. The increased engagement of endogenous attention could be linked to589

processes that are vital for successful improvisation. For example, what is the harmony or functional class590

of this chord I just heard and what is a suitable, adaptive response right now (i.e. for pressing the button in591

the experiment or playing the next tone or chord during performance). Major parts of the dorsal attention592

network also overlap the right parietal areas where Rosen et al. (2020) found greater power to be associated593

with greater improvisation experience. As potential explanations these authors referenced processes related594

to multimodal sensory processing and integration (Mihaly, 1996), long-term memory access (Wagner et al.,595

2005) or spatial coding, sensory-motor transformation and attention (Kaas & Stepniewska, 2016).596

Musicians with greater experience in classical performance, but particularly those who were also impro-597

visers consistently showed effects indicating decreased engagement and integration of the cognitive control598

network, specifically, lower connectivity and logarithmic power within the cognitive control network as well599

as lower connectivity between the cognitive control network and other networks like default mode, right fron-600

toparietal, dorsal attention and visual network. This also means, that improvisers with particularly little601

experience in training classical music showed particularly high reliance on and integration of the cognitive602

control network after the manual response. This is for the most part consistent with what we find in terms603

of significant effects related to improvisation experience.604

What we observe here may be an interaction effect between training in improvisation and classical music,605

such that improvisers with particularly little experience in training classical music require greater engagement606

of the cognitive control network to determine whether the response was accurate. One possible explanation607

for why this could be the case, could be that improvisers more so than classically trained musicians engage608

cognitive control resources after the response as an evaluative behavior consistent with the dual-process609

theory of cognition toward creative behavior (Belden et al., 2020; Sowden et al., 2015). According to this610

idea creative behaviors may be implemented by alternating between generative and evaluative behaviors611

(Belden et al., 2020). These generative behaviors are thought to be spontaneous and intuitive (Belden et al.,612

2020) and referred to more formally as system 1 (Stanovich, 1999) or type 1 (Evans, 2008, 2009) processes.613

Evaluative behaviors on the other hand are thought to be related to deliberate and analytical processing and614

referred to more formally as system 2 (Stanovich, 1999) or type 2 processes (Evans, 2008, 2009). Improvisers615

are strongly conditioned to engage evaluative processes after actions. Classically trained musicians on the616

other hand, usually already know exactly what they are going to play. This makes it less important for617

classically trained musicians to evaluate the output they just generated.618

Among the earliest effects, directly following the onset of the exemplar deviant chord, improvisers showed619

greater power in the default mode network, while classically trained musicians showed greater connectivity620
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within the default mode network. This could be indicative of processes related to early memory retrieval,621

that are engaged more intensively the more intensely the musicians has been trained irrespective of disci-622

pline. Greater connectivity within network for classically trained musicians aligns with previous findings of623

greater local efficiency for classically trained musicians (Belden et al., 2020), while greater gamma power for624

improvisers could be a result of greater cortical thickness in areas of the default mode network which has625

been found for musical improvisers (Kühn et al., 2014).626

Musicians who trained more extensively, irrespective of musical domain further showed lower connectivity627

between cognitive control and right frontoparietal network, with improvisers also showing lower connectivity628

but greater power in gamma within the frontoparietal network and classically trained musicians showing629

greater connectivity within the cognitive control network. Taken together these findings point to a difference630

in executive control processes between the types of musical disciplines when faced with an exemplar deviant.631

While classically trained musicians seem to more strongly engage cognitive control resources, again exhibiting632

stronger within-network connectivity suggestive of high local efficiency (Belden et al., 2020), improvisers in633

contrast, showed lower connectivity and again greater power within the right frontoparietal network, which634

could be linked to more globally connected cortical organization (Belden et al., 2020).635

Another difference between the two types of training directly after perceiving an exemplar deviant, may636

lie in how salience related networks configure dorsal attention related networks, with improvisers showing637

less connectivity between cingulo opercular and dorsal attention network as well as between the salience638

and visual network. Classically trained musicians on the other hand showed greater connectivity between639

dorsal attention and both cingulo opercular and the salience network. In accordance with our hypothesis640

(Goldman et al., 2020), this could be interpreted as improvisers perceiving the exemplar deviant as more641

similar to the standard since both chords are constituents of the same functional class. For more extensively642

trained classical musicians on the other hand, their training may make them more sensitive to the subtle643

difference between exemplar and function deviant, which in turn leads salience related networks to more644

strongly engage processes related to endogenous attention.645

Interpreting the involvement of the visual network should take into account that musicians in this exper-646

iment were performing a target detection task, for which Mantini et al. (2009) showed, based on simultane-647

ously recorded EEG and BOLD data, that activity in the dorsal and ventral attention network correlated648

significantly with the P300 reference time course and thus was interpreted to best account for sustained649

and transient activity in a visual oddball task. Thus one could consider as an alternative explanation that650

improvisers may have been merely more surprised for the exemplar, relative to the function deviant for an651

unknown reason other than our manipulation related to categorization of musical structures. But this would652

not explain the increased connectivity between default mode and visual network. On the contrary, connec-653

tivity between cortical networks, particularly also including the default mode network has been robustly654

linked to improvisation, particularly at rest (Belden et al., 2020).655

Behavioral effects were mostly found in the alpha, beta and gamma band and were more numerous than656

24

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 25, 2021. ; https://doi.org/10.1101/2021.02.25.432633doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.25.432633


effects related to either of the two types of musical expertise. Apart from very few exceptions the nature657

of associations was such that greater connectivity between or within the networks was associated with658

slower and less accurate responding to exemplar relative to function deviants. Overall this is in line with659

previous work that also observed links between behavioral performance and connectivity within and between660

brain networks as reviewed by Cohen (2018). One hypothesis for this experiment was that improvisers661

would respond slower and less accurately for exemplar relative to function deviants. This holds, in that662

we found effects in behavior that matched - in time, frequency and direction - those effects that were663

most convincingly tied to improvisation expertise. However, we also found behavioral effects that matched664

effects related to expertise in classical music, supporting the idea that more intense training in the classical665

domain, may as well decrease task performance for exemplar deviants, likely for reasons different from those666

found in improvisers. In addition we found behavioral effects for which we found no corresponding effects667

for training in improvisation or classical music, which could mean that these behavioral effects capture668

phenomena unrelated to musical expertise, or that there is a matching effect related to musical expertise,669

but that self-reporting is too noisy to establish a significant effect. Any other mismatch between effects670

found for behavior and self-reported experience could be a result of behavioral effects being strongly tied671

to motor-related brain activity, while effects for self-reported experience may be more strongly related to672

cognitive aspects. In summary, given that our experimental manipulation strongly narrows resulting effects673

for exemplar relative to function deviants to categorization of musical structures, and that we find behavioral674

effects that match the effects that were most strongly tied to self-reported improvisation expertise, we think675

we found robust evidence in support of the idea that categorization of musical structures is tied to how676

large-scale cortical brain networks are engaged and interact, and that improvisers implement these processes677

differently compared to classically trained musicians. While we found these effects here in a target detection678

task, we argue, supported by literature, that these or similar mechanisms may be employed when musicians679

actually improvise on their instrument, may facilitate improvisation as a skill and should be a result of680

improvisers’ intense and specific training regimen.681
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