bioRxiv preprint doi: https://doi.org/10.1101/2021.02.25.432865; this version posted February 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

1 Evolution of thermal physiology alters predicted species distributions under

2 climate change

- 3
- 4 Sara J.S. Wuitchik^{1,†,*}, Stephanie Mogensen¹, Tegan N. Barry¹, Antoine Paccard^{2,‡},
- 5 Heather A. Jamniczky³, Rowan D.H. Barrett^{2,§}, and Sean M. Rogers^{1,4,§}

6

- ⁷ ¹Department of Biological Sciences, University of Calgary, 2500 University Dr NW, Calgary,
- 8 AB, T2N 1N4, CANADA
- 9 ²Redpath Museum and Department of Biology, McGill University, 845 Sherbrooke St W,
- 10 Montreal, QC, H3A 0G4, CANADA
- ³Department of Cell Biology & Anatomy, Cumming School of Medicine, University of Calgary,
- 12 3330 Hospital Dr NW, Calgary, T2N 4N1, CANADA
- ⁴Bamfield Marine Sciences Centre, 100 Pachena Rd, Bamfield, BC, V0R 1B0, CANADA
- 14 [§]equal co-senior authors
- 15
- 16
- 17
- 18
- 19 *Corresponding author: Sara J.S. Wuitchik
- 20 E: sjswuit@g.harvard.edu

21 T: 857-292-9977

*Present affiliations: Informatics Group, Harvard University, 38 Oxford St, Cambridge, MA, 02138, USA
& Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA
*Present affiliation: McGill University Genome Center, 740 Dr Penfield Avenue, Montreal, QC, H3A
1A5, Canada

1

22 Species distribution models (SDMs) are widely adopted to predict range shifts but can be 23 unreliable under climate change scenarios¹ because they do not account for evolution. The thermal physiology of a species is a key determinant of range^{2,3} but the impact of thermal trait 24 25 evolution on SDMs has not been addressed. We identified a genetic basis for physiological traits 26 that evolve in response to temperature change in threespine stickleback. Using these data, we 27 created geographic range projections under two climate change scenarios where trait data was 28 either static ('no evolution' model), allowed to evolve in agreement with published evolutionary rates for the trait ('evolution' model)⁴, or allowed to evolve with the rate of evolution scaled in 29 30 association with the variance that is explained by QTL ('PVE' model). Here, we show that 31 incorporating these traits and their evolution into SDMs substantially altered the predicted ranges 32 for a widespread panmictic marine population, with increases in area of over 7-fold. Evolution-33 informed SDMs should therefore improve the precision of forecasting range dynamics under climate change, thereby aiding in their application to management and the protection of 34 biodiversity^{5–7}. 35

36 Temperature is a powerful driver of global biogeography and organism distributions 37 frequently reflect temperature gradients in both aquatic and terrestrial habitats⁸. Many species 38 adopt thermal strategies (such as thermoregulation or acclimation) that determine their thermal niche^{9–11} and thermal traits can provide a target for directional selection if the environment 39 40 changes to include temperatures outside the range encompassed by the thermal niche. Adaptation 41 may thus permit species to persist at temperatures that would have previously led to 42 extirpation^{12,13}. Under moderate climate change scenarios, mean global oceanic temperature is predicted to increase in excess of 2°C by the end of the century¹⁴, with more extreme changes 43 44 predicted in localized regions¹⁵. Predicting species distribution patterns under climate change

45 therefore requires data for temperature-associated adaptive trait evolution, which can vary by species and population. While there have been recent steps to incorporate theoretical trait 46 evolution into SDMs³, to date, no model has used empirical estimates of evolutionary rate to 47 48 inform predictions about future species distributions. Due to widespread phenotypic variation¹⁶, genomic resources¹⁷, the availability of 49 temperature-associated ecological and evolutionary trait data⁴, and the ability to artificially breed 50 51 multiple hybrid generations in a common garden lab environment, threespine stickleback fish (Gasterosteus aculeatus, Fig. 1a) are a useful vertebrate species for understanding the impact of 52 53 adaptation on range dynamics under climate change. Here, we incorporate the specific capacity 54 of marine populations to adapt their physiology to rapidly changing climate conditions to 55 characterize how adaptive trait variation affects projections of species range distributions under 56 climate change¹⁸.

57 Results

We collected and reared wild marine and freshwater stickleback from two marine and 58 59 two freshwater locations (Fig. 1b). These stickleback exhibited a wide thermal tolerance range bounded by a mean CTmin of 2.09 °C (+/- 1.13 °C SD) and a mean CTmax of 30.4 °C (+/- 2.64 60 61 °C SD)(Fig. 1c) and also tolerated a wide range of temperatures within which there was no 62 observable stress response (5.0 - 25.0 °C). To determine if these measured thermal traits have a 63 genetic basis and could therefore be subject to adaptive evolution, we raised hybrid marine-64 freshwater F1 (N=2) and F2 (N=4) families under common garden conditions and used these fish 65 for genome-wide linkage map construction (Table S1) and quantitative trait loci (OTL) mapping. 66 Using 25,001 high-quality single nucleotide variants generated from restriction site-associated

3

67 DNA (RAD) sequencing, we identified one significant QTL for each thermal tolerance trait (Fig. 2b) that explained a high percentage of trait variance (PVE; CTmin = 54%, CTmax = 64%). 68 We used these genetically based traits to inform the boundaries of three distinct 69 70 environmental regions in species distribution models (SDMs) for marine stickleback based on 71 varying levels of physiological performance: i) a 'normal behaviour' envelope with 72 environmental temperatures associated with an absence of an observable behavioural stress 73 response (5.0 to 25.0 °C), ii) a 'within physiological limits' envelope with environmental temperatures that fall within the range of the measured physiological limits (0.85 to 31.9 $^{\circ}$ C), 74 75 and iii) an 'outside of physiological limits' envelope with environmental temperatures that fall 76 outside the measured physiological limits (below 0.85 and above $31.9 \,^{\circ}$ C). Based on sea ice 77 extent and bathymetry alone, our present-day correlative SDM suggests a marine range 78 distribution for these stickleback from the southern Bering Sea to northern Washington state, and along the southeast Alaskan Panhandle (combined shaded area in Fig. 3a). When we include 79 species-specific thermal trait data from the wild marine populations, nearly the entire range of 80 81 suitable habitat was unaffected by thermal tolerance limits, with the exception of a slight 82 restriction at the northern end of the range (Fig. 3a). However, when restricted to the Normal 83 Behaviour area, the range becomes confined to the west of the northern tip of Kodiak Island (Fig. 84 3a), a limit coinciding with the northern-most known marine population in the Pacific Northwest genetic cluster¹⁹. 85 86 We next generated SDMs based on predicted end-of-century environmental variables according to the Intergovernmental Panel on Climate Change (IPCC) representative 87

88 concentration pathways (RCPs) 4.5 and 8.5 from the Fifth Assessment Report^{14,20}. End-of-

89 century IPCC predictions resulted in a substantial increase in the overall suitable habitat area for

90	stickleback, with a 2.25-fold or 1,338,219 km ² increase (combined shaded area in Fig. 3b-e) in
91	association with a reduction in sea ice concentration at the northern end of the range. When
92	temperature increases as predicted by RCP 4.5 in the 'no evolution' model, there is a 5.86-fold
93	(1,011,949 km ²) increase in the Normal Behaviour area within this newly suitable habitat (Fig.
94	3b) when compared to the current day model. Under RCP 8.5 in the 'no evolution' model, the
95	entirety of suitable habitat area remains within tolerable limits (Fig. 3c), with a smaller
96	proportion of the range falling outside of the Normal Behaviour area compared to RCP 4.5
97	(10.7%) 'no evolution' model.

98 Incorporating the evolution of CTmin into the SDMs ('evolution' model) results in a 99 large increase in the proportion of suitable habitat that falls within the Normal Behaviour area. 100 We allowed CTmin to evolve at a rate of 0.63 haldanes, which is equal to the rate observed for 101 CTmin in marine stickleback⁴ (there are currently no empirical estimates of evolutionary rate for 102 CTmax). Under RCP 4.5, almost all (99.9%) of the suitable habitat range falls within the Normal 103 Behaviour area (Fig. 3d), while under the RCP 8.5 'evolution' model, the entire range of suitable 104 habitat is within the Normal Behaviour area (Fig. 3e). These represent a 7.45-fold increase (1,336,123 km²) for RCP 4.5 and 7.46-fold increase (1,338,219 km²) for RCP 8.5 in the Normal 105 106 Behaviour area when compared to the current day SDM.

We next considered the effect of limiting the evolutionary rate of CTmin based on the
observed genetic architecture of a single major effect locus ('PVE' model). Under the RCP 4.5
'PVE' model, we observed a 1.08-fold reduction in the Normal Behaviour area (109,120 km²,
Fig. S3) when compared to the 'evolution' model (Fig. 3d). Under RCP 8.5 projections with the
'PVE' model, we observed a 3,905 km² decrease in the Normal Behaviour area (Fig. S3) when
compared to the 'evolution' model (Fig. 3e). This relatively small reduction in Normal

113 Behaviour area with adjusted PVE for the thermal traits under RCP 8.5 still results in a

114 1,334,314 km² increase in area compared to the current day SDM.

115 Discussion

116 We assessed the critical thermal minimum (CTmin) and maximum (CTmax) for 117 threespine stickleback from wild marine and freshwater populations, as well as F1 and F2 118 families in order to determine the genetic basis underlying traits that will be important for 119 population persistence under climate change. We incorporated the empirical ecological and 120 evolutionary trait data from wild marine populations into mechanistic species distribution models 121 under two climate change scenarios. We estimated the species distribution in the Pacific 122 Northwest marine environment while these traits were held constant ('no evolution'), allowed 123 CTmin to evolve in accordance with evolutionary rate estimates ('evolution'), and allowed 124 CTmin to evolve at a constrained rate associated with the percent of trait variance explained by 125 the single QTL we detected ('PVE'). The geographic ranges predicted for the end-of-century 126 species distributions increased by over 7-fold (RCP 4.5: 1,336,123 km²; RCP 8.5: 1,338,219 127 km²) when CTmin was allowed to evolve, a substantial increase over the 'no evolution' model. 128 Additionally, when CTmin evolution was constrained in the PVE model, there remained a ~6-129 fold increase (RCP 4.5: 1,227,002 km²; RCP 8.5: 1,334,314 km²) in the geographic range 130 compared to current day. These differences in the predicted distributions underline the significance of incorporating empirical evolutionary data into SDMs^{5,21,22}, and in particular the 131 132 need to consider behaviour in addition to physiology when predicting range shifts²³. 133 While the results presented here showcase the importance of creating more robust and 134 informed SDMs, they also highlight a number of aspects that will benefit from additional 135 consideration when interpreting these models. The existing estimate of CTmin evolution in

136 sticklebacks considered the change in phenotypic variation across generations⁴, rather than 137 evolution at underlying loci. As such, it is likely that some proportion of the observed phenotypic 138 change was due to plastic responses. In our PVE model, we take a conservative approach by 139 restricting phenotypic evolution of CTmin to only occur through heritable change via the locus 140 shown to be associated with the trait. The efficiency of translating the selection acting on a trait 141 into evolutionary response across generations can depend on the genetic architecture of the 142 trait²⁴. The large effect loci that we identified here are consistent with expectations from theory 143 suggesting that prolonged bouts of adaptation with gene flow (as expected in this system²⁴⁻²⁶) should favour architectures characterized by fewer, larger effect, more tightly linked alleles^{27–29}. 144 145 However, it should be noted that the effects of the two QTL identified here are likely 146 overestimated and other loci might have gone undetected (sensu the Beavis Effect³⁰). The joint 147 action of plastic effects and evolution at undetected loci might therefore result in range 148 distributions that are more similar to those predicted in our 'evolution' models. 149 Climate change is leading to an increase in the frequency of extreme temperature 150 events^{14,31}, including both extreme heat and extreme cold^{32–34}, which could drive selection on both CTmin and CTmax^{13,35–37}. Our models reveal that the evolution of cold tolerance can have a 151 152 significant impact on predicted range distributions despite most end-of-century climate change 153 scenarios involving an overall warmer, not cooler world. This counterintuitive result occurs 154 because climate change opens up newly available thermal niche space in waters north of the current day geographic range²⁰, and the evolution of CTmin extends this range expansion further 155 156 still. Northward range expansion with climate change due to increasing habitat availability has also been documented in birds^{38–41}, plants⁴², other fishes^{43–45}, and pest species (such as ticks^{46–48} 157 and mountain pine beetle^{49,50}), as well as in large scale analyses of diverse taxa assessing the 158

159	'fingerprints' of climate change impacts ^{51,52} . However, it is likely that evolution of CTmax will			
160	also play a role in responses to environmental change ^{53–55} . Although we have no empirical			
161	estimates of CTmax evolution, it is interesting to explore how distributions would shift if we			
162	observed the same rate of evolution in this trait as in CTmin. Using the same rate of haldanes and			
163	incorporating our observed PVE for the locus associated with CTmax, we find that geographic			
164	ranges predicted for the end-of-century species distributions also increased by over 7-fold (RCP			
165	4.5: 1,227,002 km ² increase; RCP 8.5: 1,334,314 km ² increase; Fig. S4). Further investigations to			
166	test the empirical rate of evolution of thermal behaviour, physiology and the molecular			
167	underpinnings of these key traits would be well served by assessing additional samples along the			
168	latitudinal gradient inhabited by stickleback to gain a more detailed understanding of these			
169	temperature-associated traits over a wider environmental range.			
169 170	temperature-associated traits over a wider environmental range. Collectively, the inclusion of thermal traits and their evolution alters the projected ranges			
170	Collectively, the inclusion of thermal traits and their evolution alters the projected ranges			
170 171	Collectively, the inclusion of thermal traits and their evolution alters the projected ranges of threespine stickleback, with a substantial increase in the predicted area that the species will			
170 171 172	Collectively, the inclusion of thermal traits and their evolution alters the projected ranges of threespine stickleback, with a substantial increase in the predicted area that the species will occupy under climate change forecasts. Many traits are evolving in response to climate change ^{56–}			
170 171 172 173	Collectively, the inclusion of thermal traits and their evolution alters the projected ranges of threespine stickleback, with a substantial increase in the predicted area that the species will occupy under climate change forecasts. Many traits are evolving in response to climate change ^{56–} ⁵⁹ and SDMs that do not take trait data (and trait evolution) into account could provide inaccurate			
170 171 172 173 174	Collectively, the inclusion of thermal traits and their evolution alters the projected ranges of threespine stickleback, with a substantial increase in the predicted area that the species will occupy under climate change forecasts. Many traits are evolving in response to climate change ^{56– 59} and SDMs that do not take trait data (and trait evolution) into account could provide inaccurate predictions about future species distributions under climate change ³ - an issue of particular			
170 171 172 173 174 175	Collectively, the inclusion of thermal traits and their evolution alters the projected ranges of threespine stickleback, with a substantial increase in the predicted area that the species will occupy under climate change forecasts. Many traits are evolving in response to climate change ^{56- ⁵⁹ and SDMs that do not take trait data (and trait evolution) into account could provide inaccurate predictions about future species distributions under climate change³ - an issue of particular concern for species at risk and pest species undergoing range expansion^{60–62}. Our results provide}			

179 Materials and Methods

180 <u>Sample collection and husbandry</u>

181 We collected adult Gasterosteus aculeatus (Fig. 1a) from two marine populations 182 (Bamfield, M1, 48°49'12.69"N 125° 8'57.90"W; Garden Bay Lagoon, M2, 49°37'52.84"N 124° 1'49.26"W) and two freshwater populations (Hotel Lake, FW1, 49°38'26.94"N 124° 3'0.69"W; 183 184 Klein Lake, FW2, 49°43'32.47"N 123°58'7.83"W) in southwestern British Columbia (Fig. 1b). 185 Individuals were maintained in a flow-through system and photoperiod that mimicked the source 186 populations during collection periods before transport. We transported the fish to our aquatics 187 facility in the Life and Environmental Sciences Animal Resources Centre at the University of 188 Calgary, where we separated the fish into population-specific 113 L glass aquaria at a density of 189 approximately 20 fish per aquarium. We acclimated marine individuals to freshwater salinity 190 over one week and maintained fish in a common environment (salinity of 4-6 ppt, water 191 temperature of 15 ± 2 °C, and a photoperiod of 16L:8D). Individuals were allowed to acclimate 192 for at least 2 weeks before experiments (1 week for stress reduction post-transfer, 1 week for 193 common garden environment acclimation and salinity ramp). Each common garden aquarium 194 was on a closed system with individual filters, air stones, and water supply. We fed all adult fish 195 ad libitum once per day with thawed bloodworms (Hikari Bio-Pure Frozen Bloodworms). All 196 collections and transfers were approved by the Department of Fisheries and Oceans (marine 197 collections and transfers), the Ministry of Forests, Lands, and Natural Resource Operations 198 (freshwater collections), and the Huu-ay-aht First Nations (marine collections).

199 Crossing design for marine and freshwater F1 families

We collected eggs from females and fertilized the eggs with extracted testes from
euthanized males. We transferred the fertilized egg mass to a mesh-bottomed egg incubator

202	suspended in a 37 L aquarium for hatching. Each hatching aquarium was maintained with a	
203	single air stone and a filter. Once hatched, we reared the larval fish in 37 L hatching aquaria until	
204	they reached a total length (TL) of approximately 1 cm, after which we split the families into	
205	family-specific 113 L aquaria to maintain suitable densities. We fed the larval fish ad libitum	
206	twice daily with live Artemia spp. nauplii, and then gradually transitioned the diet to chopped,	
207	thawed bloodworms (Hikari Bio-Pure Frozen Bloodworms) ad libitum once daily as they	
208	reached approximately 2 cm TL. The F1 families were maintained in a common garden	
209	environment identical to that of the F0 populations. We produced one F1 family for each	
210	population (M1_F1, M2_F2, FW1_F1, and FW2_F1).	
211	Crossing design for hybrid mapping families	
212	To generate genetically heterogeneous marine-freshwater F1 families from wild F0	
213	parents, we collected eggs from marine females and fertilized the eggs with extracted testes from	
214	euthanized freshwater males. Egg masses were hatched, and juveniles were reared, as detailed	
215	above. Overall, we produced one F1 family of M1xFW1 hybrids (hereafter referred to as H1_F1)	
216	and three F1 families of M1xFW2 hybrids (hereafter referred to as H2_F1). The hybrid F1	
217	families were maintained in a common garden environment identical to that of the F0	
218	populations. To generate F2 families for linkage map construction, we crossed individuals from	
219	the same F1 family with the same methodology used to generate the F1 families. Overall, we	

produced one F2 family of H1xH1 hybrids (referred to as H1_F2) and three families of H2xH2

hybrids (referred to as H2_F2_1, H2_F2_2, and H2_F2_3). All F2 individuals were raised as

described above in a common garden environment identical to that of the F0 and F1 individuals

to ensure consistent history and use for QTL mapping.

224 Thermal tolerance experiments

225	To assess the lower and upper limits of physiological thermal tolerance, we conducted
226	standard critical thermal minimum (CTmin) and maximum (CTmax) experiments on adult
227	fish ^{4,63,64} . At these sublethal limits, the fish experiences a loss of equilibrium (LOE) at which
228	they lose the ability to escape conditions that would ultimately lead to their death in nature ⁶⁵ . Our
229	experimental tank held 1000 mL glass beakers aerated individually to prevent thermal
230	stratification. Before each experiment, individuals were fasted for 24 hours. After a 15-minute
231	acclimation to the experimental apparatus in the individual beakers, we cooled or heated the
232	water (for CTmin or CTmax, respectively) at a rate of approximately 0.33 °C min ⁻¹ . We assessed
233	wild F0 individuals ($n_{M1} = 32$, $n_{M2} = 14$, $n_{FW1} = 15$, $n_{FW2} = 16$, $N = 77$; Fig. 1c) and lab raised F1
234	$(n_{M1}_{F1} = 13, n_{M2}_{F1} = 15, n_{FW1}_{F1} = 15, n_{FW2}_{F1} = 15, N = 58$; Fig. S1) and F2 individuals $(n_{H1}_{F2} = 15, n_{FW2}_{F1} = 15, n_{FW2}_{F1}$
235	= 28, $n_{H2}F_{2} = 36$, $n_{H2}F_{2} = 21$, $n_{H2}F_{2} = 17$, $N = 102$; Fig. S2). All individuals were
236	assessed for CTmin, allowed to recover for at least three days, then assessed for CTmax to keep
237	thermal stress history consistent. The onset of erratic behaviours associated with a behavioural
238	stress response occurred below 5.0 $^{\circ}\mathrm{C}$ and above 25.0 $^{\circ}\mathrm{C}$ during CTmin and CTmax
239	experiments, respectively. Normal behaviour was observed between 5.0 °C and 25.0 °C, whereas
240	outside of those temperatures, individuals gradually exhibited more extreme stress responses
241	(e.g., increased gilling rate, erratic movement, muscle spasms, listing, as outlined by the
242	Canadian Council of Animal Care guidelines) until reaching LOE and the inability of an
243	individual to right itself (the experimental endpoint) ^{4,63,64} . At the time of data collection for
244	thermal trait experiments, all individuals were adults.

11

245 <u>Isolation and characterization of single nucleotide polymorphisms (SNPs)</u>

246	Genomic DNA was extracted from caudal fin tissue using a phenol-chloroform-based
247	protocol. We digested tissues overnight in digestion buffer and proteinase K at 55 °C, then
248	performed multiple phenol-chloroform and ethanol washes to isolate the DNA. We assessed the
249	quantity of the extracted DNA using the Quant-iT PicoGreen dsDNA assay kit (ThermoFisher
250	Scientific, Waltham, MA, USA) and Synergy HT plate reader with the Gen5 associated software
251	(BioTek, Winooski, VT, USA). We prepared restriction site-associated DNA (RAD)
252	libraries(Peterson et al. 2012) using MluCl and NlaIII restriction (New England Biolabs,
253	Ipswich, MA, USA), ligation of individual barcodes, and pooling of 48 individuals per library at
254	equimolar concentrations. We performed a final PCR to amplify DNA and add library-specific
255	indices to allow for pooling of multiple libraries. We sequenced three libraries at McGill
256	University and Génome Québec Innovation Center on one lane of Illumina HiSeq 4000 (Illumina
257	Inc., San Diego, CA, USA).

258 Assembly of genetic linkage map

After barcode demultiplexing and filtering out low quality reads in STACKS⁶⁶, we 259 260 removed PCR duplicates from the raw sequences and aligned to the G. aculeatus reference 261 genome¹⁷ using the Burrows-Wheeler transform⁶⁷. Individual libraries were concatenated and filtered⁶⁸ using *vcftools* v3.0⁶⁹ and then split into chromosome-specific VCF files to assemble the 262 263 linkage maps chromosome by chromosome. We assigned markers to a linkage group with an 264 initial LOD score of 3 after filtering out markers that showed high levels of segregation distortion and missing observations (> 20% missing data) in Lep-MAP3⁷⁰. Unassigned markers 265 were subsequently added to the existing linkage group at a LOD score of 3 and a size limit of 5 266 markers per linkage group. We ordered the markers using a minimum posterior value of 0.001 267

268	and collapsed multiple markers when the probability difference between markers was $< 0.01^{70}$.
269	The final linkage map was subset for use in R ⁷¹ with a custom Python script to visualize the
270	linkage map and to generate a list of informative SNPs to use in subsequent analyses with the qtl
271	v1.44-972 and <i>qtlTools</i> v1.2.073 packages. Linkage maps were visualized using
272	<i>LinkageMapView</i> ⁷⁴ in R ⁷¹ . The final linkage maps were similar across families in number of
273	markers, length, and spacing between markers, though the H1_F2 map did have a higher density
274	of markers (Table S1).

275 Quantitative trait loci (QTL) mapping

276 We analysed families separately with the same methodology to assess the presence of 277 QTL associated with the thermal traits. We calculated conditional genotype probabilities using 278 hidden Markov model technology and simulated genotypes based on the observed marker data 279 (allowing for possible genotyping errors at a level of 0.0001 using a Kosambi mapping function 280 with a fixed step width) prior to running genome scans with a single QTL model^{75,76}. We 281 determined the logarithm of the odds (LOD) score significance thresholds for each trait through 282 permutation tests for each family (100,000 permutations) (Fig. 2a). We pulled significant QTL above the genome-wide significance threshold ($\alpha = 0.05^{77}$), calculated confidence intervals of 283 284 QTL location based on nearby markers, and estimated the percent variance explained by each 285 QTL peak marker. We identified two QTL on linkage group 4 (which corresponds to chromosome 4 of the BROAD assembly¹⁷) associated with CTmin and CTmax (Fig. 2b). 286 287 Environmental variables and species distribution models (SDMs) 288 We compiled environmental data widely used in the construction of SDMs to estimate suitable habitat in both present day and end-of-century forecasts⁷⁸, including bathymetry, sea ice 289

extent and concentration, salinity, and sea surface temperature. We used 2014 data as our

baseline year to match the forecasting baseline of the Fifth Assessment Report¹⁴. We assumed a 291 292 suitable habitat range for this species in the Pacific Northwest to consist of coastal areas (where the water depth is less than 200 m) where sea ice is never present (*i.e.*, no sea ice at the 293 maximum extent). The salinity tolerance for G. aculeatus is very wide^{79,80} and salinity was not 294 295 limiting in any of the habitat⁸¹, therefore salinity was not included in the final present day or 296 forecasted models. We obtained bathymetry data from the General Bathymetric Chart of the 297 Oceans (GEBCO) of the British Oceanographic Data Centre⁸², and maximum sea ice extent data 298 from the Multisensory Analyzed Sea Ice Extent – Northern Hemisphere (MASIE-NH) product⁸³. We obtained maximum and minimum daily mean sea surface temperature (SST)⁸⁴. Sea surface 299 300 temperature was used as a proxy for water temperature. Stickleback thermal trait data were used 301 to set the limits of the distribution within the possible area delineated by sea ice free water of a 302 suitable depth (Table S2). The thermal trait measurements were all based on our experimental 303 findings reported here.

304 In the end-of-century forecast for suitable habitat, we assumed bathymetry to be 305 consistent with the modern scenario. However, the Arctic Ocean is predicted to be 306 predominantly free of sea ice in the summer by the end of the century⁸⁵, with significant end-of-307 century reductions in winter/spring sea ice concentration (reduced to a concentration of 0.1 at the 308 Seward Peninsula⁸⁵), so we conservatively set the maximum northern extent of the suitable 309 habitat to be 65°35' N, which corresponds to the western tip of the Seward Peninsula (near 310 Wales, AK). The extent of sea ice was kept consistent between scenarios to control for area in 311 calculations of range expansion. The water temperatures were increased based on projections for large marine ecosystems of Northern Oceans from global climate models^{14,20}. Maps were created 312 in R⁷¹ using the packages *raster* v. 3.3-13⁸⁶ and *rgeos* v. 0.5-3⁸⁷. 313

14

314 We incorporated the experimental data from the critical thermal minimum and maximum 315 trials on the wild marine populations (Fig. 1c) to understand how trait inclusion may affect range 316 projections under climate change. These trait-defined envelopes were overlain on the suitable 317 habitat background to delineate projected presence based on thermal traits in both current day 318 and IPCC predicted RCPs 4.5 and 8.5. The trait values were kept constant (*i.e.*, not changed) in 319 the 'no evolution' projections, but in the 'evolution' projections, we allowed CTmin to evolve an 320 improvement of 2.5 °C (*i.e.*, 2.5 °C lower than CTmin boundary in the 'no evolution' projection) 321 by the end of the century based on a rate of 0.63 haldanes from a selection experiment 322 previously conducted on populations from this same genetic cluster⁴. The 'evolution' model 323 assumes whole-organism tolerance evolution with selection acting on 100% of the loci affecting 324 CTmin evolution. Therefore, to account for the observed genetic architecture of a single, large 325 effect locus associated with CTmin, we next considered a 'PVE' model, where CTmin was 326 allowed to evolve to only 54% of the total estimated trait value from the 'evolution' model (i.e., 327 2.5 °C * 0.54). However, a notable restriction in the evolution of CTmin for both models 328 ('evolution' and 'PVE') was a hard boundary drawn at 0 °C under the assumption that 329 population persistence in a sub-zero environment would require many additional adaptations 330 alongside CTmin improvement (e.g., extreme adaptations observed in Antarctic notothenioid 331 fishes^{88–90}).

To quantify the differences in estimated suitable habitat under current day and end-ofcentury conditions, we compared areas for each warming scenario to the equivalent scenario under current conditions. Similarly, to compare the differences in evolutionary scenarios, the area of each end-of-century evolutionary trajectory was compared to either the contrasting RCP projection or adjusted PVE projection. For these comparisons, we used North Pole Lambert

15

337	azimu	thal equal area projection for all maps, and georeferenced to known landmarks in ArcGIS	
338	v10.8	91 to calculate area from the maps generate in R^{71} (conversion ratio of 7873.42).	
339		The datasets generated and analysed during the current study are available from the	
340	corres	ponding author upon reasonable request. The annotated code, including all parameter	
341	thresholds, for the above QTL analyses and SDM construction is publicly available on Github		
342	(githu	b.com/sjswuitchik/gasAcu_qtl_sdm).	
343			
344	Refer	ences	
345	1.	Kearney, M. R., Wintle, B. A. & Porter, W. P. Correlative and mechanistic models of	
346		species distribution provide congruent forecasts under climate change. Conserv. Lett. 3,	
347		203–213 (2010).	
348	2.	Kearney, M. & Porter, W. Mechanistic niche modelling: Combining physiological and	
349		spatial data to predict species' ranges. Ecol. Lett. 12, 334-350 (2009).	
350	3.	Bush, A. et al. Incorporating evolutionary adaptation in species distribution modelling	
351		reduces projected vulnerability to climate change. Ecol. Lett. 19, 1468–1478 (2016).	
352	4.	Barrett, R. D. H. et al. Rapid evolution of cold tolerance in stickleback. Proc. R. Soc. B	
353		278 , 233–238 (2011).	
354	5.	Evans, T. G., Diamond, S. E. & Kelly, M. W. Mechanistic species distribution modelling	
355		as a link between physiology and conservation. Conserv. Physiol. 3, 1–16 (2015).	
356	6.	Pearce, J. & Lindenmayer, D. Bioclimatic analysis to enhance reintroduction biology of	
357		the endangered helmeted honeyeater (Lichenostomus melanops cassidix) in southeastern	

358 Australia. *Restor. Ecol.* **6**, 238–243 (1998).

359	7.	Araújo, M. B., Cabeza, M., Thuiller, W., Hannah, L. & Williams, P. H. Would climate
360		change drive species out of reserves? An assessment of existing reserve-selection
361		methods. Glob. Chang. Biol. 10, 1618–1626 (2004).

- Hochachka, P. W. & Somero, G. N. Mechanism and process in physiological evolution.
 Biochem. Adapt. 480, (2002).
- Huey, R. B. & Slatkin, M. Costs and benefits of lizard thermoregulation. *Q. Rev. Biol.* 51, 363–384 (1976).
- 366 10. Coutant, C. C. Thermal preference: when does an asset become a liability? *Environ. Biol.*367 *Fishes* 18, 161–172 (1987).
- Huey, R. B. & Kingsolver, J. G. Evolution of thermal sensitivity of ectotherm
 performance. *Trends Ecol. Evol.* 4, 131–135 (1989).
- 370 12. Sexton, J. P., McIntyre, P. J., Angert, A. L. & Rice, K. J. Evolution and Ecology of
 371 Species Range Limits. *Annu. Rev. Ecol. Evol. Syst.* 40, 415–436 (2009).
- 372 13. Hoffman, A. & Sgrò, C. Climate change and evolutionary adaptation. *Nature* 470, 479–
 373 485 (2011).
- 374 14. IPCC. Climate Change 2014: Synthesis Report. Fifth Assessment Report of the
- 375 Intergovernmental Panel on Climate Change (2014). doi:10.1016/S0022-0248(00)00575-
- 376

3

377 15. Eyer, P. A., Blumenfeld, A. J. & Vargo, E. L. Sexually antagonistic selection promotes

378		genetic divergence between males and females in an ant. Proc. Natl. Acad. Sci. U. S. A.
379		116, 24157–24163 (2019).
380	16.	Hendry, A. P., Peichel, C. L., Matthews, B., Boughman, J. W. & Nosil, P. Stickleback

- 381 research: The now and the next. *Evol. Ecol. Res.* **15**, 111–141 (2013).
- 382 17. Jones, F. C. *et al.* The genomic basis of adaptive evolution in threespine sticklebacks.
 383 *Nature* 484, 55–61 (2012).
- 384 18. Barrett, R. D. H. & Hendry, A. P. Evolutionary rescue under environmental change. in

385 *Behavioural responses to a changing world: mechanisms and consequences* 216–233

386 (Oxford University Press Oxford, UK, 2012).

387 19. Morris, M. R. J., Bowles, E., Allen, B. E., Jamniczky, H. A. & Rogers, S. M.

388 Contemporary ancestor? Adaptive divergence from standing genetic variation in Pacific
389 marine threespine stickleback. *BMC Evol. Biol.* 18, 1–21 (2018).

- 390 20. Alexander, M. A. et al. Projected sea surface temperatures over the 21st century: Changes
- in the mean, variability and extremes for large marine ecosystem regions of Northern
 Oceans. *Elementa* 6, (2018).
- 393 21. Buckley, L. *et al.* Can mechanism inform species' distribution models? *Ecol. Lett.* 13,
 394 1041–1054 (2010).
- 22. Lyon, N. J., Debinski, D. M. & Rangwala, I. Evaluating the Utility of Species Distribution
 Models in Informing Climate Change-Resilient Grassland Restoration Strategy. *Front.*
- 397 *Ecol. Evol.* 7, 1–8 (2019).

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.25.432865; this version posted February 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

398	23.	Sunday, J. M., Bates, A. E. & Dulvy, N. K. Thermal tolerance and the global
399		redistribution of animals. Nat. Clim. Chang. 2, 686–690 (2012).
400	24.	Rogers, S. M. et al. Genetic Signature of Adaptive Peak Shift in Threespine Stickleback.
401		Evolution (N. Y). 2439–2451 (2012). doi:10.5061/dryad.6jj614kh
402	25.	Schluter, D., Marchinko, K. B., Barrett, R. D. H. & Rogers, S. M. Natural selection and
403		the genetics of adaptation in threespine stickleback. Philos. Trans. R. Soc. B Biol. Sci. 365,
404		2479–2486 (2010).
405	26.	Jones, F. C. et al. A genome-wide SNP genotyping array reveals patterns of global and
406		repeated species-pair divergence in sticklebacks. Curr. Biol. 22, 83-90 (2012).
407	27.	Yeaman, S. & Otto, S. P. Establishment and maintenance of adaptive genetic divergence
408		under migration, selection, and drift. Evolution (N. Y). 65, 2123–2129 (2011).
409	28.	Yeaman, S. & Whitlock, M. C. The genetic architecture of adaptation under migration-
410		selection balance. Evolution (N. Y). 65, 1897–1911 (2011).
411	29.	Via, S., Conte, G., Mason-Foley, C. & Mills, K. Localizing FST outliers on a QTL map
412		reveals evidence for large genomic regions of reduced gene exchange during speciation-
413		with-gene-flow. Mol. Ecol. 21, 5546–5560 (2012).
414	30.	Beavis, W. The power and deceit of QTL experiments: lessons from comparative QTL
415		studies. in 49th Annual Corn & Sorghum Research Conference 250–266 (1994).
416	31.	Stott, P. How climate change affects extreme weather events. Science (80). 352, 1517-
417		1518 (2016).

418	32.	Herring, S., Hoerling, M., Kossing, J., Peterson, T. & Stott, P. Explaining extreme events
419		of 2014 from a climate perspective. 96 , 1–180 (2015).
420	33.	Herring, S. C. et al. Explaining extreme events of 2016 from a climate perspective. Bull.
421		Am. Meteorol. Soc. 99, S1–S157 (2018).
422	34.	Herring, S. C., Christidis, N., Hoell, A., Hoerling, M. P. & Stott, P. Explaining extreme
423		events of 2018 from a climate perspective. Bull. Am. Meteorol. Soc. 101, 1-146 (2020).
424	35.	Kingsolver, J. G. et al. Complex life cycles and the responses of insects to climate change.
425		Integr. Comp. Biol. 51, 719–732 (2011).
426	36.	Denny, M. W. & Dowd, W. W. Biophysics, environmental stochasticity, and the evolution
427		of thermal safety margins in intertidal limpets. J. Exp. Biol. 215, 934–947 (2012).
428	37.	Buckley, L. B. & Huey, R. B. How extreme temperatures impact organisms and the
429		evolution of their thermal tolerance. Integr. Comp. Biol. 56, 98-109 (2016).
430	38.	Tingley, M. W., Monahan, W. B., Beissinger, S. R. & Moritz, C. Birds track their
431		Grinnellian niche through a century of climate change. Proc. Natl. Acad. Sci. U. S. A. 106,
432		19637–19643 (2009).
433	39.	Melles, S. J., Fortin, M. J., Lindsay, K. & Badzinski, D. Expanding northward: Influence
434		of climate change, forest connectivity, and population processes on a threatened species'
435		range shift. Glob. Chang. Biol. 17, 17-31 (2011).

436 40. Tombre, I. M., Oudman, T., Shimmings, P., Griffin, L. & Prop, J. Northward range
437 expansion in spring-staging barnacle geese is a response to climate change and population

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.25.432865; this version posted February 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

438		growth, mediated by individual experience. Glob. Chang. Biol. 25, 3680-3693 (2019).
439	41.	Rushing, C. S., Andrew Royle, J., Ziolkowski, D. J. & Pardieck, K. L. Migratory behavior
440		and winter geography drive differential range shifts of eastern birds in response to recent
441		climate change. Proc. Natl. Acad. Sci. U. S. A. 117, 12897-12903 (2020).
442	42.	D'Andrea, L. et al. Climate change, anthropogenic disturbance and the northward range
443		expansion of Lactuca serriola (Asteraceae). J. Biogeogr. 36, 1573–1587 (2009).
444	43.	Fossheim, M. et al. Recent warming leads to a rapid borealization of fish communities in
445		the Arctic. Nat. Clim. Chang. 5, 673-677 (2015).
446	44.	Yapıcı, S., Bilge, G. & Filiz, H. Northwards range expansion of Sparisoma cretense
447		(Linnaeus, 1758) in the Turkish Aegean Sea. J. Aquac. Eng. Fish. Res. 201–207 (2016).
448		doi:10.3153/jaefr16022
449	45.	Spies, I. et al. Genetic evidence of a northward range expansion in the eastern Bering Sea
450		stock of Pacific cod. Evol. Appl. 13, 362–375 (2020).
451	46.	Ogden, N. H. et al. Climate change and the potential for range expansion of the Lyme
452		disease vector Ixodes scapularis in Canada. Int. J. Parasitol. 36, 63-70 (2006).
453	47.	Clow, K. M. et al. Northward range expansion of Ixodes scapularis evident over a short
454		timescale in Ontario, Canada. PLoS One 12, 1-15 (2017).
455	48.	Sagurova, I. et al. Predicted northward expansion of the geographic range of the tick
456		vector amblyomma americanum in North America under future climate conditions.
457		Environ. Health Perspect. 127, 1–14 (2019).

458	49.	Kurz, W. A. et al. Mountain pine beetle and forest carbon feedback to climate change.
459		Nature 452 , 987–990 (2008).

- 460 50. Sambaraju, K. R., Carroll, A. L. & Aukema, B. H. Multiyear weather anomalies
- 461 associated with range shifts by the mountain pine beetle preceding large epidemics. *For.*
- 462 *Ecol. Manage.* **438**, 86–95 (2019).
- 463 51. Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts
 464 across natural systems. 421, 37–42 (2003).
- 465 52. Platts, P. J. *et al.* Habitat availability explains variation in climate-driven range shifts
 466 across multiple taxonomic groups. *Sci. Rep.* 9, 1–10 (2019).
- 467 53. Geerts, A. N. *et al.* Rapid evolution of thermal tolerance in the water flea Daphnia. *Nat.*468 *Clim. Chang.* 5, 665–668 (2015).
- 469 54. Bozinovic, F., Medina, N. R., Alruiz, J. M., Cavieres, G. & Sabat, P. Thermal tolerance
- 470 and survival responses to scenarios of experimental climatic change: changing thermal
- 471 variability reduces the heat and cold tolerance in a fly. J. Comp. Physiol. B Biochem. Syst.
- 472 *Environ. Physiol.* **186**, 581–587 (2016).
- 473 55. Cuenca Cambronero, M., Beasley, J., Kissane, S. & Orsini, L. Evolution of thermal
- tolerance in multifarious environments. *Mol. Ecol.* **27**, 4529–4541 (2018).
- 475 56. Eliason, E. J. *et al.* Differences in thermal tolerance among sockeye salmon populations.
 476 *Science (80-.).* 332, 109–112 (2011).
- 477 57. Hovel, R. A., Carlson, S. M. & Quinn, T. P. Climate change alters the reproductive

- 478 phenology and investment of a lacustrine fish, the three-spine stickleback. *Glob. Chang.*
- 479 *Biol.* 1–13 (2016). doi:10.1111/gcb.13531
- 480 58. Gómez-Ruiz, E. P. & Lacher, T. E. Climate change, range shifts, and the disruption of a
 481 pollinator-plant complex. *Sci. Rep.* 9, 1–10 (2019).
- 482 59. Horton, K. G. *et al.* Phenology of nocturnal avian migration has shifted at the continental
 483 scale. *Nat. Clim. Chang.* 10, 63–68 (2020).
- 484 60. Cullingham, C. I. *et al.* Mountain pine beetle host-range expansion threatens the boreal
 485 forest. *Mol. Ecol.* 20, 2157–2171 (2011).
- 486 61. McLeod, D. J., Hallegraeff, G. M., Hosie, G. W. & Richardson, A. J. Climate-driven
- 487 range expansion of the red-tide dinoflagellate Noctiluca scintillans into the Southern
 488 Ocean. J. Plankton Res. 34, 332–337 (2012).
- 489 62. Bebber, D. P. Range-Expanding Pests and Pathogens in a Warming World. *Annu. Rev.*490 *Phytopathol.* 53, 335–356 (2015).
- 491 63. Hutchison, V. H. Comparative Biology Critical Thermal Maxima in Salamanders. *Physiol.*492 *Zool.* 34, 92–125 (1961).
- 493 64. Fangue, N. A., Hofmeister, M. & Schulte, P. M. Intraspecific variation in thermal
 494 tolerance and heat shock protein gene expression in common killifish, Fundulus
- 495 heteroclitus. J. Exp. Biol. **209**, 2859–2872 (2006).
- 496 65. Beitinger, T., Bennett, W. & McCauley, R. Temperature tolerances of North American
 497 freshwater fishes exposed to dynamic changes in temperature. *Environ. Biol. Fishes* 58,

498 237–275 (2000).

499	66.	Catchen, J., Hohenlohe, P. A., Bassham, S., Amores, A. & Cresko, W. A. Stacks: An
500		analysis tool set for population genomics. Mol. Ecol. 22, 3124–3140 (2013).
501	67.	Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler
502		transform. Bioinformatics 26, 589–595 (2010).
503	68.	Puritz, J. B., Hollenbeck, C. M. & Gold, J. R. dDocent : a RADseq, variant-calling
504		pipeline designed for population genomics of non-model organisms. <i>PeerJ</i> 2, e431 (2014).
505	69.	Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158
506		(2011).
507	70.	Rastas, P. Lep-MAP3: Robust linkage mapping even for low-coverage whole genome
508		sequencing data. <i>Bioinformatics</i> 33 , 3726–3732 (2017).
509	71.	R Core Team. R: A language and environment for statistical computing. (2019).
510	72.	Broman, K. W., Wu, H., Sen, Ś. & Churchill, G. A. R/qtl: QTL mapping in experimental
511		crosses. Bioinformatics 19, 889–890 (2003).
512	73.	Lovell, J. qtlTools. (2019).
513	74.	Ouellette, L. A., Reid, R. W., Blanchard, S. G. & Brouwer, C. R. LinkageMapView-
514		rendering high-resolution linkage and QTL maps. <i>Bioinformatics</i> 34 , 306–307 (2018).
515	75.	Broman, K. W. & Sen, S. A Guide to QTL Mapping with R/qtl. 46, (Springer, 2009).
516	76.	Arends, D., Prins, P., Broman, K. W. & Jansen, R. C. Tutorial-Multiple-QTL Mapping

517 (MQM) Analysis for R/qtl. http://www.rqtl.org/tutorials/MQM-tour.pdf (2014).

518	77.	Greenwood, A. K. et al. The genetic basis of divergent pigment patterns in juvenile
519		threespine sticklebacks. Heredity (Edinb). 107, 155–166 (2011).
520	78.	Wiens, J., Stralberg, D., Jongsomjit, D., Howell, C. & Snyder, M. Niches, models, and
521		climate change: Assessing the assumptions and uncertainties. Proc. Natl. Acad. Sci. 106,
522		19729–19736 (2009).
523	79.	Bayly, I. A. E. Salinity Tolerance and Osmotic Behavior of Animals in Athalassic Saline
524		and Marine Hypersaline Waters. Annu. Rev. Ecol. Syst. 3, 233-268 (2003).
525	80.	Divino, J. N. et al. Osmoregulatory physiology and rapid evolution of salinity tolerance in
526		threespine stickleback recently introduced to fresh water. Evol. Ecol. Res. 17, 179-201
527		(2016).
528	81.	Zweng, M. M. et al. World Ocean Atlas 2013, Volume 2: Salinity. NOAA Atlas NESDIS
529		74 2 , (2013).
530	82.	Weatherall, P. et al. A new digital bathymetric model of the world's oceans. Earth Sp. Sci.
531		2 , 331–345 (2015).
532	83.	Fetterer, F., Savoie, M., Helfrich, S. & Clemene-Colon, P. U.S. National Ice Center and
533		National Snow and Ice Data Center. Multisensor Analyzed Sea Ice Extent - Northern
534		Hemisphere (MASIE-NH) (2010). doi:https://doi.org/10.7265/N5GT5K3K.
535	84.	Reynolds, R. et al. Daily High-Resolution-Blended Analyses for Sea Surface


536 Temperature. J. Clim. 20, 5473–5496 (2007).

537	85.	Johannessen, O. et al. Arctic climate change: observed and modelled temperature and sea-			
538		ice variability. Tellus A Dyn. Meteorol. Oceanogr. 56, 328-341 (2004).			
539	86.	Hijmans, R. J. et al. raster: Geographic data analysis and modelling. (2020).			
540	87.	Roger, A., Stuetz, R., Ove, K., Giraudoux, P. & Santilli, S. rgeos: Interface to geometry			
541		engine - open. (2020).			
542	88.	Detrich, H. W., Parker, S. K., Williams, J., Nogales, E. & Downing, K. H. Cold adaptation			
543		of microtubule assembly and dynamics. Structural interpretation of primary sequence			
544		changes present in the α - and β -tubulins of antarctic fishes. J. Biol. Chem. 275, 37038–			
545		37047 (2000).			
546	89.	Cheng, C. H. C. & Detrich, H. W. Molecular ecophysiology of Antarctic notothenioid			
547		fishes. Philos. Trans. R. Soc. B Biol. Sci. 362, 2215-2232 (2007).			
548	90.	Shin, S. C. hu. et al. The genome sequence of the Antarctic bullhead notothen reveals			
549		evolutionary adaptations to a cold environment. Genome Biol. 15, 468 (2014).			
550	91.	Environmental Systems Research Institute. ArcGIS Desktop: Release 10.8. (2017).			
551	Acknowledgments				
552	The authors acknowledge that the species collections took place on Huu-ay-aht and Sechelt First				
553	Nations traditional territories and are grateful for the opportunity to conduct their research in				
554	protected and sacred areas. We would like to thank the Bamfield Marine Sciences Centre for the				
555	resources required to conduct this research, Sam Owens for the photo in Figure 1a, Peter Peller				
556	for creating Figure 1b, as well as Daniel Wuitchik, Sam Yeaman, Jennifer Sunday, and Patrick				
557	Nosil for feedback on the manuscript.				

558 Author Contributions

- 559 This study was designed by SJSW, RDHB, and SMR; fish husbandry and breeding by SJSW and
- 560 TNB; experimental data collection by SJSW; DNA sequencing and initial processing by AP;
- 561 bioinformatic and QTL analyses by SJSW; species distribution modelling by SJSW and SM; the
- 562 manuscript was written by SJSW, RDHB, and SMR, with input from authors; the study was
- 563 funded by HAJ, RDHB, and SMR.
- 564
- 565 Competing Interests: The authors declare no competing interests.
- 566
- 567

568 Figures and Tables

569

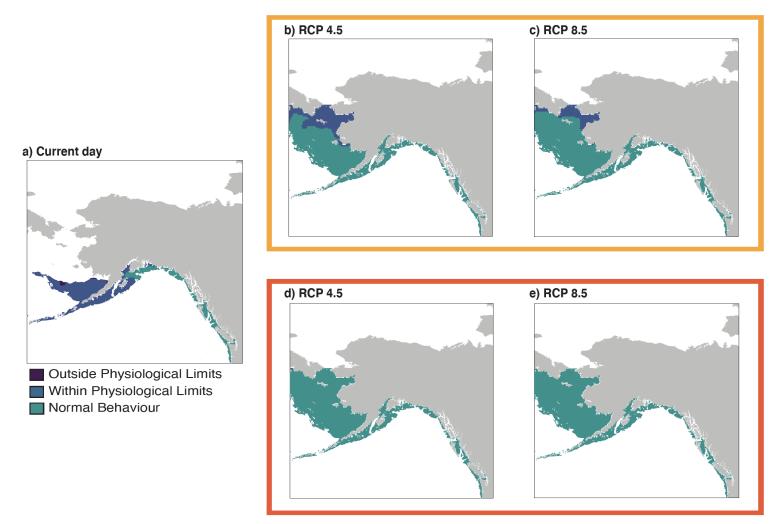
Figure 1. a) Adult threespine stickleback (*Gasterosteus aculeatus*) from a single genetic cluster

were sampled from b) two marine and two freshwater populations in the Canadian Pacific
Northwest. These populations were assayed for c) critical thermal minima and maxima. Thermal

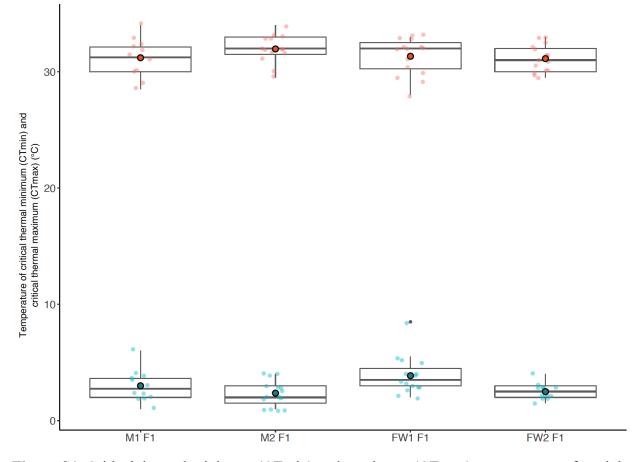
572 Northwest. These populations were assayed for c) critical thermal minima and maxima. Thermal 573 trait values for marine populations (M1 and M2) were incorporated into the species distribution

574 models, while marine and freshwater populations (M1 and W2) were incorporated into the species distribution 574

575 and F2 generations for linkage map construction and quantitative trait loci (QTL) analyses.



576


Figure 2. a) Quantitative trait loci (QTL) scan of linkage group 4 with trait-specific significance
thresholds for LOD scores, showing a significant LOD peak for CTmin (dark purple) and

579 CTmax (light blue) with b) an inset of linkage group 4 highlighting the position of the significant

580 QTL for upper and lower thermal tolerances (CTmax and CTmin, respectively).

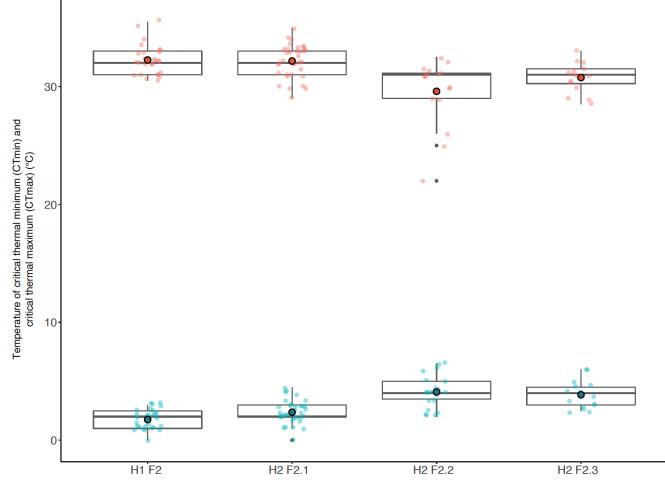
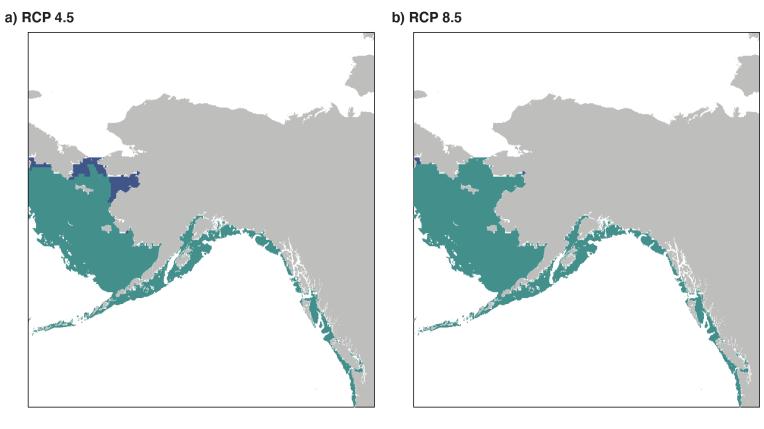


Figure 3. Changes in the distribution of marine threespine stickleback (*Gasterosteus aculeatus*) as a result of incorporating thermal traits in a) current day environmental conditions and under IPCC end-of-century projections RCP 4.5 and 8.5 without trait evolution ('no evolution' model, b & c, orange box) and with trait evolution ('evolution' model, d & e, red box).



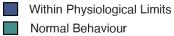

Supplementary Figures and Tables

Figure S1. Critical thermal minimum (CTmin) and maximum (CTmax) measurements for adult threespine stickleback (*Gasterosteus aculeatus*) from pure F1 marine (M*F1) and freshwater (FW*F1) families raised in a common garden under a constant thermal environment.

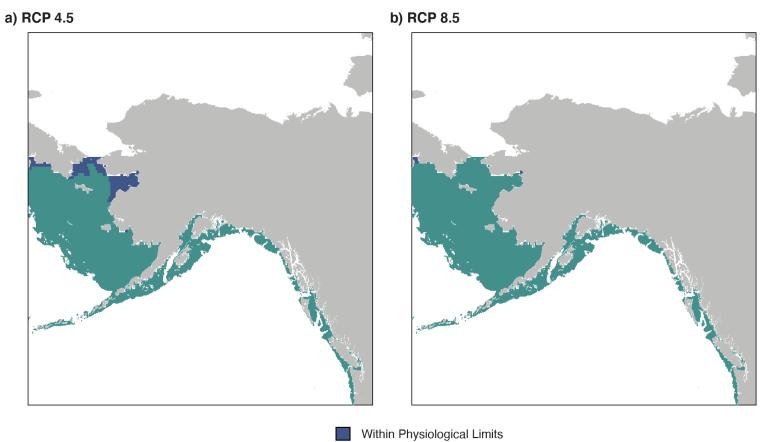


Figure S2. Critical thermal minimum (CTmin) and maximum (CTmax) measurements for adult threespine stickleback (*Gasterosteus aculeatus*) from hybrid marine-freshwater F2 families raised in a common garden under a constant thermal environment.

Figure S3. Changes in the distribution of marine threespine stickleback (*Gasterosteus aculeatus*) as a result of incorporating thermal traits under IPCC end-of-century projections RCP 4.5 and 8.5 with trait evolution constrained by the underlying genetic architecture of critical thermal minimum (CTmin) as determined from hybrid F2 mapping families.

Figure S4. Changes in the distribution of marine threespine stickleback (*Gasterosteus aculeatus*) as a result of incorporating thermal traits under IPCC end-of-century projections RCP 4.5 and 8.5 with trait evolution constrained by the underlying genetic architecture of critical thermal minimum (CTmin) and critical thermal maximum (CTmax) as determined from hybrid F2 mapping families.

Мар	N markers	Length (cM)	Avg. Max. Spacing
KL1	2139	1370.4	7.6
KL2	1558	1311	8.5
KL3	1964	1359.5	7.9
HL	5247	1621.1	11.8

Table S1. Summaries of family-specific linkage maps constructed for quantitative trait loci (QTL) analyses.

Г

Table S2. Thermal trait data from *Gasterosteus aculeatus* used to inform the species distribution envelopes (rows) in the varied evolutionary scenarios (columns) projected for end-of-century conditions.

	Current day	No evolution	Adjusted PVE	Evolution
Normal Behaviour	(5 - 25)	(5 - 25)	(3.6 - 25)	(2.5 - 25)
Within Physiological Limits	(0.9 - 31.9)	(0.9 - 31.9)	(0 - 31.9)	(0 - 31.9)
Outside Physiological Limits	31.9 > x < 0.9	31.9 > x < 0.9	31.9 > x < 0	31.9 > x < 0