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Abstract: Cells are complex biochemical systems whose behavior emerges from interactions 

among myriad molecular components. Computation is often invoked as a general framework for 

navigating this cellular complexity. However, the manner in which cells might embody 

computational processes such that theories of computation, including finite state 15 

machine models, could be productively applied, remains to be seen. Here we demonstrate finite 

state machine-like processing embodied in cells using the walking behavior of Euplotes 

eurystomus, a ciliate that walks across surfaces using fourteen motile appendages (cirri). We 

found that cellular walking entails highly regulated transitions between a discrete set of gait 

states. The set of observed transitions decomposes into a small group of high-probability, 20 

temporally irreversible transitions forming a cycle and a large group of low-probability time-

symmetric transitions, thus revealing stereotypy in sequential patterns of state transitions. Taken 

together, these findings implicate a finite state machine-like process. Cirri are connected by 

microtubule bundles, and we found that the dynamics of cirri involved in different state 

transitions are associated with the structure of the microtubule bundle system. Perturbative 25 

experiments revealed that the fibers mediate gait coordination, suggesting a mechanical basis of 

gait control. 
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One sentence summary: The ciliate Euplotes walks across surfaces with an unusual gait, which 

involves modular subcellular structure and combines elements of stereotypy and variability 

according to a computational process actively coordinated by a microtubule fiber system. 

 

Main Text: 5 

Cells are complex physical systems controlled by networks of signaling molecules. 

Single cells can display remarkably sophisticated, animal-like behaviors (1–3), orchestrating 

active processes far from thermodynamic equilibrium in order to properly carry out biological 

functions (4, 5). Indeed, single cells can make decisions by sensing and responding to diverse 

cues and signals (6), execute coordinated movements (7, 8) and directed motility (9–12), and 10 

even solve mazes (13, 14) and possibly learn (15–18). Such behaviors in animals arise from 

neural activity and have been studied extensively, but we know comparatively little about the 

mechanisms of cellular behavior (19, 20). In individual cells, behaviors emerge directly through 

the joint action of chemical reactions (21), cellular architecture (3), physical mechanisms and 

constraints within the cell (22, 23), and interactions of the cell with its local environment (24). 15 

The links between information processing, decision making, and the physical manifestation of 

those processes as cell state transitions suggest that cellular behavior might be understood as an 

embodied computation (25, 26). The theory of computation has often been invoked as a general 

framework for understanding cellular dynamics (25, 27–32), environmental sensing by bacteria 

being a deeply studied example (31–33), and has been used to engineer programmable cell states 20 

(34). However, the manner and extent to which cells might embody functional, computational 

processes as well as the extent to which a computational perspective on cellular behavior might 

prove productive remains to be seen. 
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Among the microbial eukaryotes (protists), ciliates display some of the most striking 

examples of unicellular behavior, including hunting (3), sensorimotor navigation (10), and 

predator avoidance (35). Spirotrichous ciliates of the genus Euplotes are notable for their 

complex locomotion (36–38), using bundles of specialized cilia (cirri) to walk across surfaces 

(36, 37) (Fig. 1A, Movies S1 and S2). Depending on the species, these cells generally have 14 to 5 

15 ventral cirri arranged in a highly consistent pattern used for walking locomotion (39). 

Euplotes live in aquatic environments, and in addition to walking, use their cirri for swimming 

and rapid escape responses (40) (Movie S2). Oral membranelles (Fig. 1B) generate feeding 

currents to capture bacteria and small protistan prey and are also used for swimming. Early 20th 

century protistologists were so impressed by the apparent coordination of cirri that they proposed 10 

the existence of a rudimentary nervous system, the neuromotor apparatus, to account for their 

observations (38). This theory was motivated by the presence of intracellular fibers connecting 

various cirri (Fig. 1C), now known to be to be tubulin-based structures (41, 42). 

How can a single cell coordinate a gait without a nervous system? Although the walking 

movements of Euplotes are superficially similar to those of animals such as insects, the low 15 

Reynolds environment of aquatic microorganisms, where viscous forces dominate over inertial 

forces, imposes significant physical constraints on all movements that do not impinge on the 

movements of larger terrestrial animals (43). Coordination, to the extent that it exists in the gait 

of Euplotes, would require some kind of dynamical coupling among cirri or between cirri and 

some shared external influence. Recently, analytical techniques from statistical physics have 20 

been used to characterize, understand, and predict mesoscale dynamics in biological systems, 

including cellular behavior (4, 5, 44, 45). These approaches rely on coarse-graining the 

complexity of biological dynamics into states and analyzing the transitions between states. In 

particular, a state representation allows us to ask whether forward and reverse transitions 
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between pairs of states are equal, a condition known as detailed balance (4, 46). Systems that 

violate detailed balance operate in a non-equilibrium mode and can produce directed cycles in 

state space (4, 47). Broken detailed balance has been observed in the motility dynamics of 

cultured mammalian cells as well as the motility dynamics of a freely behaving flagellate protist 

(5, 44) and implies that non-equilibrium models are most applicable to such systems (45). 5 

Identification of broken detailed balance, therefore, highlights temporal irreversibility and can 

indicate active control of biological dynamics. 

When information processing drives patterns of state transitions, such a system can be 

analyzed using automata theory, a fundamental level in the theory of computation (48–50). 

Automata theory can be used to address problems of decision-making and control in complex 10 

systems by providing predictive understanding that is independent of the underlying details of 

how a given process is implemented (49). Inspired by work considering cellular behavior in the 

context of the theory of computation (25), we hypothesized that walking cells might be governed 

by finite state automata with directed, processive movement arising from reproducible patterns 

of state transitions.  15 

The consistent structure of Euplotes, its mode of motility, and its ease of observation 

make these cells an ideal biological test-bed in which to apply theories of non-equilibrium 

statistical mechanics and embodied computation, both of which rely on describing a system in 

terms of discrete state transitions. Here, we use time-lapse microscopy and quantitative analyses 

to show that Euplotes eurystomus walks with a cyclic stochastic gait displaying broken detailed 20 

balance and exhibiting elements of stereotypy and variability, in accord with a finite state 

automaton representation. The observed dynamics are reminiscent of behavioral regulation in 

some cells and animals (5, 51) but contrast with many other well-characterized examples of 

cellular and organismal motility (7, 9, 10, 12, 52–58). Our results provide a clear demonstration 
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of machine-like processes governing cellular state transitions and serve as a framework for 

investigating the principles of behavioral control and non-equilibrium dynamics in single cells. 

Results 

A reduced state space is sufficient to describe walking dynamics 

 In order to ask whether cell behavior is governed by a finite state machine, we analyzed 5 

the walking behavior of Euplotes eurystomus cells, (40), focusing on the simplest case of 

uninterrupted, linear walking trajectories (Fig. 2A, B, Movie S1). Cells were placed onto 

coverslips on which free, spontaneous walking behavior was observed by microscopy (imaged at 

33 frames/s). A focal plane at the cirrus-coverslip interface was chosen in order to clearly 

observe cirral dynamics (Fig. 2A). The consistency of the relative spatial positioning of cirri 10 

between cells allowed us to give each of the 14 cirri an alphabetic label from a-n (Fig. 2C). In 

each video frame, the walking state of the cell was encoded as a 14-bit binary vector, with each 

bit corresponding to a cirrus and receiving a value of “0” if the cirrus was in contact with the 

coverslip and stationary and a “1” if the cirrus was in motion or had moved in the preceding 

interval between frames (instances of stationary cirri held above the coverslip for a sustained 15 

period of time were not observed). The trajectories of 13 cells were manually tracked and 

annotated for a total of 2343 time points. This quantitative analysis revealed stepping-like cirral 

dynamics: cirri tend to undergo rapid movements followed by longer periods of quiescence (Fig. 

2D). Cirral dynamics seemed to lack any obvious patterns such as periodicity or repeating 

sequences of states (e.g. Fig. 2D), implying that the state sequences are generated either by 20 

stochastic processes or complex deterministic mechanisms. This lack of periodicity (confirmed 

by autocorrelation analysis, Fig. S1) or fixed phase relationships between appendage movements 

is different from those reported for various unicellular flagellates and the gaits of most animals 

or (58–60). 
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 Despite the apparent complexity of cirral dynamics, we wondered whether there might be 

some underlying structure, which would allow us to obtain a reduced state space that accurately 

described the dynamics, as has proven successful in behavioral analysis of diverse living systems 

(44, 45, 61–64). Dimensionality reduction by non-negative matrix factorization (NMF) (see 

Materials and Methods and Fig. S2 for more details) revealed the cirral states to be well-5 

described by a three-dimensional NMF space (Fig. 2E-G). The constituent components of the 

NMF constitute the dimensions of the NMF space and correspond to non-overlapping groups of 

cirri. These groups constitute spatially distinct partitions of cirri with respect to their positions on 

the cell body (Fig. 3H). The dimensionality reduction of the gait state space arises at least in part 

from shared pairwise mutual information between groups of cirri (Fig. 3I). 10 

We next sought to identify individual gait states. The density-based spatial clustering of 

applications with noise (DBSCAN) algorithm (65) was used to group our data into clusters in an 

unbiased fashion, with members of a given cluster sharing similar patterns of cirral activity. 

Visual inspection in conjunction with silhouette coefficient (66) (a metric of cluster cohesion and 

separation) analysis revealed that 32 clusters accurately captured the visible structure in the 15 

reduced state space without overfitting (Fig. 2E-G, see Materials and Methods and Fig. S3 for 

more details). These reduced gait states correspond to distinct patterns of cirral activity (Fig. 2J). 

Taken together, our results reveal stereotypy in the spatiotemporal patterns of cirral activity, 

consistent with the behavior of a finite state machine. The discrete set of gait states, which exist 

in the reduced gait state space, demonstrate that cells make use of a subset of the possible 20 

patterns of appendage movement during walking locomotion. 

Euplotes walks with a cyclic stochastic gait 

 In order to relate the gait states identified in our cluster analysis, we asked how changes 

in the number of active cirri may relate to cell movement. At low Reynolds number, velocity is 
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proportional to the difference between the net force generated by the cell and the opposing drag 

(43), so cell velocity provides a relative readout of force generation. Naively, one might expect 

that the force associated with locomotion is roughly proportional to the number of moving 

appendages (67). Alternatively, the velocity might inversely correlate with the net change in 

cirral activity, which would be expected if stationary cirri were generating a pushing traction 5 

force as in crawling or climbing animals (59, 68) or if cirri execute a power stroke just before 

coming to rest as has been suggested previously (37). However, we found that data supported 

neither expectation: cell velocity was only weakly correlated with number of active cirri 

(R2=0.03), and instead, the largest cell velocities corresponded to small-to-moderate positive and 

negative changes in the number of active cirri (Fig. 3A). We concluded that transitions between 10 

gait states must be important to driving the forward progression of walking cells, and thus sought 

to determine whether such active coordination might manifest in the observed gait dynamics. 

 To search for evidence of active coordination, we calculated the forward and reverse 

transition frequencies between states from the 1423 pairwise transitions in our dataset (Fig. 3B, 

see Materials and Methods for more details). If gait state transitions involved active 15 

coordination, we expected to observe associated broken detailed balance (unbalanced forward 

and reverse transitions). The presence of strongly unbalanced transitions such as from gait state 3 

to 17 versus 17 to 3 suggested broken detailed balance, and indeed, a number of forward and 

reverse transitions were found to be significantly unbalanced by the binomial test (see Materials 

and Methods). To further understand the degree to which detailed balance was broken, or, 20 

similarly, the distance from equilibrium, we calculated the entropy production rate (5). 

Following the procedure detailed by Wan and Goldstein (5), we obtained a lower bound estimate 

for an entropy production rate of 0.4, similar to the value reported for strongly non-equilibrium 
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gait transitions observed in a flagellate (5). Walking Euplotes cells, therefore, have a strongly 

non-equilibrium gait despite a lack of standard gait periodicity. 

We next sought to better understand the organization of this unusual gait. First, we noted 

that gait state transitions are constrained: only 322 of the 1024 possible types of transitions were 

observed to occur at least once, and within this restricted set, only 173 occurred more than once 5 

(Fig. 3C). Also, we found that relatively few transitions corresponded to substantial cellular 

movement (Fig. 3C). Crucially, the presence of broken detailed balance revealed the existence of 

directed cycles of cirral activity during locomotion pushing the system away from equilibrium in 

spite of the lack of standard gait periodicity. To determine the nature of these cycles, we grouped 

transitions into two categories: balanced transitions, which satisfy detailed balance, and 10 

unbalanced transitions, which do not (see Materials and Methods for details). This partitioning 

allowed us to separately investigate unbalanced, non-equilibrium-like and balanced, equilibrium-

like transitions (Materials and Methods, Fig. 3D, E). We found that unbalanced transitions occur 

at high frequency but only involve a small number of states (Fig. 3D). Of the 32 gait states, only 

states 2, 3, 4, 7, 17, and 27 are associated with unbalanced transitions, and among these states, 15 

three formed a biased, directed cycle following 2à3à17à2. We had expected that unbalanced 

transitions might be associated with a “power stroke” (in the sense of occurring simultaneously 

with cell movement) but found instead that high cellular velocities tend to be associated with 

balanced transitions (Fig. 3D, E). Additionally, we found that, with the exception of transitions 

between states 1 and 2, transitions occurring at the highest frequencies are unbalanced (Fig. 3D). 20 

Notably, the most frequent balanced transitions were associated with transitions into and 

out of gait state 1, a unique “rest state” which involves no cirral movement (Fig. 2J). 

Furthermore, we found by autocorrelation analysis of gait trajectories that gait state 1 uniquely 

exhibited significant positive autocorrelation (see Materials and Methods, Fig. S4). Investigation 
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of transitions to and from gait state 1 revealed that although transitions between gait states 1 and 

2 are balanced, the most frequent transitions out of gait state 2 are strongly biased toward 

transitions into gait state 3, from which other strongly biased transitions also frequently occur, 

including the cycle of biased transitions mentioned above. The presence of high frequency 

unbalanced transitions does not preclude the existence of highly variable trajectories through 5 

state space. The picture of walking trajectories that emerges is one of stochastic excursions from 

gait state 1 into non-determinate paths through state space involving a mix of balanced and 

unbalanced transitions. The majority of cell movement occurs during infrequent, equilibrium-like 

(balanced) transitions. Temporal irreversibility or directedness in the gait of Euplotes arises from 

biased, non-equilibrium-like (unbalanced) transitions, occurring at relatively high frequency 10 

from a small subset of states. 

Finally, we checked whether gait state transitions were a Markov process, often referred 

to as “memoryless” (69), which entails that transition probabilities are determined completely by 

the present state, and that previous dynamics contribute no additional predictive information (70, 

71). When we compared the gait transition matrix (Fig. 3B) with a computed transition matrix 15 

over windows of two adjacent transitions, we observed these matrices to be different from one 

another, which is inconsistent with the Markov property (see Fig. S5). Further, when we applied 

a Billingsley test, a chi-squared measure for Markovness (72), the null hypothesis that the 

process was Markov was rejected (p=0.005). These analyses showed that Euplotes retains some 

“memory” of the prior sequence of cirral movements during locomotion. 20 

Taken together, our analysis revealed a mixture of unbalanced transitions driving cycles 

and balanced transitions arranged as networks, for which we propose to apply the term “cyclic 

stochastic gait”. The cyclic stochastic gait of Euplotes eurystomus incorporates elements of both 

stereotypy and variability in gait dynamics, in terms of biased transitions and non-determinate 
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sequences of gait state transitions respectively. Forward progress of the cell is not produced 

merely by a physical ratchetting process driven by unpatterned fluctuations in cirral activity, nor 

is it produced by a highly regular, deterministic process like a clock. It has been argued that 

significant computation arises in physical systems exhibiting such a mix of stereotypy and 

variability (48, 73–75) in the sense that the time-evolution of the system is most compactly 5 

described by the result of a computation involving state transitions, memory, and decision rules, 

rather than by a periodic oscillation or a random coin flip. 

 While our analysis revealed a computational underpinning of gait, we sought to better 

understand the functional organization of the dynamical patterns driving processive motion of 

the cell. To do so, we first focused on the highest transition probabilities emanating from each 10 

state. Transition probabilities were estimated as Nij/Ni where Nij is the number of transitions from 

state i to state j, and Ni is the total number of transitions from state i. This allowed us to prune 

away rare transitions in order to reveal the dominant structure of gait state transitions. Figure 3G 

displays the pruned transition matrix as a heatmap. We found that relatively few states were the 

recipients of the majority of high probability transitions, and many states received none. To more 15 

clearly visualize the structure of transitions, we grouped together all gait states receiving no more 

than one unique high probability transition based on the idea that state transitions into this group 

show little bias in terms of source state, and within the group, transitions between states exhibit 

low probability, time unbiased, equilibrium-like fluctuations. the majority of cell movement was 

associated with transitions between states within this group. In contrast to the “cloud” of states 20 

linked by low-probability, balanced transitions, nearly all of the states receiving high probability 

transitions were either the three “cycle” states, or else fed cycle states with their highest 

probability transitions, with the majority feeding gait state 17. 
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 Focusing on the structure of transitions in this way allowed us to derive a simplified, 

functional representation of stereotypy in gait dynamics as depicted in Fig. 3H. Although gait 

state 1 is not the recipient of any individual high probability transitions, we identified it as the 

unique “start” state from which cells initiate walking. Beginning with this start state, cells 

transition with high probability to gait state 2, also one of the highest frequency transitions and 5 

the first state in the 2à3à17à2 cycle of unbalanced transitions. From this first cycle state, 

cells transition to gait state 3, the second cycle state, with highest probability and frequency and 

then similarly on to gait state 17, the third cycle state. This sequence from the start state through 

the cycle states corresponds to increasing amounts of cirral activity. Although the highest 

probability transitions from the third cycle state to any single gait state return to the first and 10 

second cycle state with equal probability and return to the first cycle state also being unbalanced, 

cells in fact transition to the equilibrium “cloud” of motility-associated states with overall higher 

probability. Return to the cycle states tend to occur through various moderately high probability 

transitions from the motility state cloud or through a restricted set of intermediate states. In 

conjunction with this set of transitions, we also noted unbalanced transitions stemming from the 15 

cycle states to the motility state as well as intermediate state subsequently feeding the next cycle 

state.  

Altogether, the picture that emerges of stereotypical gait dynamics is of biased transitions 

through cycle states before relatively low probability, unbiased transitions associated with 

substantial cell movement before returning to the start or cycle states and beginning the sequence 20 

again. While this general sequence is repeated during walking, there is variability or apparent 

stochasticity in the details of gait state transitions with increasingly variable transitions as any 

given sequence progresses. We propose that the cycle states serve to establish configurations of 

cirri necessary for cells to later transition to between states from which forward progress of the 
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cell is generated. Many state transitions along any instance of the stereotyped sequence are 

unbiased; however, biased, high probability transitions, presumably resulting from active cellular 

control, give temporal irreversibility to the sequence. 

The microtubule fiber system of Euplotes mediates gait coordination 

 What physical machinery could embody the information processing required to generate 5 

the stochastic cyclic state transitions seen during Euplotes’ walking? We reasoned that there 

must be some form of coupling or communication between cirri or feedback between gait state 

and cirral dynamics. Since the early 1900s , the role of the system of cytoskeletal fibers 

associated with cirri as conduits of information between cirri during cellular locomotion, 

supported by microsurgical experiments, has been a key hypothesized mechanism of gait 10 

coordination (76, 77). We wondered whether the structure of the cytoskeletal fiber system 

associated with cirri (Fig. 4A) could give some insight into how cirri might be coordinated. 

 We reconstructed in 3D the tubulin-based fiber system of Euplotes associated with cirri 

and lying just beneath the cell cortex (38, 41, 42). Upon inspection of our confocal 

reconstructions of SiR-tubulin labeled cells (Fig. 4A, Fig. S6), we noted the presence of two 15 

morphologically distinct classes of fibers, one thicker, linear class and the other thinner, splayed, 

and less linear, consistent with previous observations (Fig. 1C, (38, 41, 42)). Additionally, we 

observed a group of thick linear fibers associated with some of the frontal cirri, which to our 

knowledge has not been previously reported. Fibers emanate from the base of all cirri, appear to 

intersect one another, and also connect to the cortex of the cell at various points. Some cirri were 20 

found to be associated with only thick fibers, while others have both or only thin fibers. Based on 

apparent fiber intersections and convergences, we found the fiber system forms a continuous 

network between all cirri, with the fibers associated with the base of each cirrus intersecting the 

fiber system of at least one other cirrus (Fig. 4A, B).  
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Contrary to the long-standing standing hypothesis from the literature (76), the functional 

modules (groups of co-varying cirri) identified in our dynamical analysis were not exclusively 

linked by dense fiber intersections (Fig. 4A, B) (38, 42, 76). In fact, connections between cirri 

are not generally associated with any statistically significant difference in mutual information 

(defined in terms of the information that the activation state of one cirrus has concerning the 5 

other) compared to unlinked pairs of cirri (p=0.14 by Wilcoxon rank sum test, Fig. 4C). 

However, information flow became apparent when fiber-fiber links were grouped by type (i.e. 

thick to thick fiber, thick to thin fiber, or thin to thin fiber). Under this grouping, we found that 

pairs of cirri associated with only thick to thick fiber and only thin to thin fiber links have 

increased mutual information compared to those without links (Fig. S7). Interestingly, we found 10 

that cirri nearby one another and connected by fibers to similar regions of the cell cortex shared 

the most mutual information (Fig. 2I, 3C, 4D, E), suggesting that if the fibers play a role in cirral 

coordination, coupling may also be mediated by mechanisms involving the cirrus and fiber-

cortex interface. Cirri d, e, h, i, for example, share very little mutual information with any of the 

other cirri, and fibers emanating from the base of these cirri contact the cell cortex and other 15 

fibers at various unique points. On the other hand, cirri g and f, which share more mutual 

information than any other pair, are associated with both thick and thin fibers terminating at 

similar regions of the cell cortex. Indeed, distances between pairs of cirri and cross nearest-

neighbor distance (78) between paired sets of cirrus-cortex contact points both show significant 

Spearman correlations (-0.49, p<0.001 and -0.62, p<0.001 respectively) to mutual information 20 

(Fig. 4D, E). These correlations indicate that mutual information between pairs of cirri tends to 

increase with proximity and also tends to increase with similarity between fiber-cortex contact 

locations. Thus, the cirri with the highest mutual information are those that are close together 

with similar fiber-cortex connections (Fig. 4D-F).  
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Together, these observations suggest a mechanism of mechanical coordination in which 

microtubule bundles allow groups of cirri to influence successive behavior of other groups of 

cilia. We sought to test this hypothesized mechanism by perturbing the fiber system using drug 

treatments. We observed that nocodazole, a drug that blocks the polymerization of microtubules, 

affected walking motility, causing cells to walk along more compact trajectories due to increased 5 

turning (Fig. 4G, H, Movie S3, S4) in a manner reminiscent of altered walking due to 

microdissection of fibers (76). Quantifying this effect from video microscopy of cells under 

darkfield illumination in terms of a scaled path length defined as the total integrated path length 

walked by cells scaled by the maximum radial distance traversed, where a decrease in linear runs 

decreases this scaled path length, we found that nocodazole significantly decreased the scaled 10 

path length of cells (Fig. 4I) compared to controls. Next, we checked whether nocodazole 

treatment specifically affected the fiber system. By analyzing 3D reconstructions of confocal 

images of SiR-tubulin labeled cells, we found that fiber length significantly decreased compared 

to controls in cells where microtubule polymerization was disrupted by nocodazole (Fig. 4J-L). 

Further, we were unable to detect the presence of thin fibers in four out of seven nocodazole 15 

treated cells used for fiber analysis. Of the three cells with detectable thin fibers, we never 

observed connections between fibers associated with cirri a, b, and c and any other fibers. 

Additionally, we did not observe any thin fibers making distal cortical contacts. We did note, 

however, that when thin fibers were visible, connections appeared to be the same as those in Fig. 

4A and B. We then investigated how cirral dynamics were affected. Following the gait 20 

annotation procedure detailed previously, we characterized the walking dynamics of 6 

nocodazole treated cells for a total of 1133 timepoints. Of those timepoints, 681 corresponded to 

cirral configurations never observed in untreated cells with a total of 391 new unique 

configurations. Projecting these new configurations onto the NMF space we obtained previously, 
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however, revealed that most of the cirral configurations in nocodazole treated cells were near or 

within the clusters corresponding to the gait states we obtained from untreated cells (Fig. S8A). 

This allowed us to map new cirral configurations onto the gait states (see Methods for details). 

We did note that while close to the original gait states, new cirral configurations tended to skew 

towards more active cirri, and we also noted the presence of a new cluster involving movement 5 

in all or nearly all cirri, to which we assigned a new gait state (Fig. S8A). Consistent with this 

bias toward increased cirral activity, we also found that mutual information between cirri was 

higher in general, with many pairs of cirri sharing higher mutual information than the highest 

values obtain in untreated cells (Fig. S8B). This increase in cirral activity and correlations is 

consistent with the fibers playing a role in conveying inhibitory information during unperturbed 10 

walking. 

Finally, we investigated how the dynamics of gait state transitions were affected. 

Following our previous analysis, we evaluated gait state transitions for the presence of broken 

detailed balance, separating state transitions into balanced and unbalanced transitions and found 

that the structure of state transitions differed greatly from that of unperturbed cells. Although 15 

some gait state such as 1, 2, and 17 were involved in high frequency transitions in both 

conditions, gait state transitions of cells with perturbed fiber systems exhibited much less broken 

detailed balance, including the loss of the unbalanced, cyclic transitions (Fig. S8C). Figure 4M 

summarizes the change in the structure of gait state transitions including changes in broken 

detailed balance, reduction in transitions toward the states previously involved in cyclic 20 

transitions, and the reduction in the occupancy of states associated with the cloud of states 

involved in substantial cell movement, with only 10 of the original 21 cloud states sampled. We 

also noted that many of the new highest probability transitions feed gait state 18 (Fig. 4M, S8D), 

which involves nearly exclusive activity in cirri f and g located close to one another at the edge 
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of the cell. A persistent bias toward activation of these cirri, which are farthest from the central 

axis of the cell, may in part explain the increase in turning in trajectories. Taken together, these 

results are consistent with our hypothesis that the fiber system mechanically mediates gait 

coordination. Further, these results provide additional evidence that proper, active coordination 

of cirral dynamics and emergent gait states and gait state transitions is required for proper 5 

cellular walking. 

Discussion 

Faced with the challenge of accounting for the emergence of apparently sophisticated 

cellular behavior, the directed yet seemingly disordered gait of walking Euplotes, we 

conceptualized the cell as a finite state machine to illuminate underlying principles and 10 

mechanisms. Traditionally, studies of computational processes performed by cells have focused 

primarily on combinatorial logic, where the output of a computational process depends only on 

the current input, performed by networks of molecules in cells (25, 31–33). We have focused on 

sequential logic, where outputs depend on the system state as well, an equally important aspect 

of the theory of computation with notable yet less developed representation in studies of cellular 15 

and sub-cellular dynamics (16, 20, 79). Automata theory, which includes finite state machine 

models and necessarily involves sequential logic, provides tools for understanding structure and 

stereotypy in transitions between dynamical states, features that are increasingly appreciated in 

the behavior of eukaryotic cells. Our approach, leveraging dimensionality reduction to identify 

dynamical states, revealed modularity in cellular dynamics associated with structural modularity 20 

of the cell (Fig. 2, 4) in addition to cyclic patterns of sequential dynamical activity (Fig. 3). 

Although there are examples of locomotion reminiscent of the stochastic, non-

equilibrium gait dynamics of Euplotes, such as gait switching in Kangaroo rats (51) or, most 

saliently, gait switching in an octoflagellate (5) and motility in cultured mammalian cells (44), 
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walking locomotion in Euplotes represents a departure from many of the best studied appendage-

based locomotor systems. For example, limbed locomotion in animals tends to proceed by highly 

stereotyped, determinate patterns of activity (58, 59), and many small, aquatic animals exhibit 

periodic movements of appendages, often cilia, during locomotion (7, 60, 80). Many forms of 

unicellular locomotion involve such dynamics as well including in sperm cells (81), diverse 5 

flagellates with various numbers of flagella (60), and ciliates (60, 82, 83). Even in cases where 

cellular locomotion involves fundamentally stochastic dynamics such as in run-and-tumble 

motility in E. coli (12) or analogous behaviors observed in protists (11, 84–86), motility can be 

described by equilibrium processes (5), in contrast to the non-equilibrium character of the gait of 

Euplotes. We propose that broken detailed balance in the gait of Euplotes indicates active 10 

coordination of motility processes. 

Here, broken detailed balance in gait state transitions of Euplotes revealed cyclic activity, 

characterized by transitions into and out of a resting state with a mixture of stereotypy and 

variability in the intervening steps, in the gait of a single cell (Fig. 3, 4). To explain how these 

dynamics give rise to directed walking, we propose a mechanism in which biased, actively 15 

controlled cyclic transitions serve to establish strain, effectively storing stress, in certain cirri, 

and the spontaneous release of these cirri from the substrate, during a series of unbiased gait state 

transitions, allows the cell to move forward. The cloud of unbiased transitions associated with 

substantial cellular movement is consistent with motility generation not depending on the precise 

order in which the strained cirri are released from the substrate. Return to the cycle states then 20 

are necessary to establish this process anew by winding up the system for continued, proper cell 

movement. Disruption in this resetting may lead to defects in walking such as we observed with 

the loss of the cycle states in irregularly walking cells with disrupted fiber systems, which 

appeared unable to consistently maintain linear trajectories (Fig. 4G-M, Movie S4). We find 
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additional experimental support for our proposed mechanism in previously reported observations 

of cyclic velocity fluctuations in the trajectories of walking Euplotes (36). 

Finally, we argue that subcellular processes must be involved in actively coordinating 

cirri in order to accomplish the observed stereotypy in biased sequential activity. Our analysis of 

and results of experiments perturbing the tubulin-based cytoskeletal fiber system are consistent 5 

with its role in mechanically mediating communication both among cirri and between cirri and 

cell cortex (Fig. 4). We conjecture that movement of cirri relative to one another can establish 

tension in the fiber system and that the tension state of fibers associated with each cirrus may 

then modulate cirral activity in a manner reminiscent of basal coupling in flagellates (22). 

Changes in fiber length, as observed under nocodazole treatment, change the relative positions of 10 

cirri, which could lead to different distributions of tension and thereby induce the altered pattern 

of state transitions and associated walking defects. Although the details of such a mechanism 

remain to be tested, our results are consistent with the fibers system playing an active role in gait 

coordination. Thus, by combining information processing to properly dictate patterns of cirral 

activity and the mechanical actions of cirral movement, walking Euplotes embodies the 15 

sequential computation of a finite state machine. Furthermore, our approach to understanding a 

complex cellular behavior, grounded in theory of computation, allowed us to derive mechanistic 

insight from observational and perturbative experiments. 

Among the domains of life, eukaryotes uniquely display remarkable complexity and 

diversity in cellular behavior (87). Our approach, grounded in finite state machine analysis, has 20 

revealed modularity and stereotypy underlying complex cellular behavior, implicating a 

machine-like process. Our results suggest that integrating approaches from theoretical computer 

science, non-equilibrium statistical physics, and cell biology stands to shed light on the 

regulation of cellular behavior in eukaryotes more broadly. By revealing principles of cellular 
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behavior, the line of research established here stands to advance our ability to predict and even 

one day engineer cellular behavior across diverse eukaryotic systems. 
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Figures: 

 

Fig. 1. Euplotes exhibits highly polarized, complex cellular architecture and walks 

across surfaces using microtubule-based organelles called cirri, some of which are 

physically linked. (A) A single Euplotes eurystomus cell in profile displays its ventral cirri, 5 

which are used for walking locomotion across surfaces (arrowhead indicates a single cirrus 

stretching out from the cell). Scale bar is 10 µm. (B) A drawing of a Euplotes cell, viewed from 

the ventral surface, highlighting the complex, asymmetric structure of the cell. Notable features 

include the cirri (ci) and the membranellar band (m), wrapping from the top of the cell to the 

center, which is used to generate a feeding current to draw in prey items. Drawing adapted and 10 

obtained from Wikimedia Commons, from original source (101). (C) A drawing of a Euplotes 

cell, highlighting the fiber system associated with the cirri, historically referred to as the 

neuromotor apparatus. Drawing adapted from (102).  

A B C

ci

m

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 17, 2021. ; https://doi.org/10.1101/2021.02.26.433123doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.26.433123


 

30 
 

 

    a   b   c   d   e   f   g   h    i    j   k    l   m  n
t1 [0   0   0   0   0   0   0   0   0   0   0   0   0   0]
t2 [1   0   1   0   0   1   0   0   0   0   0   0   0   0]
     . . .
tn [0   1   1   0   0   1   0   0   0   1   0   0   0   1]

0 s 0.05 s 0.75 s

0

30

60

0 30 60 90 120 150 180

Y
 P

os
iti

on
 (µ

m
)

X Position (µm)

a
b

cd
e

fg

h

i

j
k

l
m

n

a

mn
l
k
j
i
h
g
f
e
d
c
b

A

B C

D

C
irr

us

Cirrus

0 s 1 s 3 s2 s

Ti
m

e

E

F

G

H I

0

1

b

d

f

h

j

l

n

0 0.4 0.8 a b c d e f g h i j l m nk
a
b
c
d
e
f
g
h
i
j

l
m
n

k

0.1

0

0.08

0.06

0.04

0.02

J

0

1

2
1
0 1 0

0
0

1 2

1

0
1

1

0 2

2

0

1

2

a b c d e f g h i j l m nk

1
3
5
7
9

31

23

13

27

11

15
17

29

19

25

21

H1

H
2

H
3

H
2

H3

H
1

H
2

H3

Magnitude

C
irr

us

Cirrus

Cirrus

C
irr

us
G

ai
t s

ta
te

M
ut

ua
l I

nf
or

m
at

io
n

1

0

0.8

0.6

0.4

0.2

M
ea

n 
ci

rr
al

 a
ct

iv
ity

 

H1

H3

H2

a

c

e

g

i

k

m

2

H
1

A’ A’’

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 17, 2021. ; https://doi.org/10.1101/2021.02.26.433123doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.26.433123


 

31 
 

Fig. 2. The gait of Euplotes can be described in a discrete, reduced state space with 

gait states corresponding to identifiable patterns of cirral activity. (A-A’’), The movements 

of cirri during walking locomotion are clearly visible by brightfield microscopy by focusing on a 

plane at the surface of the coverslip on which cells are walking. Three snapshots depict different 

time points during a single walking trajectory, and white arrowheads indicate cirri. In the panels 5 

from left to right, the cirrus indicated by the arrowhead on the left is stationary, stationary, and 

then moving, and the cirrus indicated by the arrowhead on the right is stationary, moving, and 

then stationary. Scale bar is 15 µm. (B) The trajectory of a cell during a single recorded 

trajectory as the cell walked across a coverslip from left to right. The cell position was manually 

tracked in each frame. (C) The scheme for encoding cirral dynamics during walking involved 10 

labeling each of the 14 distinguishable ventral cirri (a-n), and recording cirral activity in each 

frame, corresponding to timepoints (t1,...,tn), of recordings of walking cells as a 14-bit binary 

vector. Each entry in each vector is given a value of either 0 if the cirrus is not moving and in 

contact with the coverslip or 1 if the cirrus is moving. Scale bar is 15 µm. (D) Representative 

visualization of cirral dynamics for a single trajectory of a walking cell. These dynamics 15 

correspond to the walking trajectory in (B). Each row corresponds to a cirrus and each column is 

a single video frame. White denotes cirral activity, a value of 1, in the vector encoding of 

dynamics from (C). Note the dynamical complexity and discrete, stepping-like nature of cirral 

movements. (E-G) Three roughly orthogonal views of a plot displays the structure of all 

recorded cirral dynamics encoded as in Figure 2C from 13 cells over 2343 timepoints in a 20 

reduced state space obtained by non-negative matrix factorization (NMF). Axes correspond to 

the components of the NMF (H1, H2, H3), and each point is a single timepoint. Randomized 

colors highlight the 32 clusters identified using the density-based spatial clustering of 

applications with noise (DBSCAN) algorithm (65). We refer to these clusters as gait states, and 
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they correspond to unique configurations of cirral activity during walking locomotion (see (F)). 

(H) A plot of the magnitudes associated with each cirrus corresponding to the components of the 

NMF of cirral dynamics shows distinct contributions from spatially distinct groups of cirri. 

Component H1, for example, is associated with activity in cirri a, b, and c. The tracing of a cell 

including the position of cirri has the same color map as the plot above and shows the grouping 5 

of the cirri corresponding to each component. (I) A heatmap of mutual information between all 

pairs of cirri shows that correlations in cirral activity correspond to the NMF components 

displayed in (D). For example, cirri a, b, and c share mutual information with one another and 

are the cirri contributing to component H1. (J) A heatmap representation of the cirral activity 

associated with each of the 32 gait states. Values for each cirrus are the mean over all instances 10 

of the gait state. Note that each gait state has a unique signature of cirral activity. 
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Fig. 3. Euplotes walks with a cyclic stochastic gait exhibiting broken detailed 

balance, stereotypy, and state machine-like dynamics. All data are pooled from the walking 

trajectories of 13 different cells over 2343 timepoints and 1423 pairwise gait state transitions. 

(A) A plot of the mean net change in cirral activity versus the net scaled cell velocity associated 

with all transitions between the 32 gait states identified in Fig. 3 shows that the change in 5 

number of active cirri is not strongly correlated with cell velocity (R2=0.03). Cell velocities were 

obtained from manually tracked walking trajectories and then scaled by dividing frame to frame 

displacements for each trajectory by the length of the cell being tracked and also dividing by the 

average frequency of cirral inactivity. Scaling provided a non-dimensional velocity scaled by 

natural units of the system. Note that at low Reynolds number, velocity should be proportional to 10 

force (43), so this plot also reflects the net walking force generated by the cell. Net change in 

cirral activity was computed using the data presented in Fig. 3F. Note that the largest velocities 

are associated with small negative and small to moderate positive net changes in cirral activity. 

(B) The transition matrix of all gait state transitions, with rows representing the starting state and 

columns indicating the ending state, exhibits broken detailed balance. Rates were estimated by 15 

dividing the total number of observed transitions between each state pair and dividing by the 

total time observed. Under detailed balance or equilibrium conditions, transitions from one state 

to another should be balanced by reverse transitions. Lack of this kind of reversibility, as seen by 

the lack of symmetry of the heatmap across the diagonal, indicates broken detailed balance and 

non-equilibrium dynamics. (C) A directed graph representation of all gait state transitions. Nodes 20 

correspond to the 32 gait states, and node sizes are scaled by the proportion of total time cells 

spent in each state. Directed edges are represented by arrows between nodes and signify state 

transitions. The size of the arrows is scaled by transition rates as in (B). Edge color represents 

scaled cell velocity as in (A), with cool colors (more cyan) representing lower velocity, and 
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warmer colors (more magenta) representing higher velocity. (D) A subset of transitions 

visualized as in c shows the restricted and relatively high frequency nature of unbalanced, non-

equilibrium-like transitions. Only transitions that were observed to happen more than one time 

and exhibiting a significant difference between forward and reverse transitions (p<0.05 by 

binomial test, see Methods for more details) are displayed. (E) A subset of transitions, similarly 5 

to panel E, except that only the balanced transitions, lacking a significant difference between 

forward and reverse transitions (p<0.05 by binomial test) are displayed, also show a complex and 

widespread structure, this time of balanced, equilibrium transitions. Note that the majority of 

transitions associated with high cell velocity involve equilibrium-like dynamics. (F) Examples 

illustrating the spatial organization of cirral activity corresponding to gait states. Some states, 10 

such as 7, correspond to activity in spatially discrete groups of cirri, while others, such as 17, 

correspond to cirral activity across the cell. The gait states displayed here are those involved in 

unbalanced transitions. (G) A heatmap of transition probabilities between states, showing only 

the most probable transitions from a given state with all others set to zero, shows distinct 

structure. In cases were multiple state transitions from a state were tied for the highest 15 

probability, all of these transitions are displayed. Fewer than half of the total states are recipients 

of multiple high probability transitions, and many states are the recipients of no high probability 

transitions. (H) A representation of functional states and transitions between them highlights the 

machine-like nature of the gait of Euplotes. Gait states are represented as circles with numerical 

labels. Blue circles represent states that are both recipients and sources of unbalanced transitions 20 

as identified in (D) and constitute the three cycle states. Red circles represent states that are 

recipients but not sources of unbalanced transitions as identified in (D). Black circles correspond 

to gait states that are associated only with balanced transitions as in (E). States receiving no more 

than one unique high probability transitions from states with only a single highest as identified in 
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(G) were grouped together into a compound state represented by the dark gray blob. The blue 

background behind states 4, 16, 18, 26, and 28 indicates that these states all share the same 

highest probability transitions between states identified in this panel, and thus, the group 

constitutes a single compound functional state. Arrows represent the highest probability 

transitions between the states, including compound states composed of multiple gait states as 5 

identified in Fig. 2 and 3 (dark gray blob and blue background). Gait state 1 is also depicted, as it 

is the state in which cells spent the most time over all walking trajectories and also is uniquely 

the state from which cells begin walking. Cells also frequently return to the state during walking. 

Further, transitions from gait state 2 from gait state 1 constitute the single highest frequency 

transition. Together, all identified states in this panel constitute functional states. Arrows 10 

represent the most probable transitions between functional states, and all unbalanced transitions 

are also represented with size scaled by their proportional probability compared to all other 

transitions emanating from the source functional state. Cartoons are a walking cell in profile with 

cirri in a configuration representative of the corresponding functional state. Labels refer to the 

apparent functional role of states and their associated transitions. Beginning from gait state 1, the 15 

resting/start state, cells are most likely to follow transitions from gait state 2 to 3 to 17 at which 

point cells are likely to enter the functional state associated with substantial cell movement 

involving variable balanced transitions between a number of gait states. Transitions are then 

likely to lead back toward the cycle states. Note that while this representation of gait dynamics 

highlights the most probable transitions, substantial variability, primarily involving reversible 20 

transitions, occurs during walking trajectories.   
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Fig. 4. The complex, interconnected fiber system of Euplotes mediates gait 

coordination. (A) The SiR-tubulin labeled cell (faint, dark blue) was imaged by confocal 

microscopy, and a 3D reconstruction as obtained from serial confocal slices. Fibers were 

manually traced in each slice using TrakEM2 in FIJI. Two morphologically distinct classes of 

fibers were observed and are indicated as follows: thick, linear fibers are cyan and thinner, 5 

filamentous fibers are magenta (see Fig. S6 for raw image data). Fibers emanate from the base of 

each cirrus and form a connected network between all cirri. The base of each cirrus is indicated 

by corresponding letters (as in Fig. 2c). Gray shading indicates the dynamical groups identified 

by dimensionality reduction and follows the same color scheme as in Fig. 3d. Scale bar is 10 µm. 

(B) A graph representation of fiber-fiber connections illustrates the complex and interconnected 10 

nature of cirrus associated fiber topology. Nodes correspond to the cirri to which each fiber 

system is associated, and edges indicate connections between fiber systems. Colors of nodes 

indicate the same groups as in (A), and colors of edges indicate the types of fibers connecting to 

one another, cyan for thick fiber connections, magenta for thin fiber connections, and purple for 

thick to thin fiber connections. (C) Pairs of cirri that are linked by fiber-fiber contacts show no 15 

statistically significant difference in mutual information compared to those lacking fiber-fiber 

contacts. The plot displays mutual information between all pairs of cirri grouped by the absence 

(Not linked) or presence (Linked) of associated fiber-fiber connections. Statistical significance 

was evaluated by the Wilcoxon rank sum test. Note that when pairs of cirri were grouped by 

fiber-fiber connection type, we did observe an increase in mutual information for cirri associated 20 

with only thin fiber-fiber connection and only thick fiber-fiber connections compared to those 

lacking fiber-fiber connections (see Fig. S6). (D) A plot of mutual information as a function of 

inter-cirrus distance displays negative correlation, with a Spearman correlation coefficient of -

0.49 (p<0.001). Plotted values are defined with respect to pairs of cirri. (E) A plot of mutual 
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information as a function of fiber-cortex contact distance grouped by fiber type similarity and 

lack thereof displays negative correlation, with a Spearman correlation coefficient of -0.62 

(p<0.001) for pairs of cirri with similar fiber types and no significant correlation for those with 

dissimilar fiber types. Similarity of fiber types is defined in terms of sharing at least some fiber 

types as defined in (A). Fiber-cortex contact difference is measured by the mean cross nearest 5 

neighbor distance (see Methods) for all fiber-cortex contact points associated with each cirrus. 

The negative correlation values from the data plotted in (D) and (E) indicate that cirri that are 

closer to one another and also cirri with fiber-cortex contacts in nearby regions of the cell tend to 

have higher mutual information, and indeed cirri that are both close to one another and with 

similar patterns of fiber-cortex contacts display the highest mutual information. (F) A plot of 10 

fiber-cortex contact difference versus inter-cirrus difference (as in (D) and (E)) illustrates that 

nearby cirri tend to have similar associated fiber-cortex contacts, highlighting that nearby cirri 

with similar fiber-cortex contacts share the most mutual information. (G, H) Representative cell 

motility trajectories of cells imaged under darkfield illumination and tracked using the 

TrackMate plugin in FIJI (90) in control (G) and nocodazole treated (H) cells highlight the 15 

increased turning leading to curved trajectories in cells treated with the inhibitor of microtubule 

polymerization nocodazole. Different colors represent the trajectories of different cells. Cells 

were imaged by dark field microscopy and images were processed using FIJI. Tracking was 

performed using the TrackMate FIJI plugin (90). Scale bar is 500 µm. (I) Nocodazole affects cell 

motility in a dose dependent manner. Motility was quantified by the scaled path length, which is 20 

the total integrated distance walked by a cell scaled by the maximum distance the cell travelled 

from its starting point. This scaled path length decreases with a decrease in long, straight 

segments of trajectories corresponding to normal cell walking. Scaled path length decreased with 

increased nocodazole concentration, becoming significantly less than controls by 0.2 µM 
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nocodazole. Note that at 2 µM nocodazole, cells were often observed to swim instead of walk, 

which may account for the lack of decrease in scaled path length compared to 0.2 µM treatment. 

The trajectories of at least 20 cells were analyzed for each condition. The black bars are median 

values. The p-values were calculated by Wilcoxon rank-sum test. (J, K) Representative images 

illustrating the effect of the inhibition of microtubule polymerization by nocodazole on the fiber 5 

system and approach to quantifying this effect. Images are maximum intensity projections of 

confocal z-stack images of cells labeled by SiR-tubulin. Scale bar is 20 µm. (L) A plot showing 

that nocodazole treatment shortens fibers compared to controls. Scaled fiber length was 

measured by dividing the length of the longest fiber by the length of the entire cell. Nine cells 

were analyzed for each condition. The black bars are median values. The p-value was calculated 10 

by Wilcoxon rank-sum test. (M) A representation of the changes in the nature and organization 

of functional states as well as transitions between them highlights the effects of nocodazole 

treatment. This panel is partially adapted from Fig. 3H and was produced by following the same 

analysis procedure. Any functional states and transitions depicted in Fig. 3H no longer observed 

under nocodazole treatment appear faded. Arrows that are not faded represent the new highest 15 

probability transitions associated with the states. Outer colors of the nodes corresponding to the 

numbered gait states denote the type or absence of broken detailed balance associated with the 

gait state for untreated cells while the core color represents that for the treated cells. As in Fig. 

3H, black denotes the lack of unbalanced transitions, red denotes the state is only a source or 

only a recipient of unbalanced transitions, while blue denotes states which are both sources and 20 

recipients of unbalanced transitions. Note the loss of the cycle states as well as the functional 

states directing return to the cycle states, the emergence of the high cirral activity state involving 

activity in nearly all cirri, the reduction in gait states associated with the cloud of states of 

substantial cell movement (indicated by the reduction in the size of the black blob), and the 
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emergence of many high probability transitions to gait state 18.  
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