
Bioptim, a Python framework for Musculoskeletal Optimal Control in
Biomechanics

Benjamin Michauda,*,†, François Baillya,†, Eve Charbonneaua, Amedeo Cegliaa, Léa Sancheza and Mickael Begona

Abstract— Musculoskeletal simulations are useful in
biomechanics to investigate the causes of movement disorder,
to estimate non-measurable physiological quantities or to
study the optimality of human movement. We introduce
Bioptim, an easy-to-use Python framework for biomechanical
optimal control, handling musculoskeletal models. Relying
on algorithmic differentiation and the multiple shooting
formulation, Bioptim interfaces nonlinear solvers to quickly
provide dynamically consistent optimal solutions. The software
is both computationally efficient (C++ core) and easily
customizable, thanks to its Python interface. It allows to quickly
define a variety of biomechanical problems such as motion
tracking/prediction, muscle-driven simulations, parameters
optimization, multiphase problems, etc. It is also intended
for real-time applications such as moving horizon estimation
and model predictive control. Six contrasting examples are
presented, comprising various models, dynamics, objective
functions and constraints. They include data-driven simulations
(i.e., a multiphase muscle driven gait cycle and an upper-limb
real-time moving horizon estimation of muscle forces) and
predictive simulations (i.e., a muscle-driven pointing task, a
twisting somersault with a quaternion-based model, a position
controller using external forces, and a multiphase torque-driven
maximum-height jump motion).

Keywords – Biomechanics, Optimization, Optimal
control, Musculoskeletal simulation, Software

I. INTRODUCTION

Biomechanics researchers rely on numerical simulations
of motion to gain understanding on a variety of scientific
topics such as the physiological causes of movement disorders
and their consequences on health [1], the estimation of
non-measurable physiological quantities (e.g., muscle forces
[2]) and the optimality of human movement [3]. The
musculoskeletal models used in these simulations generally
have a large number of degrees of freedom and they are
governed by several ordinary differential equations (ODEs)
which mainly describe multibody and muscle activation
dynamics. The complexity of these systems has led scientists
to formulate their simulations as optimal control problems
(OCP), relying on efficient non-linear optimization software
to find trajectories that fulfill a desired task while enforcing
the system dynamics and minimizing a cost (e.g. motion
duration, energy expenditure, matching experimental data,
etc.). Up to very recently, there was no off-the-shelf software
available to the community to quickly formulate and solve

† These authors have contributed equally to this work and share first
authorship.
a Laboratoire de Simulation et Modélisation du Mouvement, Faculté de
Médecine, Université de Montréal, Laval, QC, Canada
* benjamin.michaud@umontreal.ca

Fig. 1: Bioptim dependencies flowchart. The red-boxed
software are developed by the S2M team. The Bioptim part
is further detailed in Fig. 2.

such musculoskeletal OCPs [4]. Consequently, researchers had
to develop their own solutions, with little or no dissemination
to the community, limiting synergies between researchers.

As a result, many approaches coexist to formulate and
solve OCPs in the biomechanical literature. The formulation,
also called discretization, consists in turning a continuous
trajectory optimization problem into a generic discrete non-
linear program (NLP) that is solved using a dedicated
algorithm. The main family of so-called direct transcription
methods comes from numerical optimal control. They consist
in straightforwardly choosing the state and/or the control as
optimization variables at a given number of points along
the trajectory and they rely on the integration of the system
dynamics between these points.

For instance, the direct collocation method has shown its
efficiency in some studies investigating human motion [5],
[6]. It consists in approximating the integration of the system
dynamics using polynomials that describe the state and control
trajectories. Its main advantages are that it leads to very
sparse NLPs, that knowledge about the state trajectory can be
used in the initialization, and that it handles unstable systems
well. Its major disadvantage is that adaptive integration error
control implies regridding the whole problem and thus changes
the NLP dimensions [7]. Direct multiple shooting is another
direct method that was also applied with success in a lot
of biomechanics [8], [9], [10], [11] and robotics [7], [12],
[13] studies. Its advantages are mostly the same as for direct

1

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 3, 2021. ; https://doi.org/10.1101/2021.02.27.432868doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.27.432868
http://creativecommons.org/licenses/by/4.0/

collocation in addition to combining integration error control
with fixed NLP dimensions, as it relies on possibly adaptive
ODE solvers to integrate the system dynamics. Besides direct
methods, other choices can be made, as in [14], [15], where
the optimization variables are instants at which a switch in
the motor strategy occurs, using polynomials function (4th,
5th order) in-between, or in [16], [17], where the optimization
variables are the coefficients of fourth order polynomial
approximations of the states, with linking conditions to enforce
the continuity of the controls. These last approaches are less
generic than the direct methods as they either require a prior
knowledge about the state and control trajectories. Most of the
time, when investigating complex biomechanics issues, we do
not have this information.

Concerning the non-linear solver, a variety of software
exist and have been used to solve transcribed musculoskeletal
NLPs. They can use different heuristics: interior point
methods (Ipopt, [18]) or sequential quadratic programming
(snopt [19], ACADOS [20]), but they are all gradient based.
Therefore, derivatives of the NLP cost function and constraints
are required to perform optimization. These derivatives
can be obtained by finite differences (often implemented
but inaccurate thus comprising convergence) or computed
exactly using automatic differentiation (requiring to write all
dependencies of the software in symbolic variables), using,
e.g., CasADi [21].

In order to promote the use of musculoskeletal optimal
control among biomechanics researcher, we identified a strong
need for a dedicated tool, as shown by the recently launched
OpenSim Moco [22]. The biomechanics community being
mainly composed of software users, such a tool should request
a flexible user interface written in a widely used high-level and
if possible open-source language (e.g. Python) with a low-level
core (e.g. C++) for efficiency.

To develop such a software, four interrelated components
are essential in our opinion: i) a musculoskeletal modeling
software, with a visualization module (multibody kinematics
and dynamics, muscle dynamics, etc.), ii) a method for
automatic differentiation, iii) a discretization approach, and
iv) one or several nonlinear programming (NLP) solvers.
General-purpose optimal control software (e.g. GPOPS-II
[23], Muscod-II [24], [25], Acado [26]]) address ii) to iv) but
they need to be interfaced with a musculoskeletal modeling
module and they do not provide any built-in biomechanics
features (physiological cost functions, kinematic constraints,
etc.). In that sense, the aforementioned OpenSim Moco,
is a welcome initiative that draws its strength from its
integration with the widely used OpenSim. However, it
faces the following limitations: it uses finite differences to
avoid the complexity of adapting the OpenSim codebase to
support automatic differentiation, it uses direct collocation
as transcription method, preventing the use of adaptive ODE
solvers and it is not as flexible as required by the community,
since it requires the user to develop new features, such as
new objective functions, in C++.

Fig. 2: Bioptim design flowchart. Red boxes correspond to
objects that must be filled in by the user. Red-dashed boxes
correspond to pre-implemented objects already available to the
users. ⊗ stands for easily customizable objects.

The objective of the present paper is to introduce Bioptim1,
an open source optimal control software dedicated to
musculoskeletal biomechanics. Bioptim is based on C++ code
for computational efficiency but the user interface is written in
Python for flexibility and ease-of-use. The OCP transcription
uses direct multiple shooting to preserve the possibility of
using arbitrarily accurate ODE solvers for the integration,
which is fully parallelized for more efficiency. Bioptim’s
core is fully written in CasADi symbolics to benefit from
algorithmic differentiation and to exploit CasADi’s interface
with several non-linear solvers (Ipopt, SNOPT). Moreover,
Bioptim is interfaced with the cutting-edge solver ACADOS,
a recent NLP solver dedicated to direct multiple shooting,
intended for real-time applications. The purpose of Bioptim
is to allow fast and flexible musculoskeletal OCP formulation
and solving by providing a framework with a lot of typical
biomechanics problem already implemented and customizable.

The paper is organized as follows: first, the design and
implementation of Bioptim are described. Next, the versatility
and performances of Bioptim are shown through a variety of
examples available online.

II. IMPLEMENTATION AND DESIGN

A. Implementation and dependencies

Bioptim is the top layer of a series of libraries (Biorbd:
dynamics and MSK modeling; CasADi: automatic
differentiation; Ipopt/ACADOS: optimization; Bioviz:
visualization). Within this software suite, Bioptim’s main
role is to shape the problem to allow its dependencies to

1link – DOI: 10.5281/zenodo.4562883

2

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 3, 2021. ; https://doi.org/10.1101/2021.02.27.432868doi: bioRxiv preprint

https://github.com/pyomeca/bioptim
https://doi.org/10.1101/2021.02.27.432868
http://creativecommons.org/licenses/by/4.0/

communicate efficiently, while providing an intuitive and
flexible interface to the user (Fig. 1). Therefore, it was written
in Python for its flexibility and its widespread use among
researchers. However, all intensive calculations behind the
interface are performed in C/C++, keeping Bioptim both fast
and easy to customize.

B. Design

Bioptim shapes and solves optimal control problems whose
two required entries are a model (.bioMod file) and an OCP.
The model file contains the geometrical characteristics and
the segment inertial parameters as well as optional elements,
namely, the markers, the actuators of the model (muscles and
joint torques possibly with torque/angle/velocity relationships)
as well as bounds on joint kinematics and torques. It also
allows the user to design or import meshes for visualization
purposes. The OCP consists in a combination of nonlinear
problems (NLPs) that allows for the formulation of multi-
staged OCPs. Each NLP has the following attributes: 1) a
dynamics type, 2) an objective function set, 3) a constraint
set, 4) variables bounds, 5) a number of shooting points
and the duration of the problem and 6) initial guesses.
Based on these inputs, Bioptim properly sets up the multiple
shooting transcription of the OCP, with appropriate continuity
constraints (between the shooting nodes and the phases) and
shapes it up to feed the chosen nonlinear solver (Ipopt or
ACADOS). Next, we develop the different attributes of each
NLP:

1) Dynamics: The dynamics defines which variables are
states (x), controls (u) and parameters (p), the latter being
time-independent. Then, it implements the ordinary differential
equation governing the state dynamics:

ẋ = f(x,u,p). (1)

More than 10 dynamics are already implemented in Bioptim,
among which the controls (piecewise constant or linear)
can be muscle excitations, muscle activations and/or joint
torques, the states can be muscle activations and/or joint
kinematics. They can include contact points, external forces,
etc. Even if these dynamics types exhaustively span the current
usages in biomechanics, a custom dynamics type is also pre-
implemented to easily customize problems.

2) Objective function set: In line with the optimal control
formalism, there are two main types of objective functions,
namely Lagrange and Mayer. Lagrange types are running
objectives, integrated over the NLP duration. Mayer types
are time-specific objectives. Classically, they correspond to a
terminal objective, but to be more versatile, they can be defined
at any instant in Bioptim.
Objective functions can depend on any of

the optimization variables, i.e. the controls, the states,
the parameters and the duration of the problem. A lot
of objective function types are already implemented in
Bioptim (> 20), among which tracking / minimizing, on
states / controls / markers / contact forces / problem duration,
etc. Should one go missing, a custom objective type is also
possible to define.

Fig. 3: Snapshots of an optimized activation-driven pointing
task with ACADOS. The arm starts facing upwards in left hand
part of the picture and ends facing downwards in the right hand
part. The marker fixed on the ulna head is depicted in blue
and the scene-fixed target marker is depicted in red. Red lines
show the lines of actions of the muscles.

When declaring the desired list of objective functions for
a given NLP, each objective function type is associated with
a weight, and the user can choose on which components of
the vector variables the objective must apply. If applicable
(for tracking objective functions mainly), the user must also
specify the numerical target of the objective.

3) Constraint set: Classically, constraints are hard penalties
of the optimization problem, i.e., a solution will not
be considered optimal, unless all constraints (equality or
inequality) are met. The Constraint class contains a
variety of implemented constraints. Some of them are specific
functions, commonly useful in biomechanical problems (e.g.
non-slipping contact point, non-linear bounds on torque
depending on the state, etc.), the others have their equivalent
in the ObjectiveFunction class. Should one go missing,
a custom constraint type is also possible to define.

4) Bounds: Essentially, the Bounds are constraints
directly related to the states, the controls and the parameters.
They are useful to define model-related constraints such as
kinematic, torque or muscle excitation / activation limits.

5) Shooting points and problem duration: In direct multiple
shooting, the total duration of the problem is divided into
smaller intervals whose initial values are called shooting
points. In Bioptim, the user is asked to define a number of
shooting points and a problem duration, per phase. Possibly,
the problem duration can be part of the optimization variables,
allowing for, e.g., minimal time formulations.

6) Initial guesses: The user can provide an
InitialGuess for all the optimization variables, at
each shooting point. This feature aims at providing prior
information to the solver. Several InterpolationTypes
are implemented (constant, linear, spline, each point, etc.),
to quickly let the user define the initial guesses. A custom
InterpolationType is also possible to implement.

3

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 3, 2021. ; https://doi.org/10.1101/2021.02.27.432868doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.27.432868
http://creativecommons.org/licenses/by/4.0/

Fig. 4: Snapshots of maximally twisting somersaults driven by shoulder torque actuators and a free base whose rotation is
either expressed by Euler angles (top) or by quaternions (bottom).

III. EXAMPLES

In this section, six applications are presented to illustrate
the versatility of Bioptim and give a practical overview on
how to use its main features. The settings and performances
(convergence time, single shooting integration error, optimized
objective) of each OCP are summarized in Tab. I. When
possible, problems were solved with both Ipopt and ACADOS.
In the following, bold symbols denote vectors and starred ones
(∗) denote reference or tracked quantities.

A. Muscle activation driven pointing task

In this first example, the goal was to achieve a muscle
activation driven pointing task using a 2-DoF arm model with
six muscle elements. In addition to muscle-induced torques,
pure joint torques were added to compensate for the model
weaknesses. The main term (highest weight) of the objective
function (Eq. 2) is a Mayer objective, corresponding to the
pointing tasks at the final node, to superimpose two markers,
the first one (mu) fixed in the ulna system of coordinates and
the second one (m∗

s) fixed in the scene. The three Lagrange
terms were added for control (muscle activation a and joint
torques τ) and state (x) regularization:

J = ω1 ‖mu(T)−m∗
s‖2︸ ︷︷ ︸

TRACK MARKERS∫ T

t=0

‖a‖2︸︷︷︸
MIN ACTIVATION

+ ‖τ‖2︸ ︷︷ ︸
MIN TORQUE

+ ‖x‖2︸ ︷︷ ︸
MIN STATE

dt,
(2)

where T = 2 s is the duration of the motion, and
ω1 = 1e5. The problem was discretized using 50 shooting
nodes with a 5-steps Runge-Kutta-4 (RK4) integration in-
between. The problem was solved using Ipopt (with exact

Hessian computations) and ACADOS (with a Gauss-Newton
approximation of the Hessian) resulting in two very close
solutions. ACADOS was about 50 times faster than Ipopt and
was better at enforcing the continuity constraints (as shown by
the single shooting error in Tab. I). Ipopt however ended up
with a smaller optimized objective (20.8 vs 23.2), leading to a
more optimal solution than ACADOS. Superimposed snapshots
of the optimal motion found with ACADOS are displayed in
Fig. 3. It is worth mentioning that for the purpose of this
illustration, no constraint was given on the shoulder range of
motion to ensure physiological muscle trajectories.

B. Quaternion base twisting somersault

In this example of acrobatic sports biomechanics, the goal
was to maximize the twist rotation (φ) of an 8-DoF model
in a backward somersault. It illustrates Bioptim’s ability to
handle quaternionic representations of rotations. The model
was composed of a 6-DoF root segment and two 1-DoF torque
actuated shoulder joints. Two different numerical descriptions
of the root segment rotations were used: Euler angles and
quaternions. The objective function was as follows:

J =

∫ T

0

ω1φ̇︸︷︷︸
MIN TWIST

+ ω2‖τ‖2︸ ︷︷ ︸
MIN TORQUE

dt, (3)

with ω1 = −1 (resulting in the maximization of the first term)
and ω2 = 10−6, T is the duration of the movement and τ is the
torque control vector. The first term of the objective function
(Eq. 3) corresponds to maximizing the change in twist rotation
and the second term is for control regularization.

The movement lasted for approximately 1 second and
was discretized with 100 shooting nodes, a kinogram is

4

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 3, 2021. ; https://doi.org/10.1101/2021.02.27.432868doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.27.432868
http://creativecommons.org/licenses/by/4.0/

0 20 40 60 80 100

0

50

100

150

0 20 40 60 80 100

0

50

100

150

Fig. 5: Right (top) and left (bottom) arm kinematics of the
twisting avatar for the Euler angles (blues line) and the
quaternion (orange line) representation of the orientation of
the free base.

presented in Fig. 4. The optimal kinematics were different
for the two types of models (Fig. 5) because of the presence
of local minima. However, both models take profits of a
common biomechanical strategy (i.e. tilting the body to bring
closer together the twist axis and the angular momentum
vector) highlighting the equivalence of the two rotation
representations. Euler angles have the advantage to be easily
interpretable, but they suffer from the loss of a DoF at
the gimbal lock (leading to numerical instabilities). The use
of a quaternion-based representation tackles this numerical
stability issue when a joint is free to rotate on a three-
dimensional range of motion. Quaternion’s integration must be
handled with care [11]. Indeed, when representing orientations,
quaternions must be unitary and thus belong to a constrained
manifold (namely, the unit 3-sphere S3). However, classical
numerical integration schemes such as Runge–Kutta methods
treat unit quaternions as if they were arbitrarily defined
in R4. To overcome this challenge, Bioptim performs a
normalization after each Runge–Kutta iteration to project non-
unitary quaternions onto S3.

C. Pendulum on a spring

This example is presented to introduce Bioptim’s ability to
use external forces. The goal was to hold the position of a
1 kg mass hanging on a linear spring attached to the ground.
A 0.2m-long pendulum weighting 10 kg was attached to the
mass and free to rotate in one dimension (Fig. 6). In addition
to the spring force, the mass was actuated by a vertical external
force (e.g., something pulling on it) while the pendulum
rotation was passive. The system therefore comprised two
DoFs, the mass position (qm) and the pendulum angle (qp)
and one control input, the vertical external force pulling on
the mass (τ). The spring force Fs was:

τs = −k ∗ qm, (4)

with k the spring stiffness constant.

Fig. 6: Spring-mass-pendulum model of Ex. III-C.

0 2 4 6 8 10
−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

M
as
s p

os
iti
on

[m
]

0

1

2

3

4

5

Pe
nd

ul
um

 p
os
iti
on

[ra
d]

0 2 4 6 8 10

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

M
as
s −

el
oc

ity
[m

/s
]

Phase Transition

−6

−4

−2

0

2

4

6

Pe
nd

ul
um

 v
el
oc

ity
[ra

d/
s]

0 2 4 6 8 10
Time [s]

05

0

5

10

15

20

25

30

35

M
as

s
or

ce
 a

ct
ua

tio
n

[N
]

0

2

4

6

8

Sp
rin

g
ex

te
rn

al
 o

rc
e

[N
]

PO
SI

TI
ON

S
VE

LO
CI

TI
ES

FO
RC

ES

Fig. 7: Two-phases kinematics of the mass-pendulum-spring
system. Gray dashed lines show the phase transition, blue lines
are related to the mass (position velocity and external force
acting on it), red lines are related to the pendulum (position
and velocity) and the green line depicts the spring force.

5

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 3, 2021. ; https://doi.org/10.1101/2021.02.27.432868doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.27.432868
http://creativecommons.org/licenses/by/4.0/

Fig. 8: Snapshots of a walking gait cycle driven by muscles activation with histogram of muscle activations below. The red
lines represent muscles lines of action and the blue points depict the tracked markers. The activation of the Gluteus Maximus
is the mean of its three parts and the Hamstring is the mean activation of the Semimembranous, Semitendinous and Biceps
Femoris.

The OCP was composed of two phases each lasting for
5 s, with 50 shooting nodes. In the first phase, no objective
function was minimized and τ was constrained to be 0, letting
the mass oscillating freely. Then, in the second phase, a cost
function (Eq. 5) was minimized, to enforce a reference position
q∗m of the mass. This objective function, exclusively composed
of Lagrange terms, was formulated as follows:

J =

∫ T

T/2

(qm − q∗m)2︸ ︷︷ ︸
TRACK STATE

+ ω1 τ2 dt︸ ︷︷ ︸
MIN TORQUE

dt, (5)

with q∗m = −0.5m and ω1 = 10−6 and T is the duration of
the movement. The first term of the objective function (Eq. 5)
acts as a position controller for the mass. The second was
added for control regularization.

During the first phase, the mass is passively oscillating
around its stationary position due to the spring force (Fig. 7).
At the beginning of the second phase, when an additional
external force acts on the mass, it stabilizes around the targeted
position. The standard deviation between the position and
the targeted position is 0.04m. This example highlights the
possibility of using optimal control to find activation patterns
compensating for external passive forces (e.g., ortheses
flexibility, contact surface deformation, interaction between
two models, etc.).

D. Multiphase activation driven walking cycle

This example is presented to introduce Bioptim’s ability
to deal with a multiphase locomotion estimation problem
including muscle actuation and contact forces. The goal was
to estimate muscle activations by tracking markers trajectories
and ground reaction forces and moments. The model was

a 3D leg with 12 DoFs (6-DoF pelvis, 3-DoF hip, 1-DoF
knee and 2-DoF ankle), driven by 19 muscle activations
and residual joint torques to compensate for potential muscle
actuation weaknesses. The gait cycle was defined from the
first heel strike to the end of the swing phase discretized
into 90 shooting intervals. To approximate the natural rolling
of the foot, the stance was divided into three phases (heel,
flatfoot and forefoot contacts) of fixed duration deduced from
experimental force platform data and markers position (0.05,
0.36 and 0.16 s). The swing phase lasted 0.38 s. The interaction
between the ground and the foot was modeled using a four-
contact points model located at the heel and the forefoot (first,
fifth metatarsi and hallux). The optimization problem consisted
in minimizing the errors between predicted (m) and reference
(m∗) markers trajectories, predicted (F , M) and reference
(F∗, M∗) ground reaction forces and moments at all contact
points. A regularization term on muscle activations (a) was
also added (least-activations) as well as a penalization term
on the residual torques (τ):

J =
4∑

i=1

Ñ∫ Ti

Ti−1

ω1(‖m−m∗‖2)︸ ︷︷ ︸
TRACK MARKERS

+ αω2(‖F −F∗‖2)︸ ︷︷ ︸
TRACK FORCES

+ αω3(‖M−M∗‖2)︸ ︷︷ ︸
TRACK MOMENTS

+ ω4‖a‖2︸ ︷︷ ︸
MIN ACTIVATION

+ ‖τ‖2︸ ︷︷ ︸
MIN TORQUE

dt

å
,

(6)

where ω1 = 105, ω2 = ω3 = 10−1, ω4 = 10 are
weighting factors, T0 = 0 and Ti, i ∈ [1, 2, 3, 4], are
the final time of the ith phase. Ground reaction forces and
moments were only tracked during the stance phase, hence
α = 0 during the swing phase and α = 1 otherwise.
Non-slipping (NON SLIPPING) and unilateral contact force

6

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 3, 2021. ; https://doi.org/10.1101/2021.02.27.432868doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.27.432868
http://creativecommons.org/licenses/by/4.0/

Fig. 9: Ex. III-E. Top row - Real-time estimated joint angles (blue), ground-truth joint angles (orange) and tracked noisy joint
angles (green) for a cyclic motion of the arm. Bottom row - Real-time estimated muscle forces (blue) and ground truth muscle
forces (orange) for the same motion. Only four muscles with significative action (peak forces > 15N), on the two selected
DoFs, are shown. Muscle abbreviations stand for (from left to right): Triceps Long head, Deltoid Middle, Infraspinatus, Biceps
Brachial Short head.

(CONTACT FORCE) constraints were added to prevent the foot
from slipping and pulling from the ground. In between phases,
the use of the PhaseTransition.IMPACT state transition
allowed to represent the gain or loss of contact(s) in the
dynamics (e.g., [27] swing phase to heel strike).
Tracking experimental data allowed to reproduce leg motion
during the walking cycle (Fig. 8). The root mean square
tracking error on markers trajectories was 27mm (mean
errors on pelvic and foot markers were 7.5mm and 14.7mm,
respectively). Concerning ground reaction forces tracking, the
root mean square error was 27N. During the stance phase,
Gluteal muscles and Vastus Medialis were mainly activated
during the loading response (10%) and hamstrings during
initial contact (1%) (Fig. 8). These results were similar to
the characteristic average activity patterns of the lower limb
muscles during locomotion described in [28]. The transition
from stance to swing (60% - 70%) was highly actuated by
hip flexors (Iliopsoas and Rectus Femoris) and leg muscles
(Gastocnemius Medialis and Tibialis Anterior).

E. Moving Horizon Estimation of Shoulder Elevation

This example is presented to introduce Bioptim’s ability to
provide real-time estimation of biomechanical variables. The
goal was to perform a real-time estimation of dynamically
consistent joint kinematics and muscle forces, using a moving
horizon estimation (MHE) approach (i.e. an optimization
approach that uses a series of measurements observed over
time). A shoulder elevation motion was performed with a

4-DoF (q) arm actuated by 19 Hill-type muscle elements. The
control inputs of the model were the muscle activations (a).
The MHE implementation consists in splitting the OCP into
a succession of smaller one for processing fixed-size subsets
of the tracking data moving forward in time. Each time one
subproblem is solved, a new measurement is added, the oldest
one is discarded and a new subproblem is defined. Due to
their similarities, the solution of the previous OCP is a good
initial guess to the new one. The dynamical consistency of
the final solution is enforced by continuity constraints on the
initial state. Each objective function (Eq. 7) was written as
the sum of three terms: tracking reference joint angles (q∗),
states and muscle activations regularizations (i.e., least-square
criteria):

J =

∫ t+tmhe

t

ω1(‖q − q∗‖2)︸ ︷︷ ︸
TRACK STATE

+ ω2‖q‖2︸ ︷︷ ︸
MIN STATE

+ ω3‖a‖2︸ ︷︷ ︸
MIN ACTIVATION

dt, (7)

where ω1 = 103, ω2 = 10, ω3 = 102 and tmhe is duration of
each sub-problem.

In this example, reference data of an 8 s series of four arm
elevations were generated at 100Hz, by computer simulation.
A centered Gaussian noise (mean = 0, std = 0.005 q∗(t))
was added to q∗, to simulate experimental-like joints angle
measurements. Using a windows size of 7 nodes (i.e., 210ms),
the estimator ran at about 33Hz (one in three reference data
frame was sent to the estimator to simulate experimental-
like conditions), i.e., two and half times faster than standard
biofeedback (13Hz, [29]). The MHE was able to forecast

7

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 3, 2021. ; https://doi.org/10.1101/2021.02.27.432868doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.27.432868
http://creativecommons.org/licenses/by/4.0/

the movement kinematics with a root mean square error of
1.3 ± 0.7◦ while providing a realistic estimation of muscle
forces close to the ground truth with a root mean square error
of 11.1± 14.9N (Fig. 9).

F. Multiphase vertical jumper

This example was designed to introduce Bioptim’s ability to
reduce the number of degrees-of-freedom (DoF) of a model via
the BiMapping feature, to account for nonlinear boundaries
on the controls, and to solve complex multiphase OCP. A total
of five phases were used to describe the various dynamics of
the jump, namely the push-off phase (i.e., flat foot (two floor
contacts2) and then toe only (one contact)), flight (free fall,
i.e., no contact) and landing (toe (one contact) and then flat
foot (two contacts)). When a contact was added between two
phases, we used the build-in inelastic collision phase transition
PhaseTransition.IMPACT to compute the velocities of
the kinematic chain at the beginning of the post-impact
phase. A pseudo-2D full-body symmetrized model consisting
of 3 DoFs at the pelvis (forward and upward translations,
tranverse rotation), 1 DoF at the upper limb (shoulder flexion),
and 3 DoFs at the lower limb (hip, knee and ankle flexion)
was used. Since this is a full-body model, the root segment
(i.e., the pelvis) was left uncontrolled, reducing the number of
control variables to four, namely the shoulder, hip, knee and
ankle flexions. The objective function with the most important
weight was a Mayer objective computed at the end of the
push-off phase consisting in maximizing the jump height (h)
from the free fall equations applied to the center of mass. The
remaining objective functions were regularization terms and
terms that favoured a human-like solution.
J = ωh h︸︷︷︸

MIN PREDICTED COM HEIGHT

+ ωx‖x̃(T5)− x̃∗‖2︸ ︷︷ ︸
TRACK STATE

+
5∑

i=1

ωt(Ti − Ti−1)︸ ︷︷ ︸
MIN TIME

+
4∑

i=2

∫ Ti+1

t=Ti

ωsd

∣∣∣∣∣∣∣∣dq̇dt
∣∣∣∣∣∣∣∣2︸ ︷︷ ︸

MIN STATE DERIVATIVE

dt
(8)

where Ti with i ∈ [1, 2, 3, 4, 5] are the final times of the ith

phase respectively, and T0 = 0; ωh = −100 is the weight
of the jump height term defined negative to maximize it;
ωt = 0.1, ωsd = 0.1 and ωx = 1.0 are the weights of their
respective objective functions; q̇ is the generalized velocities
part of the state vector x; and x̃ is the state vector excluding
the translations of the root segment. The x̃∗ corresponds to
a reference static position of the avatar with its knee slightly
flexed and its arms horizontal.

Joint angles were bounded to human-like limits. The first
node of the first phase was enforced to be equal to x∗

(i.e., including the translations of the root segment to be
at the origin). Joint velocities were arbitrarily bounded to
human-like limits. Joint torques were bounded with nonlinear
torque/angle/velocity relashionships measured on a high-level
athlete using an isokinetic dynamometer [30]. Non slipping
(NON SLIPPING) and unilateral (CONTACT FORCE) contact
force constraints were added to prevent the contact points

2A contact is defined as a point where forces are applied to cancel its
acceleration.

Fig. 10: Snapshots of the push-off phase of a vertical
jump (Ex. III-F). The avatar reproduces a human-like jump
movement. The first four positions represent the first phase of
the optimization (i.e., heel and toe in contact with the floor)
and the fifth position depicts the end of the second phase (i.e.,
only the heel in contact with the floor)

from slipping and pulling on the ground. During the ground
phases, the heels had to remain over the floor. To speed-up the
convergence with Ipopt, the problem was first solved using a
BFGS Hessian approximation for 200 iterations. Then, starting
from this first solution, the problem was re-optimized, with the
exact-Hessian computations.

The optimized solution was obtained in 148 iterations
of the exact-Hessian optimization resulting in a 1.28m
jump height. The optimized time for phases 1 to 5 were
0.70, 0.05, 0.99, 0.36, 0.21 s. The solution reproduced a human
proximo-distal strategy (Fig 10), i.e., activating large segments
first (for instance the torso) and sequentially adding more distal
segments, consequently ending up with the feet.

IV. DISCUSSION

The purpose of Bioptim is to solve a variety of
biomechanical OCPs with minimal user effort and high
performances in terms of computational time. The main
features illustrated by the six provided examples are (Tab. I):

• the possibility to use torque- or muscle-driven models
(and their combinations);

• a variety of ready-to-use cost functions, constraints and
dynamics (with and without contacts)...

• ... easily customizable in Python when required by the
user;

• the possibility to solve advanced OCPs (possibly
multiphase) in a few seconds or minutes, that previously
took us hours;

• the interface with two different NLP solvers
In addition, every feature of Bioptim is thoroughly illustrated
by the examples of the getting started folder (parameter
optimization, custom objects, etc.). In the following, several
aspects of Bioptim are discussed.

A. Direct multiple shooting-based

While the debate remains about the performances of
direct collocations versus direct multiple shooting [7], [3],
the development of Bioptim was oriented toward the latter,
because: i) it allows to select effortlessly an arbitrary accuracy

8

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 3, 2021. ; https://doi.org/10.1101/2021.02.27.432868doi: bioRxiv preprint

https://github.com/pyomeca/bioptim/tree/master/examples/getting_started
https://doi.org/10.1101/2021.02.27.432868
http://creativecommons.org/licenses/by/4.0/

TABLE I: Overview of the computational results for the different examples. The single shooting (S-S) state trajectory is obtained by forwardly
integrating the initial state with the optimized control inputs . The S-S error is computed as the average error between the optimized state
vector and the single shooting one at t = min(1, T), with T the total duration of the OCP in seconds. Both the rotational and the translational
parts of this error are reported in ◦ and mm respectively. — stands for non applicable. All tests were conducted on a personal laptop with
an Intel® Core™ i5-8265U CPU @ 1.60GHz × 8, with 24 Gb RAM.

III-A Pointing III-B Somersault III-C Pendulum III-D Walking III-E MHE III-F Jumping

Quat. Euler

Se
tu

p

states x(t) 4 17 16 4 24 8 14
control u(t) 6 2 2 2 31 19 4
shooting nodes 50 100 100 100 90 259 125
phases 1 1 1 2 4 — 5
OCP duration (s) 2 1.5 1.5 10 0.94 8 2.3
Integrator RK4 RK4 RK4 RK4 IRK RK4

Solver Ipopt ACADOS Ipopt Ipopt Ipopt Ipopt ACADOS Ipopt

So
lv

e # NLP iterations 47 19 135 111 192 322 — 193
Optimized cost 20.8 23.2 -15.5 -365 7.2× 10−3 1588.67 — -119.9
Time to convergence (s) 20.4 s 0.8 s 88 s 78 s 5.8 s 265min 5.7 s 35min
S-S rotation error (◦) < 10−6 < 10−13 < 10−3 < 10−6 < 10−7 0.26 0.09 < 10−3

S-S translation error (mm) — — < 10−9 < 10−10 < 10−14 < 10−6 — < 10−9

for the integration (e.g., order and numbers of RK steps); ii) it
allows to use multiple shooting-based fast NLP solvers such as
ACADOS. Concerning the integration, either internally or via
ACADOS, several schemes are implemented in Bioptim (RK4,
RK8, implicit RK). While IRK showed better convergence in
our experience with hard problems in ACADOS, RK4 showed
to be a good speed/robustness tradeoff in most of the cases.
In contrast to what is claimed in [3], direct multiple shooting
is not a limitation to the performances (cost value and time
to convergence), since, in our experience, the performances of
Bioptim often outperform state-of-the-art results.

B. Automatic differentiation

One of the reasons explaining the performances of Bioptim
is the rewriting of the core software, RBDL [31] and
Biorbd implementing the dynamics, into CasADi symbolics
to automatically provide the exact Jacobians and Hessians of
the resulting NLP. The gain in accuracy for the calculation
of derivatives leads to shorter convergence times (due to
much less iterations) and to optimal solutions reached with
lower tolerances. This last aspect must be emphasized for
complex motions (fast, highly dynamics ones), because, for
instance when using Ipopt, an optimal solution obtained
with a convergence criterion of 10−2 is very unlikely to be
dynamically sound; i.e., it would diverge when forwardly
integrating the controls in a single-shooting manner. A lower
tolerance (10−6 or 10−8), which is only reachable with exact
derivatives—for most of OCPs in biomechanics—, is expected
to lead to better forward dynamics results.

C. Python based, but fast!

Bioptim was thought as an interface, and was therefore
written in Python to allow the user to easily combine existing
cost functions or constraints and self-implemented ones, to
switch from one solver to another, etc. We believe this feature
to be of importance given that the biomechanics community
is mainly composed of software users rather than developers.
Therefore, providing a custom interface in Python rather than

in C++, was a driving objective of our work to facilitate a rapid
appropriation by the community. Since flexibility and ease-of-
use should not compromise the performances, the integration is
multi-threaded and all the inside computations are expressed
as C++ CasADi graphs, interfaced with C++ NLP solvers.
These graphs can either be built in casadi.MX() or
casadi.SX(). The latter requires more RAM for building
the problem but is faster to solve. While both may be used
with Ipopt, ACADOS is only compatible with casadi.SX().
By leveraging the speed of casadi.SX() graphs, we were
able to estimate muscle forces in real time using ACADOS on
a standard laptop (Ex. III-E). For a more in-depth analysis of
the real-time estimation capabilities of Bioptim, see [2].
Alongside with the 3D visualizer Bioviz that animates the
solution, Bioptim proposes a series of online-generated figures,
inspired by the real-time graphics from Muscod-II [24], [25],
to visualize the optimized variables at each iteration of the
solver. This is made with minimal computational cost thanks
to the multiprocessing Python toolbox. Our implementation
leverages the Python pickle library for easily saving and
loading OCPs for, e.g., post-processing analysis. Finally, every
layer (integration, optimization, visualization) of Bioptim is
optimized to be flexible and fast.

D. Fast vs robust NLP solvers

Fast solvers, such as ACADOS, offer the opportunity to use
multi-start approaches on complex problems, to circumvent
the obstacle of local minima [17], [11]. It also allows
to get meaningful initial solutions from simpler problems,
for guiding the resolution of the harder problems. On the
other hand, robust solvers, such as Ipopt, are convenient
when the user lacks information about the sought solutions
and thus cannot guide the solver through a good initial
guess. For biomechanics applications, the complementary
characteristics of the interfaced solvers is a really useful tool.
Moreover, Bioptim’s full compatibility with CasADi provides
the opportunity to use any solver already interfaced with it,
including third-party software such as SNOPT , WORHP [32]

9

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 3, 2021. ; https://doi.org/10.1101/2021.02.27.432868doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.27.432868
http://creativecommons.org/licenses/by/4.0/

and KNITRO [33] (not tested yet).

E. Multiphase

Biomechanics studies often face changing dynamics or
objective functions due to the loss or gain of contacts or time-
varying biomechanical tasks. When tracking such a motion
or trying to predict it, these changes translate into multiphase
OCP. This is one of the reported drawbacks of OpenSim Moco,
which does not provide this feature yet. Bioptim, however, is
able to handle multiphase OCPs, although they can currently
only be solved with Ipopt (see Exs. III-D and III-F).

F. From constraints to objectives: easy problem relaxation

As stated in Sec. II.B, there exists a correspondence
between most of the pre-implemented Constraints and
Objective functions. This is intended to allow for
easy relaxation when the problem is reluctant to converge.
For instance, when a biomechanical task requires the final
configuration of the model to be enforced (reaching, cyclic
motions, sports, etc.), one should first use a Constraint
(e.g., TRACK STATE). If the convergence is challenging, just
turning this constraint into its namesake Mayer Objective
function, with a heavy weight, should help the solver.

G. Limitations

Bioptim is already a mature solution for solving
biomechanical OCP. However some limitations should be
raised. First, it is based on Biorbd which is not as advanced
as OpenSim or AnyBody (AnyBody Technology) in terms of
biomechanical features and audience. Nevertheless, Biorbd is
actively maintained, fast and CasADi-compatible for automatic
differentiation. The variety of proposed examples highlighted
simple to advanced models. Even if defining a new model
was made straightforward thanks to the .bioMod file
format, biorbd does not include a GUI for building models.
Some Opensim models can be translated into .bioMod but
Biorbd does not yet support multiple wrapping objects, non-
orthogonal DoFs between bodies, compliant contact force
models ([34]) or muscle-tendon equilibrium. As seen in [22],
wrapping objects are rare due to the computational cost and
required optimization when a line of action is in contact
with more than one object, which compromises automatic
differentiation. Via-points and pre-processed moment arms
[35] (to be expressed as polynomial functions of crossed DoFs)
are often preferred.

H. Future directions

Bioptim, code name PaperWork (Version 1.1.0), was
released in February 2021, with all the features presented in
this communication. Some improvements are expected in a
near future. First, a graphical model builder is planned in
Biorbd, to easily generate .bioMod files. Also, models of
muscular fatigue are to be included in Bioptim, to predict
adapted motor strategies for long or demanding motions. The
formulation of moving horizon schemes (MHE, Nonlinear
Model Predictive Control) will be pre-implemented, with
efficient warm-starting heuristics, to facilitate their use. The
implementation of muscle-tendon equilibrium is planned for

fast movements or those with large ranges of motions. It
will require an additional optimization step to achieve the
equilibrium as done in CEINMS [1] or the addition of muscle
lengths as state variables, as in [35]. Moreover, an effort will
be made to extend the compatibility of ACADOS with all the
features of Bioptim (multiphase, nonlinear constraints, etc.).
Finally, we plan to add an inverse optimal control module
to Bioptim and muscle synergy dynamics to improve motion
predictions [36].

ACKNOWLEDGMENT

This study and the Biorbd library development was partly
funded by a scholarship of the Vanier program (BM), the
Canada First Research Excellence Fund via the TransMedTech
Institute (FB) and the NSERC Discovey Programme (MB).
Bioptim acts as a catalyst in our group and several students
contributed to this library. Thank you to Théophile Gousselot,
Paul Wegiel, Ariane Dang, Valentin Thiron and André Venne.

REFERENCES

[1] C. Pizzolato, D. G. Lloyd, M. Sartori, E. Ceseracciu, T. F. Besier,
B. J. Fregly, and M. Reggiani, “Ceinms: a toolbox to investigate the
influence of different neural control solutions on the prediction of muscle
excitation and joint moments during dynamic motor tasks,” Journal of
Biomechanics, vol. 48, no. 14, pp. 3929–3936, 2015.

[2] F. Bailly, A. Ceglia, B. Michaud, D. M. Rouleau, and M. Begon,
“Real-time and dynamically consistent estimation of muscle forces
using a moving horizon emg-marker tracking algorithm—application
to upper limb biomechanics,” Frontiers in Bioengineering and
Biotechnology, vol. 9, p. 112, 2021. [Online]. Available: https:
//www.frontiersin.org/article/10.3389/fbioe.2021.642742

[3] S. Porsa, Y.-C. Lin, and M. G. Pandy, “Direct methods for predicting
movement biomechanics based upon optimal control theory with
implementation in opensim,” Annals of Biomedical Engineering, vol. 44,
no. 8, pp. 2542–2557, 2016.

[4] L. Modenese, “Awesome biomechanics,” https://git.io/JtdLh, 2020.
[5] M. Febrer-Nafrı́a, R. Pallarès-López, B. J. Fregly, and J. M. Font-

Llagunes, “Comparison of different optimal control formulations for
generating dynamically consistent crutch walking simulations using a
torque-driven model,” Mechanism and Machine Theory, vol. 154, p.
104031, Dec. 2020.

[6] M. Ezati, P. Brown, B. Ghannadi, and J. McPhee, “Comparison of direct
collocation optimal control to trajectory optimization for parameter
identification of an ellipsoidal foot–ground contact model,” Multibody
System Dynamics, vol. 49, no. 1, pp. 71–93, May 2020.

[7] M. Diehl, H. G. Bock, H. Diedam, and P.-B. Wieber, “Fast direct
multiple shooting algorithms for optimal robot control,” in Fast Motions
in Biomechanics and Robotics. Springer, 2006, pp. 65–93.

[8] J. Koschorreck and K. Mombaur, “Modeling and optimal control of
human platform diving with somersaults and twists,” Optimization and
Engineering, vol. 13, no. 1, pp. 29–56, 2012.

[9] M. Felis and K. Mombaur, “Modeling and optimization of human
walking,” in Modeling, Simulation and Optimization of Bipedal Walking.
Springer, 2013, pp. 31–42.

[10] E. Charbonneau, F. Bailly, L. Danès, and M. Begon, “Optimal control
as a tool for innovation in aerial twisting on a trampoline,” Applied
Sciences, vol. 10, no. 23, p. 8363, 2020.

[11] F. Bailly, E. Charbonneau, L. Danès, and M. Begon, “Optimal 3d arm
strategies for maximizing twist rotation during somersault of a rigid-
body model,” Multibody System Dynamics, pp. 1–17, 2020.

[12] M. Giftthaler, M. Neunert, M. Stäuble, and J. Buchli, “The control
toolbox—an open-source c++ library for robotics, optimal and
model predictive control,” in 2018 IEEE International Conference
on Simulation, Modeling, and Programming for Autonomous Robots
(SIMPAR). IEEE, 2018, pp. 123–129.

[13] F. Bailly, J. Carpentier, B. Pinet, P. Souères, and B. Watier, “A
mechanical descriptor of human locomotion and its application to
multi-contact walking in humanoids,” in 2018 7th IEEE International
Conference on Biomedical Robotics and Biomechatronics (Biorob).
IEEE, 2018, pp. 350–356.

10

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 3, 2021. ; https://doi.org/10.1101/2021.02.27.432868doi: bioRxiv preprint

https://www.frontiersin.org/article/10.3389/fbioe.2021.642742
https://www.frontiersin.org/article/10.3389/fbioe.2021.642742
https://git.io/JtdLh
https://doi.org/10.1101/2021.02.27.432868
http://creativecommons.org/licenses/by/4.0/

[14] M. R. Yeadon and M. J. Hiley, “The mechanics of the backward giant
circle on the high bar,” Human Movement Science, vol. 19, no. 2, pp.
153–173, 2000.

[15] M. Begon, M. J. Hiley, and M. R. Yeadon, “Effect of hip flexibility
on optimal stalder performances on high bar,” Computer Methods in
Biomechanics and Biomedical Engineering, vol. 12, no. 5, pp. 575–583,
2009.

[16] F. Leboeuf, G. Bessonnet, P. Seguin, and P. Lacouture, “Energetic
versus sthenic optimality criteria for gymnastic movement synthesis,”
Multibody System Dynamics, vol. 16, no. 3, pp. 213–236, 2006.

[17] A. Huchez, D. Haering, P. Holvoët, F. Barbier, and M. Begon, “Local
versus global optimal sports techniques in a group of athletes,” Computer
Methods in Biomechanics and Biomedical Engineering, vol. 18, no. 8,
pp. 829–838, 2015.

[18] A. Wächter and L. T. Biegler, “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear programming,”
Mathematical Programming, vol. 106, no. 1, pp. 25–57, 2006.

[19] P. E. Gill, W. Murray, and M. A. Saunders, “Snopt: an sqp algorithm
for large-scale constrained optimization,” SIAM Review, vol. 47, no. 1,
pp. 99–131, 2005.

[20] R. Verschueren, G. Frison, D. Kouzoupis, N. van Duijkeren, A. Zanelli,
R. Quirynen, and M. Diehl, “Towards a modular software package for
embedded optimization,” IFAC-PapersOnLine, vol. 51, no. 20, pp. 374–
380, 2018.

[21] J. A. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,
“Casadi: a software framework for nonlinear optimization and optimal
control,” Mathematical Programming Computation, vol. 11, no. 1, pp.
1–36, 2019.

[22] C. L. Dembia, N. A. Bianco, A. Falisse, J. L. Hicks, and S. L.
Delp, “Opensim moco: musculoskeletal optimal control,” PLOS
Computational Biology, vol. 16, no. 12, p. e1008493, 2020.

[23] M. A. Patterson and A. V. Rao, “Gpops-ii: a matlab software for solving
multiple-phase optimal control problems using hp-adaptive gaussian
quadrature collocation methods and sparse nonlinear programming,”
ACM Transactions on Mathematical Software (TOMS), vol. 41, no. 1,
pp. 1–37, 2014.

[24] D. B. Leineweber, I. Bauer, H. G. Bock, and J. P. Schlöder, “An
efficient multiple shooting based reduced sqp strategy for large-scale
dynamic process optimization. part 1: theoretical aspects,” Computers
& Chemical Engineering, vol. 27, no. 2, pp. 157–166, 2003.

[25] D. B. Leineweber, A. Schäfer, H. G. Bock, and J. P. Schlöder,
“An efficient multiple shooting based reduced sqp strategy for large-
scale dynamic process optimization: Part ii: software aspects and
applications,” Computers & Chemical Engineering, vol. 27, no. 2, pp.
167–174, 2003.

[26] B. Houska, H. J. Ferreau, and M. Diehl, “Acado toolkit—an open-source
framework for automatic control and dynamic optimization,” Optimal
Control Applications and Methods, vol. 32, no. 3, pp. 298–312, 2011.

[27] M. L. Felis and K. Mombaur, “Synthesis of full-body 3-d human gait
using optimal control methods,” in 2016 IEEE International Conference
on Robotics and Automation (ICRA), 2016, pp. 1560–1566.

[28] D. A. Winter, Biomechanics and motor control of human gait: normal,
elderly and pathological - 2nd edition. University of Waterloo Press,
1991, vol. Ed2. [Online]. Available: https://trid.trb.org/view/770965

[29] O. A. Kannape and O. Blanke, “Self in motion: sensorimotor and
cognitive mechanisms in gait agency,” Journal of Neurophysiology, vol.
110, no. 8, pp. 1837–1847, 2013.

[30] M. I. Jackson, “The mechanics of the table contact phase of gymnastics
vaulting,” Jan. 2010.

[31] M. L. Felis, “Rbdl: an efficient rigid-body dynamics library using
recursive algorithms,” Autonomous Robots, pp. 1–17, 2016. [Online].
Available: http://dx.doi.org/10.1007/s10514-016-9574-0

[32] D. Wassel, “Exploring novel designs of nlp solvers: architecture and
implementation of worhp,” Ph.D. dissertation, Universität Bremen, 2013.

[33] J. Nocedal, “Knitro: an integrated package for nonlinear optimization,”
in Large-Scale Nonlinear Optimization. Springer, 2006, pp. 35–60.

[34] G. Serrancolı́, A. Falisse, C. Dembia, J. Vantilt, K. Tanghe, D. Lefeber,
I. Jonkers, J. De Schutter, and F. De Groote, “Subject-exoskeleton
contact model calibration leads to accurate interaction force predictions,”
IEEE Transactions on Neural Systems and Rehabilitation Engineering,
vol. 27, no. 8, pp. 1597–1605, 2019.

[35] A. J. Van Den Bogert, D. Blana, and D. Heinrich, “Implicit methods
for efficient musculoskeletal simulation and optimal control,” Procedia
Iutam, vol. 2, pp. 297–316, 2011.

[36] J. P. Walter, A. L. Kinney, S. A. Banks, D. D. D’Lima, T. F.
Besier, D. G. Lloyd, and B. J. Fregly, “Muscle synergies may improve

optimization prediction of knee contact forces during walking,” Journal
of biomechanical engineering, vol. 136, no. 2, 2014.

11

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 3, 2021. ; https://doi.org/10.1101/2021.02.27.432868doi: bioRxiv preprint

https://trid.trb.org/view/770965
http://dx.doi.org/10.1007/s10514-016-9574-0
https://doi.org/10.1101/2021.02.27.432868
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Implementation and Design
	Implementation and dependencies
	Design
	Dynamics
	Objective function set
	Constraint set
	Bounds
	Shooting points and problem duration
	Initial guesses

	Examples
	Muscle activation driven pointing task
	Quaternion base twisting somersault
	Pendulum on a spring
	Multiphase activation driven walking cycle
	Moving Horizon Estimation of Shoulder Elevation
	Multiphase vertical jumper

	Discussion
	Direct multiple shooting-based
	Automatic differentiation
	Python based, but fast!
	Fast vs robust NLP solvers
	Multiphase
	From constraints to objectives: easy problem relaxation
	Limitations
	Future directions

	References

