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ABSTRACT.	

	
Introduction.	 While	 the	 prevalence	 of	 neurodegenerative	 diseases	 and	 dementia	
increases,	 our	 knowledge	 of	 the	 underlying	 pathomechanisms	 and	 related	 diagnostic	
biomarkers,	outcome	predictors,	or	therapeutic	targets	remains	limited.	In	this	article,	we		
show	how	 computational	multi-scale	 brain	 network	modeling	 using	The	Virtual	 Brain	
(TVB)	simulation	platform	supports	revealing	potential	disease	mechanisms	and	can	lead	
to	improved	diagnostics.		
Methods.	 TVB	 allows	 standardized	 large-scale	 structural	 connectivity	 (SC)-based	
modeling	and	simulation	of	whole-brain	dynamics.	We	combine	TVB	with	a	cause-and-
effect	model	 for	amyloid-beta,	and	machine-learning	classification	with	support	vector	
machines	and	random	forests.	 	The	amyloid-beta	burden	as	quantified	 from	individual	
AV-45	 PET	 scans	 informs	 parameters	 of	 local	 excitation/inhibition	 balance.	 We	 use	
magnetic	 resonance	 imaging	 (MRI),	 positron	 emission	 tomography	 (PET,	 specifically	
Amyloid-beta	 (Abeta)	 binding	 tracer	 AV-45-PET,	 and	 Tau-protein	 (Tau)	 binding	 AV-
1451-PET)	from	33	participants	of	Alzheimer’s	Disease	Neuroimaging	Initiative	study	3	
(ADNI3).	The	frequency	compositions	of	simulated	local	field	potentials	(LFP)	are	under	
investigation	for	their	potential	to	classify	individuals	between	Alzheimer’s	disease	(AD),	
Mild	 Cognitive	 Impairment	 (MCI),	 and	 healthy	 controls	 (HC)	 using	 support	 vector	
machines	and	random	forest	classifiers.		
Results.	The	combination	of	empirical	features	(subcortical	volumetry,	AV-45-	and	AV-
1451-	PET	standard	uptake	value	ratio,	SUVR	per	region)	and	simulated	features	(mean	
LFP	frequency	per	brain	region)	significantly	outperformed	the	classification	accuracy	of	
empirical	data	alone	by	about	10%	in	the	accuracy	index	of	weighted	F1-score	(empirical	
64.34%	vs.	combined	74.28%).	There	was	no	significant	difference	between	empirical	and	
simulated	features	alone.	The	features	with	the	highest	feature	importance	showed	high	
biological	plausibility	with	respect	to	the	AD-typical	spatial	distribution	of	the	features.	
This	was	demonstrated	for	all	feature	types,	e.g.,		increased	importance	indices	for	the	left	
entorhinal	cortex	as	the	most	important	Tau-feature,	the	left	dorsal	temporopolar	cortex	
for	Abeta,	the	right	thalamus	for	LFP	frequency,	and	the	right	putamen	for	volume.		
Discussion.	 In	 summary,	here	we	suggest	a	 strategy	and	provide	proof	of	 concept	 for	
TVB-inferred	mechanistic	biomarkers	that	are	direct	indicators	of	pathogenic	processes	
in	neurodegenerative	disease.	We	show	how	the	cause-and-effect	implementation	of	local	
hyperexcitation	caused	by	Abeta	can	improve	the	machine-learning-driven	classification	
of	AD.	This	proves	TVBs	ability	to	decode	information	in	empirical	data	by	means	of	SC-
based	brain	simulation.		
	

Keywords:	Alzheimer’s	Disease,	The	Virtual	Brain,	Machine	Learning,	Positron	Emission	
Tomography	
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1.	INTRODUCTION	

	
Alzheimer’s	 disease	 (AD)	 is	 a	 major	 public	 health	 concern	 in	 industrialized	 societies,	
leading	to	direct	and	indirect	estimated	annual	costs	of	$1	trillion	in	the	US	(Alzheimer's	
Association	2019).	This	figure	is	set	to	double	by	2030	with	a	predicted	burden	of	152	
million	cases	by	2050,	considering	the	development	of	the	disease	in	a	person	every	three	
seconds	(Alzheimer's	Association	2019).	
Currently,	no	cure	or	disease-modifying	therapy	is	available	for	AD	patients	and	actual	
treatment	regimens	only	provide	temporary	symptomatic	improvement	(Grassi,	Perna	et	
al.	 2018).	 Additionally,	 due	 to	 the	 large	 gap	 between	 probable	 disease	 onset	 with	
beginning	neuropathologic	brain	changes,	and	the	first	clinical	symptoms	of	AD	of	up	to	
20	 years	 (Nunomura,	 Perry	 et	 al.	 2001),	 early	 diagnosis	 plays	 a	 crucial	 role	 in	 the	
development	of	potential	 future	treatments.	Moreover,	many	patients	suffer	 from	Mild	
Cognitive	 Impairment	 (MCI)	 years	 before	 the	 onset	 of	 manifest	 dementia	 (Petersen,	
Caracciolo	et	al.	2014),	which,	in	contrast	to	MCI,	also	impairs	the	activity	of	daily	living	
(McKhann,	Knopman	et	al.	2011).		

Although	the	spectrum	of	AD-related	disease	burden	is	broad	and	its	early	diagnosis	a	
common	 modern	 health	 problem,	 the	 knowledge	 of	 underlying	 disease	 mechanisms	
remains	 incomplete.	Besides	 the	 two	hallmark	proteins	Amyloid-beta	 (Abeta)	 (Sadigh-
Eteghad,	Sabermarouf	et	al.	2015,	Selkoe	and	Hardy	2016)	and	Tau	(Jadhav,	Avila	et	al.	
2019,	 Tapia-Rojas,	 Cabezas-Opazo	 et	 al.	 2019),	 other	 involved	 factors	 have	 been	
identified,	such	as	e.g.	impairment	of	the	blood-brain-barrier	(Storck	Steffen	and	Pietrzik	
Claus	 2018,	 Sweeney,	 Sagare	 et	 al.	 2018,	 Zetterberg	 and	 Schott	 2019),	 synaptic	
dysfunction	 (Tonnies	 and	 Trushina	 2017,	 Jackson,	 Jambrina	 et	 al.	 2019),	 network	
disruption,	 (Selkoe	 2019),	 mitochondrial	 dysfunction	 (Swerdlow	 and	 Khan	 2009),	
neuroinflammation	 (Heneka,	 Carson	 et	 al.	 2015)	 as	 well	 as	 genetic	 risk	 factors	 (Van	
Cauwenberghe,	Van	Broeckhoven	et	al.	2016,	Pimenova,	Raj	et	al.	2018,	Takatori,	Wang	et	
al.	2019).	While	Abeta	and	Tau	are	widely	accepted	as	involved	core	features	(Blennow,	
de	 Leon	 et	 al.	 2006,	 Bloom	 2014,	 Jack,	 Bennett	 et	 al.	 2018),	 their	 mutual	 interaction	
(Bloom	2014)	and	interaction	with	other	factors	(Gauthier,	Zhang	et	al.	2018,	Zetterberg	
and	 Schott	 2019)	 are	 incompletely	 understood.	 Comprehensive	 knowledge	 of	 this	
multifactorial	 interaction	 in	 the	 pathogenesis	 of	 AD	 is	 crucial	 for	 further	 therapeutic	
developments.		

	
The	Virtual	Brain	(TVB)	platform	for	modeling	and	simulating	large-scale	brain	networks	
by	using	personalized	structural	connectivity	models	(Ritter,	Schirner	et	al.	2013,	Sanz	
Leon,	 Knock	 et	 al.	 2013)	 enables	 the	 model-based	 inference	 of	 underlying	
neurophysiological	 mechanisms	 across	 different	 brain	 scales	 that	 are	 involved	 in	 the	
generation	 of	 macroscopic	 neuroimaging	 signals	 including	 functional	 Magnetic	
Resonance	Imaging	(fMRI),	Electroencephalography	(EEG)	and	Magnetoencephalography	
(MEG).	 Moreover,	 TVB	 facilitates	 the	 reproduction	 and	 evaluation	 of	 individual	
configurations	of	the	brain	through	the	use	of	subject-specific	data.	In	this	study,	we	make	
use	 of	 virtual	 local	 field	 potentials	 (LFPs)	 from	 simulated	 brain	 data	 from	 a	 recent	
experiment	with	TVB	presented	 in	 (Stefanovski,	Triebkorn	et	al.	2019).	By	 integrating	
individual	patterns	from	Abeta,	obtained	from	Positron	Emission	Tomography	(PET)	with	
the	 Abeta-binding	 tracer	 18F-AV-45	 into	 the	 brain	model,	 distinct	 spectral	 patterns	 in	
simulated	LFPs	and	EEG	could	be	observed	for	patients	with	AD,	MCI,	and	healthy	control	
(HC)	 subjects	 (Figure	 1).	 Such	 integration	 was	 done	 by	 transferring	 the	 local	
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concentration	 of	 Abeta	 to	 a	 variation	 in	 the	 brain	 model’s	 local	 excitation-inhibition	
balance.	This	resulted	in	a	shift	from	alpha	to	theta	rhythms	in	AD	patients,	which	was	
located	 in	 a	 similar	 pattern	 as	 local	 hyperexcitation	 in	 core	 structures	 of	 the	 brain	
network.	The	frequency	shift	was	reversible	by	applying	"virtual	memantine",	i.e.,	virtual	
NMDA	antagonistic	drug	therapy.	An	overview	of	the	study	results	is	provided	in	Figure	
1.	

	

	
Figure	 1.	Modified	 from	 (Stefanovski,	 Triebkorn	 et	 al.	 2019)	Abeta-PET-driven	brain	 simulation	
model	of	AD	 (A):	Regional	PET	intensity	constraints	regional	parameters.	A	sigmoidal	transfer	function	
translates	the	regional	Abeta	 load	to	changes	 in	the	E/I-balance.	(B)	Virtual	AD	patient	brains	exhibited	
significantly	slower	simulated	LFPs	than	MCI	and	HC	virtual	brains	and	showed	a	shift	from	alpha	to	theta	
frequency	 range.	This	 slowing	was	 spatially	 associated	with	 local	 hyperexcitation	 (C).	 The	 graph	 in	 (C)	
represents	the	SC,	wherein	the	nodes’	size	reflects	the	degree,	while	color	corresponds	to	the	relative	PSP	
(relative	to	the	mean	PSP	of	the	simulation).	The	graph	indicates	that	local	hyperexcitation	occurs	in	central	
parts	 of	 the	 networks.	 (D	 –	 F):	 A	 three-dimensional	 histogram	 shows	 the	 distribution	 of	 regional	 LFP	
frequencies	across	the	scale	coupling	parameter	G.	While	the	AD	group	is	dominated	by	two	clusters	in	the	
alpha	and	theta	band	(D),	the	groups	of	HC	(E)	and	MCI	(F)	have	an	additional	strong	cluster	exhibiting	no	
oscillations	("frequency	of	zero").	This	phenomenon	is	absent	in	the	AD	group.	The	stable	focus	in	HC	and	
MCI	virtual	brains,	which	disables	oscillations	 for	G’s	higher	values,	provides	an	additional	–	simulation	
inferred	-	distinctive	criterion	between	groups.	
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Simulation	of	the	individual	brain	is	possible	through	the	inclusion	of	personal	empirical	
data.	 AD	 specific	 pathologies,	 such	 as	 deposition	 of	 Abeta	 in	 neuritic	 plaques,	 Tau	
deposition	 in	 neurofibrillary	 tangles,	 and	 atrophy	 of	 neural	 tissue,	 have	 been	 widely	
studied	-	including	with	machine	learning	(ML)	approaches	(van	Rossum,	Vos	et	al.	2010,	
Forlenza,	Diniz	et	al.	2013).	The	major	advantage	of	employing	ML-based	classification	
algorithms	 on	 neuroimaging	 data	 is	 the	 potential	 for	 recognizing	 complex	 high	
dimensional,	previously	unknown	disease	patterns	in	the	data,	potentially	identifying	AD	
before	clinical	manifestation	or	predicting	a	disease	trajectory.		over	the	last	15	years,	ML	
has	evolved	as	a	fast-growing	multidisciplinary	field	of	research,	with	many	applications	
in	various	scientific	areas	(Dhall,	Kaur	et	al.	2020),	including	neuroimaging	in	AD	(Martí-
Juan,	 Sanroma-Guell	 et	 al.	 2020).	 ML	 techniques	 range	 from	 relatively	 simple	
mathematical	 models	 to	 complex	 approaches.	 Their	 principal	 aim	 has	 been	 to	 “give	
computers	 the	ability	 to	 learn	without	being	explicitly	programmed	 to	do	so”	 (Samuel	
1959).	 In	other	words,	ML	can	be	seen	as	a	collection	of	methods	developed	to	enable	
computational	 systems	 to	 learn	 from	 the	 data	 with	 the	 primary	 purpose	 of	 making	
predictions	and	inferences.	The	advantage	of	ML	algorithms	over	traditional	statistical	or	
model-based	approaches	is	that	they	can	discover	subtle	and	even	complex	patterns	in	
high-dimensional	 data	 that	 would	 be	 difficult	 to	 identify	 or	 encode	 otherwise	 (Sajda	
2006).	However,	the	ability	of	ML	algorithms	to	discover	patterns	in	data	can	also	result	
in	 the	 reliance	 on	 spurious	 correlations	 that	 appear	 in	 data	 by	 chance,	 or	 which	 are	
otherwise	not	clinically	generalizable	beyond	the	data	used	to	train	the	algorithm.	Many	
algorithms	 have	 been	 developed	 with	 successful	 convincing	 classification	 capabilities	
(Kotsiantis,	Zaharakis	et	al.	2006,	Binkhonain	and	Zhao	2019).		
Generally,	the	problem	of	classification	is	the	prediction	of	categories	for	each	point	in	a	
(multidimensional)	data	cloud	based	on	their	representations,	that	is,	identifying	the	class	
to	which	an	input	belongs	among	a	set	of	labeled	categories	(Rebala,	Ravi	et	al.	2019).	A	
classification	model,	also	called	a	classifier,	can	be	binary	or	multi-class	depending	on	the	
number	 of	 groups	 or	 labels	 to	 predict.	 A	 classifier	 is	 then	 tailored	 from	 the	 learning	
process	 of	 categorizing	 a	 set	 of	 “training”	 data.	 Despite	 the	 numerous	 classification	
methods	currently	available	for	this	inference,	it	is	impossible	to	conclude	which	one	is	
generally	superior	to	the	other.	This	particular	fact	depends	on	the	application	and	nature	
of	 the	 available	 data	 set	 and	 is	 commonly	 referred	 to	 as	 the	 “no-free-lunch	 theorem"	
(Wolpert	and	Macready	1997).	
Classification	 allows	 considering	 other	 factors,	 like	 lifestyle	 risks,	 genetic	 conditions,	
among	 others	 (Ithapu,	 Singh	 et	 al.	 2015).	 Numerous	 ML	methods	 have	 been	 used	 to	
classify	and	predict	AD	stages	with	promising	results	(Haller,	Lövblad	et	al.	2011,	Falahati,	
Westman	et	al.	2014,	Rathore,	Habes	et	al.	2017).	While	some	studies	have	made	use	of	a	
single	 screening	 modality,	 such	 as	 MRI	 (Fan,	 Batmanghelich	 et	 al.	 2008,	 Kloppel,	
Stonnington	et	al.	2008,	Cuingnet,	Gerardin	et	al.	2011,	Liu,	Zhang	et	al.	2012,	Tong,	Wolz	
et	al.	2014),	or	electroencephalography	(EEG)	(Blinowska,	Rakowski	et	al.	2017,	Farina,	
Emek-Savaş	et	al.	2020,	Ferri,	Babiloni	et	al.	2020,	Oltu,	Akşahin	et	al.	2021),	others	have	
used	a	combination	of	multiple	imaging	techniques	including	MRI,	PET,	and	cerebrospinal	
fluid	(CSF)	biomarkers	(Zhang,	Wang	et	al.	2011,	Gray,	Aljabar	et	al.	2013,	Jie,	Zhang	et	al.	
2013,	Young,	Modat	et	al.	2013,	Teipel,	Kurth	et	al.	2015,	Yun,	Kwak	et	al.	2015,	Samper-
González,	Burgos	et	al.	2018).	Although	many	of	those	studies	presented	interesting	and	
promising	results	in	AD	classification,	most	focused	on	a	so-called	two-class	problem.	It	
has	been	pointed	out,	that	standardization	and	quality	checks	for	robustness,	CV	schema,	
etc.	are	essential	but	often	lacking	(Blinowska,	Rakowski	et	al.	2017).	Only	a	few	studies	
have	made	use	of	more	complex	classification,	as	a	three-class	problem	with	AD,	MCI,	and	
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HC	(Suk,	Lee	et	al.	2014,	Farina,	Emek-Savaş	et	al.	2020)	or	differentiation	in	between	MCI	
to	converters	and	non-converters	(Aksu,	Miller	et	al.	2011,	Cui,	Liu	et	al.	2011,	Moradi,	
Pepe	et	al.	2015,	Beheshti,	Maikusa	et	al.	2017).	

	
Among	 the	 spectrum	 of	 ML	 classifiers,	 in	 the	 present	 study,	 we	 developed	 a	 dual	
methodology	for	solving	the	classification	task,	by	making	use	of	Support	Vector	Machine	
(SVM)	and	Random	Forest	(RF).	Both	employed	ML-classification	approaches	were	cross-
validated	within	 a	 sample	 of	 33	 human	 subjects	 with	MCI,	 AD,	 or	 HC	 from	 the	 ADNI	
database.	The	use	of	two	different	ML-classifiers	in	a	nested	approach	provides	a	robust,	
generalizable,	 and	 appropriate	 evaluation	 of	 the	 classification;	 on	 the	 other	 hand,	 it	
enables	 exploring	 the	 empirical	 and	 simulated	 features	 of	 highest	 importance	 for	
separation	between	the	three	groups	under	study.	
SVM	is	a	widely	used	method	for	supervised	ML	classification	problems	and	has	been	well	
established	 in	 recent	 Neuroscience	 literature	 (Rathore,	 Habes	 et	 al.	 2017,	 Rondina,	
Ferreira	et	al.	2018,	Shaikh	and	Ali	2019,	Zhao,	Ding	et	al.	2019,	Soumaya,	Taoufiq	et	al.).	
SVMs	have	been	extensively	employed	due	to	their	robustness,	simplicity	to	implement,	
and	 because	 they	 can	 also	 be	 employed	 as	 non-linear	 classifiers	 by	 making	 simple	
variations.	SVM	is	a	specific	type	of	so-called	maximum	margin	classifiers	that	tries	to	find	
an	optimal	 separating	hyperplane	 (with	 the	 largest	possible	margin)	between	 two	 (or	
more)	groups	within	a	higher	dimensional	representation	of	the	original	data.	Due	to	its	
algorithm	particularities,	SVM	has	some	advantages	in	small	sample	analysis	(Jiang,	Ching	
et	al.	2017),	which	in	this	approach	represents	an	advantage	since	we	employ	a	sample	
size	of	33	subjects.	
Similar	to	SVMs,	Random	Forest	(RF)	has	been	widely	used	for	classification	within	the	
ML	 community	 and	 has	 performed	well	 in	 a	 range	 of	 applications	 for	 classification	 in	
neuroimaging	studies	(for	a	review	see	(Sarica,	Cerasa	et	al.	2017)).	It	is	based	on	a	large	
number	 of	 decision	 trees	 performing	 binary	 splits	 on	 randomly	 selected	 subsets	 of	
features,	and	therefore	uses	a	fundamentally	different	classification	technique	than	SVMs.	
The	main	advantages	are	the	resulting	direct	interpretability	of	the	feature	importance	
and	high	robustness	towards	overfitting	of	the	algorithm	(Breiman	2001).	One	of	the	main	
differences	between	RF	and	SVM	is	that	RF	directly	provides	a	probability	for	each	point	
of	belonging	to	a	defined	class.	In	contrast,	SVM	provides	the	distance	to	the	hyperplanes	
or	boundaries.		

	
To	summarize,	the	design	of	our	methodology	posits:	

1. a	three-class	task	for	AD,	MCI,	and	HC	with	ML-classification	
2. a	nested	dual	classifier	approach	with	SVM	and	RF	
3. various	sources	of	biological	information	in	a	“hybrid”	methodology:	multimodal	

empirical	imaging	data	as	well	as	simulated	brain	dynamics	
	

One	of	our	primary	objectives	is	to	determine	if	the	use	of	extracted	features	from	TVB	
adds	 to	 the	 classifiers’	 predictive	 power.	 For	 achieving	 this,	 we	 repeated	 the	 ML	
procedure	with	 three	different	 feature	sets:	a)	using	empirical	 features	alone,	b)	using	
simulated	features	alone,	and	c)	combining	both	types	of	features	into	a	hybrid	model.		
We	 aim	 to	 provide	 evidence	 (or	 falsify)	 that	 TVB	 inferred	 features	 improve	 the	
classification	performance	compared	to	imaging	data	features.	
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We	show	that	TVB	simulations	provide	additional	unique	diagnostic	information	that	is	
not	readily	available	without	brain	simulations.	This	lends	support	to	the	idea	that	TVB	
provides	 value	 and	 real-world	 applicability	 above	 and	 beyond	 merely	 reorganizing	
empirical	data,	and	suggests	that	its	simulations	are	biologically	plausible.		

	
2.	MATERIALS	AND	METHODS	

	

2.1.	Alzheimer’s	disease	Neuroimaging	Initiative	(ADNI)	database	
Data	used	in	the	preparation	of	this	article	were	obtained	from	the	Alzheimer’s	Disease	
Neuroimaging	Initiative	(ADNI)	database	(adni.loni.usc.edu).	The	ADNI	was	launched	in	
2003	as	a	public-private	partnership,	 led	by	Principal	 Investigator	Michael	W.	Weiner,	
MD.	The	primary	goal	of	ADNI	has	been	to	test	whether	serial	magnetic	resonance	imaging	
(MRI),	positron	emission	tomography	(PET),	other	biological	markers,	and	clinical	and	
neuropsychological	 assessment	 can	 be	 combined	 to	 measure	 the	 progression	 of	 mild	
cognitive	 impairment	 (MCI)	 and	 early	 Alzheimer’s	 disease	 (AD).	 For	 up-to-date	
information,	 see	 www.adni-info.org.	 We	 used	 data	 from	 ADNI	 in	 our	 recent	 work	 to	
simulate	 electrophysiological	 neuronal	 activity	 (EEG)	 and	 explore	 their	 spectral	
characteristics	 in	AD,	MCI,	 and	HC	 (Stefanovski,	Triebkorn	et	 al.	 2019).	 In	 the	present	
study,	we	assess	whether	the	results	of	the	previous	study	can	be	used	to	improve	ML	
classification	 of	 AD,	 MCI,	 and	 HC.	 Basic	 epidemiological	 properties	 can	 be	 found	 in	
(Stefanovski,	Triebkorn	et	al.	2019).	
	

2.2.	Data	acquisition,	processing,	and	simulation	
The	detailed	methodology	of	data	acquisition,	selection,	processing,	and	simulation	are	
described	 in	 (Stefanovski,	 Triebkorn	 et	 al.	 2019).	 In	 the	 following,	 we	 will	 provide	 a	
summary.	 All	 study	 participants	were	 from	 ADNI	 3	 and	were	 scanned	 using	 Siemens	
scanners	with	a	magnetic	 field	strength	of	3T.	Compare	Supplementary	Table	S1-S5	 in	
(Stefanovski,	Triebkorn	et	al.	2019)	for	the	metadata.	We	included	T1	MPRAGE	(TE	=	2.95	
-	2.98	ms,	TR	=	2.3s),	FLAIR	(TE	differs	slightly,	TR	=	4.8s,	matrix	size	=	160	x	256	x	256),	
DWI	(TE	=	56	-71	ms,	TR	=	3.4	-	7.2s,	matrix	size	=	116	x	116	x	80,	voxel	size	=	2	x	2	x	2,	
bvals	=	[0,	1000]	or	[0,	500,	1000,	2000],	bvecs	=	49	or	115),		fieldmaps	and	PET	Data	(AV-
45	 for	 Abeta	 and	 AV-1451	 for	 Tau).	 We	 used	 the	 human	 connectome	 project	 (HCP)	
minimal	preprocessing	pipeline	(Glasser,	Sotiropoulos	et	al.	2013)	for	the	processing	of	
structural	data.	This	included	Freesurfer	(Reuter,	Schmansky	et	al.	2012)		
(https://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferMethodsCitation),		
FSL	(Smith,	Jenkinson	et	al.	2004,	Woolrich,	Jbabdi	et	al.	2009,	Jenkinson,	Beckmann	et	al.	
2012)	and	connectome	workbench		

(https://www.humanconnectome.org/software/connectome-workbench).			
The	adjustments	on	the	HCP	guidelines	to	fit	our	data	are	described	in	the	methods	of	
(Stefanovski,	Triebkorn	et	al.	2019).	For	the	subcortical	volumetrics	used	in	this	study,	we	
obtained	 the	 volumetry	 statistics	 provided	 by	 the	 -autorecon2	 command.	 The	
segmentation	is	performed	with	the	modified	Fischl	parcellation	(Fischl,	Salat	et	al.	2002)	
of	subcortical	regions	in	Freesurfer		

(http://freesurfer.net/fswiki/SubcorticalSegmentation).	
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For	AV-45	and	AV-1451	PET	images,	we	used	the	already	preprocessed	images	available	
in	ADNI.	We	aligned	the	PET	images	to	HCP-processed	T1	images	and	performed	linear	
registration	 with	 FLIRT	 (FSL).	 The	 resulting	 PET	 images	 were	 masked	 with	 subject-
specific	HCP	brain	masks.	We	calculated	SUVRs	by	dividing	image	intensities	by	the	mean	
intensity	in	the	white	matter	of	the	cerebellum.	 	Partial	volume	correction	was	applied	
using	 grey	 and	 white	 matter	 from	 Freesurfer	 segmentation	 and	 the	 Müller-Gärtner	
method	from	the	PETPVC	toolbox	(Thomas,	Cuplov	et	al.	2016).			To	get	the	average	SUVR	
per	 region,	 subcortical	 SUVRs	 were	 defined	 as	 the	 average	 SUVR	 in	 subcortical	 GM.	
Simultaneously,	cortical	GM	PET	intensities	were	mapped	onto	the	cortical	surfaces	using	
the	 connectome	 workbench	 tool.	 DWI	 preprocessing	 was	 performed	 by	 the	 MRtrix3	
software	package	(http://www.mrtrix.org).	We	used	the	following	functions:	Dwidenoise	
(Veraart,	Novikov	et	al.	2016),	Dwipreproc,	

		(https://mrtrix.readthedocs.io/en/latest/dwi_preprocessing/dwipreproc.html),		
Dwibiascorrect,	Diw2mask,	Dwiintensitynorm,	Dwi2response,	(Tournier,	Calamante	et	al.	
2013),	Average_response,	Dwi2fod,	(Tournier,	Calamante	et	al.	2007),	Tckgen	(Tournier,	
Calamante	 et	 al.	 2010,	 Smith,	 Tournier	 et	 al.	 2012,	 Smith,	 Tournier	 et	 al.	 2015).	 The	
detailed	steps	are	described	in	the	original	paper	(Stefanovski,	Triebkorn	et	al.	2019).	The	
preprocessed	 cortical	 surfaces	 and	 T1	 images	 were	 used	 to	 compute	 the	 Boundary	
Element	Model	in	Brainstorm	(Tadel,	Baillet	et	al.	2011),	wherein	inner	and	outer	Scalp,	
as	 well	 as	 outer	 skull,	 were	 modeled	 with	 1922	 vertices	 per	 layer	 and	 the	 default	
'BrainProducts	EasyCap	65'	EEG	cap.	We	estimated	the	leadfield	matrix	with	the	adjoint	
method	 in	OpenMEEG	 (default	 conductivities	 1	 (scalp),	 0.0125	 (skull),	 and	 1	 (brain)).	
After	 processing	 the	 empirical	 imaging	 data,	 we	 used	 the	 SC	 of	 the	 HC	 population	 to	
generate	an	averaged	standard	SC	for	all	participants.	Model	parameters	were	chosen	due	
to	 considerations	 in	 former	 studies	 (Spiegler,	Kiebel	 et	 al.	 2010)	 and	 are	described	 in	
(Stefanovski,	Triebkorn	et	 al.	 2019).	We	explored	a	 range	of	 global	 scaling	 factor	G	 to	
capture	different	dynamic	states	of	the	simulation.	The	novelty	in	our	recent	simulation	
study	was	the	introduction	of	a	mechanistic	model	for	 	Abeta-driven	effects.	We	linked	
local	Abeta	concentrations,	measured	by	Abeta	PET,	to	the	E/I	balance	in	the	model	by	
defining	the	inhibitory	time	constant	τi	as	a	function	of	local	Abeta	burden.	We	showed	
that	 this	 implementation	 led	to	a	significantly	 lower	LFP	frequency	 in	AD	participants.	
Therefore,	we	calculate	the	EEG	signal	as	a	projection	of	the	LFP	from	within	the	brain	to	
the	surface	of	the	head,	taking	into	the	concept	of	a	lead-field	matrix	simplification	to	three	
compartment	 borders	 brain-skull,	 skull-scalp,	 and	 scalp-air	 (Jirsa,	 Jantzen	 et	 al.	 2002,	
Bojak,	Oostendorp	et	al.	2010,	Litvak,	Mattout	et	al.	2011,	Ritter,	Schirner	et	al.	2013).	
However,	the	mean	frequency	is	only	one	of	a	plethora	of	simulated	features	produced	by	
the	mechanistic	disease	model.	In	this	study,	we	aim	to	further	examine	its	properties	for	
diagnostic	classification.		

	

In	addition	to	the	data	used	in	our	former	study	(Stefanovski,	Triebkorn	et	al.	2019),	we	
also	used	the	distribution	of	Tau	in	the	AV-14-51	PET	for	our	analyses	to	obtain	the	best	
available	empirical	data	basis.	The	information	on	the	local	Tau	burden	is	taken	from	the	
18F-AV-14-51	 PET	 imaging	 data.	 Again,	 the	 nuclear	 signal	 intensity	 is	 related	 to	 a	
reference	 volume	 in	 the	 cerebellum.	 	 High	 significance	 in	 Tau	 PET	 using	 ROI	 can	 be	
achieved	 from	 the	 usage	 of	 the	 Braak-and-Braak	 stages:	 regions	 of	 interest	 that	 are	
intended	 to	 represent	 the	 transentorhinal,	 limbic,	 or	 neocortical	 Braak	 stages	 (Schöll,	
Lockhart	et	al.	2016).	The	burden	of	tau	measured	by	AV-1451	showed	the	highest	group	
differences	between	AD	patients	and	HC	(p	<	0.001)	in	the	regions	of	the	earlier	stages	I-
IV.	The	 cut-off	 SUVR	was	here	>2.79	mean	 SUVR	 (Schöll,	 Lockhart	 et	 al.	 2016).	 The	
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composites	of	the	Braak	and	Braak	stages	can	be	found	in	our	description	above	in	the	
introductory	 part.	 The	 regions	 of	 interest	 defined	 in	 that	 study	 can	 be	 found	 in	 the	
supplementary	material	of	(Schöll,	Lockhart	et	al.	2016).		

	

2.3.	General	Machine	Learning	Approach	
Our	ML	approach	is	designed	to	fulfill	two	goals:	

1. Providing	 a	 robust,	 reproducible,	 and	 accurate	 evaluation	 of	 classification	
performance	with	the	data.	

2. Facilitating	 exploration	 of	 the	 empirical	 and	 simulated	 features	 that	 are	 most	
important	for	achieving	optimal	separation	between	the	AD,	MCI,	and	HC	groups.	

	
To	satisfy	the	first	goal,	we	implement	a	strict	nested	cross-validation	scheme	that	allows	
us	 to	 obtain	 statistically	 reliable	 classification	 performance	metrics	 while	 minimizing	
overfitting	in	a	P>>N	setting	(i.e.,	we	have	a	small	sample	size	N,	but	a	very	large	number	
of	 features	 P).	 Our	 cross-validation	method	 is	 adapted	 from	 earlier	 work	 in	machine	
learning	 for	 clinical	 neuroscience	 (Boshra,	 Dhindsa	 et	 al.	 2019),	 and	 is	 described	 in	
greater	 detail	 below	 and	 in	Figure	 2.	 Furthermore,	 two	 classifiers	 based	 on	 different	
principles	(SVM	and	RF)	were	used	to	rule	out	the	possibility	that	our	results	could	be	
explained	as	an	artifact	of	a	particular	classification	algorithm.		
	
We	 satisfy	 the	 second	goal	 in	 two	ways.	 First,	 our	 cross-validation	 scheme	provides	 a	
natural	 metric	 for	 feature	 relevance,	 i.e.,	 feature	 selection	 frequency	 across	 cross-
validation	 runs.	 Besides,	 we	 use	 feature	 importance	metrics	 inherent	 to	 each	 feature	
selection	method	explored.	In	our	case,	the	F-statistic	and	the	entropy	criterion	were	two	
metrics	used	for	feature	selection	for	the	SVM	and	the	RF	respectively.		
The	 entropy	 criterion	 uses	 the	 notion	 of	 entropy	 from	 Shannon’s	 Information	 Theory	
(Shannon	 1948)	 as	 a	 measure	 of	 feature	 importance,	 i.e.,	 by	 measuring	 how	 well	 it	
separates	classes.	

Entropy ="−𝑓!

"

!#$

log(𝑓!)	

	

Where	𝑓! 	is	 the	proportion	of	 class	 label	𝑖	that	meets	a	 splitting	 criterion	 learned	 for	a	
given	 feature	 (e.g.,	 the	 proportion	 of	 class	 label	𝑖 	for	 which	 the	 feature	 is	 less	 than	 a	
particular	value),	and	C	is	the	number	of	classes.	

The	 F-statistic	 ranks	 each	 feature	 based	 on	 their	 ANOVA	 F-value	 to	 measure	 class	
separability	and	select	the	top	k	features	(Conover	and	Iman	1982).	
Since	our	overall	goal	is	to	assess	whether	the	inclusion	of	features	extracted	from	TVB	
simulations	 contributes	 diagnostic	 information	 independent	 from	 just	 the	 empirical	
features,	we	repeat	the	entire	machine	learning	process	with	three	feature	sets:	1)	with	
the	 empirical	 features	 only;	 2)	 with	 the	 simulated	 features	 only;	 3)	 with	 both	 the	
simulated	and	empirical	features	combined.	
We	used	a	part	of	the	population	with	subjects	of	all	groups	as	a	training	population	while	
providing	 specific	 data	 aspects	 to	 the	 machine-learning	 engine.	 For	 an	 overview	 of	
machine	learning	approaches	on	AD	MRI	and	PET,	see	(Samper-González,	Burgos	et	al.	
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2018).	Our	approach	uses	a	more	complex	cross-validation	with	an	inner	and	an	outer	
cross-validation	loop.		
	
	

	
Figure	2.	Double	 cross-validation	 loop	design. Starting	 in	 the	 outer	 loop:	 stochastic	 cross-validation	
starts	with	100	 iterations	using	25%	of	data	 (randomly	 selected	per	 iteration)	 for	 testing.	The	 training	
subset	goes	to	the	inner	loop	after	the	train-test	split.	In	the	inner	loop:	split	data	again	just	like	in	the	outer	
loop	 to	 obtain	 training	 set	 and	 validation	 set	 for	 an	 inner	 10	 cross-validation	 iterations	 with	 each	
hyperparameter	setting	(in	total	192	combinations	for	RF	and	384	for	SVM,	leading	to	73,728	combinations	
with	every	10	iterations).	Next,	we	scale	training	features	by	subtracting	the	median	and	dividing	by	the	
inter-quartile	range	(makes	them	robust	to	outliers	we	identified	above).		We	apply	these	scaling	statistics	
calculated	 from	 the	 training	 set	 also	 to	 the	 test	 set.	 Then,	 we	 iterate	 through	 hyperparameters	
(Supplementary	Tables	1	and	2).	RF	is	used	for	feature	selection.	Afterward,	the	remaining	features	are	
used	for	training	the	SVM	classifier	with	specific	hyperparameter	settings.	We	track	the	selected	features	
for	each	run	and	compute	the	frequency	with	which	they	are	selected	across	iterations	for	the	outer	loop.	
The	 SVM	 classifications	 are	 validated	 with	 the	 test	 sub-subset	 (inner	 cross-validation).	 This	 provides	
optimized	 hyperparameter	 settings	 from	 the	 inner	 cross-validation	 loop.	 Back	 to	 the	 outer	 loop,	 we	
recombine	training	and	validation	data	(which	were	separated	in	the	inner	loop)	-	still	keeping	test	data	
separate.	We	set	hyperparameters	to	the	best	settings	obtained	in	the	inner	loop.	Then,	we	train	the	model	
and	record	results:	RF	is	again	used	for	feature	selection,	which	leads	to	feature	importance	(FI)	statistics	
used	for	the	results.	Afterward,	SVM	classifies	the	reaming	features,	which	are	then	validated	with	the	test	
set	(outer	cross-validation).	After	this,	the	next	iteration	of	the	outer	loop	begins. 

	
The	inner	cross-validation	loop	is	the	model	selection	loop	wherein	hyperparameters	can	
be	optimized	without	influence	from	the	test	set	to	ensure	an	unbiased	estimate	of	model	
generalization	 performance.	 The	 outer	 cross-validation	 loop	 is	 the	 standard	 cross-
validation	loop	used	to	estimate	model	generalization	performance	using	training	and	test	
set	 partitioning.	 Using	 a	 nested	 cross-validation	 loop	 to	 separate	 hyperparameter	
optimization	and	a	model	performance	optimization	is	a	well-documented	approach	to	
ensuring	the	validity	of	machine	learning	results	and	preventing	overfitting	(Stone	1974,	
Cawley	 and	 Talbot	 2010).	 This	 is	 particularly	 necessary	 for	 the	 problem	
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presented	in	this	work,	where	the	number	of	subjects	is	low,	and	the	number	of	features	
is	relatively	high.	Under	such	conditions,	both	overfitting	and	underfitting	due	to	a	poor	
choice	in	hyperparameters	can	significantly	affect	model	performance.	Therefore	more	
robust	methods	like	nested	cross-validation	are	required.			
Since	N<<P	and	the	complexity	of	the	problem	is	such	that	we	expect	the	possibility	of	
considerable	individual	differences	among	the	patient	population,	the	influence	of	a	single	
data	 point	 can	 be	 significant.	 This	 means	 learning	 a	 classification	 rule	 that	 is	 nearly	
optimal	 for	 one	 problem	 is	 quite	 difficult	 unless	 hyperparameter	 tuning	 is	 done.	
Technically,	hyperparameter	tuning	should	always	be	done	for	a	"final	model".	Still,	for	
more	 straightforward	 problems	 with	 good	 data	 representation,	 the	 influence	 of	
hyperparameters	should	not	be	as	large	as	they	are	in	our	situation.	So	hyperparameter	
tuning	is	more	a	necessity	due	to	the	complexity	of	our	problem.	The	validity	of	our	results	
comes	 from	 the	 nested	 cross-validation	 loop	 we	 used,	 the	 way	 we	 search	
hyperparameters	to	prefer	less	complex	and	therefore	more	general	solutions	(e.g.,	using	
fewer	features),	and	the	empirical	plausibility	of	the	features	that	were	selected.	In	other	
words,	 we	 performed	 the	 necessary	 step	 of	 hyperparameter	 optimization,	 but	 in	 a	
cautious	and	conservative	way	to	ensure	the	validity	of	our	results.		

	
As	mentioned	before,	we	focus	here	on	two	ML	classifiers:	SVM	and	RF.	In	the	following,	
we	describe	their	general	functionality	as	well	as	their	application	in	this	work.	

	
2.4.	Feature	Space	
Prior	to	using	the	features	in	the	machine	learning	procedure,	we	checked	them	manually	
for	general	plausibility.	This	led	us	to	remove	five	Volume	features	from	the	freesurfer	
volumetrics	 outcome:	 ventricle	 and	 white	 matter	 hyperintensity	 measurements	 (5th	
Ventricle,	 left	 WM	 hyperintensities,	 right	 WM	 hyperintensities,	 left	 non-WM	
hyperintensities,	 and	 right	 non-WM	 hyperintensities).	 For	 technical	 reasons,	 these	
volumes	were	not	obtained	in	the	image	preprocessing.	

	
In	the	end,	we	used	the	following	feature	spaces:	

1. Empirical	features	(800	dimensions)	
a. 379	values	for	regional	Abeta	burden	in	SUVR,	measured	from	AV-45	PET		
b. One	value	for	the	averaged	global	Abeta	burden	
c. 379	values	for	regional	Tau	burden	in	SUVR,	measured	from	AV-1451	PET		
d. One	value	for	the	averaged	global	Tau	burden	
e. 40	Volume	measures	from	HCP	standards	image	processing	

2. Simulated	features	(379	dimensions)	
a. 379	 regional	 LFP	 peak	 frequencies,	 averaged	 over	 201	 simulations	with	

different	scaling	factor	G	
3. Combined	features	(1179	dimensions)	

a. All	features	from	above	
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2.5.	Nested	Cross-Validation	Scheme		
Our	 nested	 cross-validation	 scheme	 is	 illustrated	 in	 Figure	 2.	 By	 nesting	 two	 cross-
validation	 loops,	 we	 are	 able	 to	 simultaneously	 perform	 feature	 selection	 and	 model	
selection	robustly.	Subjects	are	portioned	 into	 training	and	 test	 sets	 in	 the	main	outer	
loop.	 The	 training	 set	 is	 then	 treated	 as	 if	 it	 were	 the	 full	 dataset	 in	 the	 inner	 cross-
validation	loop,	where	it	is	split	again	into	a	smaller	training	set	and	a	validation	set.	In	
this	inner	loop,	each	parameter	setting	of	the	classifier	(Supplementary	Tables	1	and	2)	
undergoes	10-fold	cross-validation	with	 feature	selection	performed	 independently	on	
each	 run.	 These	 variations	 on	 the	model	 can	 then	 be	 compared	 by	 their	 performance	
against	the	validation	set.	The	best	performing	model	parameters	are	then	used	to	train	a	
new	 classifier	 on	 the	 larger	 training	 set	 defined	 in	 the	 outer	 loop,	 with	 performance	
measured	on	the	actual	test	set.	The	features	selected	in	the	outer	loop	are	stored	so	that	
the	frequency	with	which	each	feature	is	selected	can	be	measured.	This	entire	process	is	
repeated	 100	 times	 in	 order	 to	 obtain	 statistically	 reliable	 estimates	 of	 our	 chosen	
performance	metrics	and	feature	 importance	metrics.	This	 is	also	why	we	use	random	
sampling	with	replacement	 to	partition	 training	and	 test	data	since	 it	allows	a	greater	
number	of	cross-validation	iterations	for	statistical	evaluation	of	our	models.		
	
2.6.	Classifiers	

Two	types	of	classifiers	that	are	suitable	for	small-sample	classification	problems	were	
used:	 the	 kernel-based	 SVM	 (Cortes	 and	 Vapnik	 1995)	 and	 the	 decision-tree	 based	
Random	Forest	(RF)	(Breiman	2001).	SVMs	and	RFs	operate	on	fundamentally	different	
principles.		

An	SVM	aims	to	define	a	decision-boundary,	or	a	set	of	boundaries	in	the	case	of	multi-
class	classification,	which	partitions	the	feature	space	into	class-defining	regions.	In	the	
very	simple	case	of	only	two	features	and	two	classes,	this	would	mean	separating	two	
clusters	of	points	on	a	two-dimensional	plot	with	a	 line.	 It	does	so	 in	such	a	way	as	to	
maximize	 the	 margins	 between	 the	 boundaries	 and	 the	 points	 nearest	 to	 those	
boundaries,	which	are	referred	to	as	the	support	vectors.	When	this	is	not	possible	in	the	
original	 feature	 space,	 nonlinearity	 is	 introduced	 via	 the	 SVM’s	 kernel	 function.	 This	
function	is	used	to	project	the	data	into	an	arbitrarily	high	dimensional	space	wherein	the	
best	decision	boundary	is	linear	(i.e.,	a	hyperplane).	The	projection	is	then	reversed	so	
that	the	decision	boundary	can	be	projected	back	into	the	original	feature	space,	resulting	
in	a	nonlinear	boundary.	
	
On	the	other	hand,	an	RF	builds	many	decision	trees	based	on	finding	the	best	partitioning	
of	random	subsets	of	features.	Each	of	those	decision	trees	is	constructed	by	a	set	of	rules,	
learned	from	the	data,	organized	in	a	hierarchy	that	determines	the	decision	process	for	
classification.	 So-called	 hyperparameters	 of	 the	 RF	 define	 how	 the	 trees	 should	 be	
constructed,	e.g.,	how	many	layers	they	have	or	how	many	features	are	involved	in	each	
layer.	Each	data	point	 is	 classified	by	each	 tree	based	on	 the	path	 it	 travels,	 given	 the	
values	of	each	feature.	Each	tree	is	then	given	a	‘vote’	on	how	to	classify	the	datapoint.	
Finally,	a	classification	decision	of	the	RF	is	made	by	pooling	all	of	the	trees'	decisions.		
	
By	training	two	classifiers	based	on	different	underlying	machine	learning	mechanisms,	
we	provide	more	robust	evidence	 that	 the	pattern	 in	classification	performance,	when	
combining	simulated	and	empirical	features,	is	reliable	and	clinically	relevant,	and	that	

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 1, 2021. ; https://doi.org/10.1101/2021.02.27.433161doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.27.433161
http://creativecommons.org/licenses/by-nc-nd/4.0/


	

	

13	

this	pattern	is	driven	by	a	reliably	reoccurring	subset	of	the	features	themselves,	rather	
than	by	particular	mechanisms	underlying	a	classification	algorithm.	
	

2.7.	Feature	Selection	Methods	

For	each	classifier,	we	used	an	appropriate	feature	selection	method:	

2.7.1.	SVM	feature	selection	

To	select	features	for	the	SVM	classifier,	we	ranked	features	in	the	training	set	according	
to	 their	F-statistic,	as	 in	an	ANOVA	analysis,	which	estimates	 the	 linear	dependence	of	
each	feature	on	the	class	labels.	We	chose	the	top	k	features	for	varying	values	of	k	as	part	
of	the	model	selection	phase	of	our	nested	cross-validation	loop	(Supplementary	Table	
1	for	values).		

2.7.2.	RF	feature	selection	

RFs	incorporate	their	own	embedded	feature	selection	process.	Here	we	used	entropy	to	
allow	 the	 classifier	 to	 rank	 features	 by	 information	 gain	 while	 building	 trees.	 The	
maximum	number	of	allowable	features	was	the	square	root	of	the	total	number	of	input	
features,	34.	

2.8.	Classification	Experiments	

In	order	to	establish	the	contribution	of	our	feature	sets	separately	from	the	contribution	
of	our	classification	approach,	we	completed	nine	experiments	organized	in	a	3x3	grid	
(three	 feature	 sets	 by	 three	 classification	 approaches).	 As	 described	 above,	 the	 three	
feature	sets	used	are	the	empirical	features,	the	simulated	features,	and	the	combination	
of	empirical	and	simulated	features	via	concatenation.	For	our	classification	approaches,	
we	use	the	SVM	and	RF	approaches	already	described,	as	well	as	a	combined	approach.	In	
the	combined	method,	we	use	the	RF	for	feature	selection.	Its	embedded	feature	selection	
approach	is	well-designed	for	taking	into	account	the	interactions	among	large	numbers	
of	 features	 instead	 of	 the	 univariate	method	 used	with	 the	 SVM.	 The	 SVM	 is	 used	 for	
classification	 due	 to	 its	 power	 in	 low-sample	 settings	 once	 a	 robust	 feature	 set	 is	
preselected,	owed	in	part	to	its	maximum-margin	objective.		

2.9.	Classification	Performance	Evaluation	

We	 used	 the	 weighted	 F1-score	 to	 evaluate	 classifier	 performance.	 This	 metric	 is	
particularly	 beneficial	 for	 classification	 problems	 with	 imbalanced	 classes,	 where	
classification	accuracy	alone	can	be	misleading	(consider	a	classifier	that	only	predicts	
Healthy	Control	with	probability	1:	it	would	have	a	45.5%	classification	accuracy,	which	
can	be	misinterpreted	as	better	than	chance	for	a	3-class	problem).	The	weighted	F1-score	
is	computed	by	taking	each	class-wise	F1-score,	which	itself	is	an	average	of	precision	and	
recall	for	the	given	class,	and	averaging	those	F1-scores	together	weighted	by	the	number	
of	samples	in	each	class:		

𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑	𝐹1 =
1
𝑁"𝑓𝑟(𝐶%)𝐹1"!

%∈'

	

where	N	is	the	total	number	of	data	samples,	K	is	the	number	of	classes	represented	by	
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Ck,	fr(Ck)	is	the	frequency	of	class	k,	and		

𝐹1 = 2
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙	

For	 comparison	of	weighted	F1-scores	 between	 the	 groups	 (empirical	 data,	 simulated	
data,	and	combined	data	in	the	feature	space)	we	used	the	Wilcoxon	Signed-Rank	test,	as	
the	Shapiro-Wilk	test	revealed	p	<	0.01	for	the	empirical	and	combined	approach	(non-
normal	distributed)	and	p	=	0.07	for	the	simulated	approach	(normal	distributed),	leading	
to	the	usage	of	a	non-parametric	test.	We	assessed	the	significance	by	using	data	from	100	
cross-validation	runs,	leading	to	100	data	points	per	group.	

2.10.	Feature	Importance	Metrics	
We	 tracked	 two	 metrics	 for	 feature	 importance.	 The	 most	 direct	 feature	 importance	
metric	 is	 the	 feature	 importance	 statistic	 used	 for	 feature	 selection	 itself,	 i.e.,	 the	 F-
statistic	for	the	SVM	and	the	entropy	measure	for	the	RF.	In	conjunction,	we	also	tracked	
the	selection	frequency,	defined	as	the	proportion	of	outer	cross-validation	iterations	in	
which	each	feature	was	selected.	We	compare	and	contrast	these	two	metrics	and	discuss	
their	agreement	and	differences	below.	
	

3. RESULTS	
	

3.1.	Data	properties	and	feature	selection	

In	the	beginning,	we	performed	basic	statistical	analysis	to	characterize	the	feature	space	
with	which	we	run	the	classification	analysis	to	assess	the	quality	of	the	data.		

The	 distribution	 of	 simulated	 LFP	 frequencies,	 Abeta	 SUVR,	 Tau	 SUVR,	 and	 regional	
Volumes	and	their	interdependency	are	shown	in	Figure	3.	Abeta	(p	=	0.0018)		and	Tau	
SUVR	 (p	 =	 0.0005)	 are	 significantly	 different	 between	 AD	 and	 HC	 after	 Bonferroni-
correction.	LFP	frequency	differs	significantly	between	AD	and	MCI	(p	=	0.0316)	but	is	not	
significant	 after	 Bonferroni-correction.	 	 Interestingly,	 in	 the	 existing	 data,	 there	 is	 no	
significant	difference	in	the	mean	volumes	between	groups.	

3.2.	Classification	results	for	all	experiments	
As	described	before,	we	were	performing	nine	experiments	with	different	classification	
schemes	 and	 feature	 sets.	 The	 combined	 classification	 scheme	 with	 SVM	 and	 RF	
performed	best.	However,	in	all	schemes,	it	was	shown	that	the	combined	feature	space	
outperformed	both	the	empirical	and	the	simulated	feature	space	(Table	1).	A	detailed	
description	of	the	schemes	with	RF	only	and	SVM	only	can	be	found	in	Supplementary	
Tables	1	and	2.	For	a	more	detailed	visualization	of	the	results	of	SVM	only	and	RF	only	
classification,	consider	Supplementary	Figures	1	and	2.	
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Table	1.	Classification	performance	for	different	experimental	designs.	

F1-score	 SVM	 RF	 SVM	+	RF	
Empirical	features	 0.6756	 0.6304	 0.6434	
Simulated	features	 0.6338	 0.6501	 0.6607	
Combined	features	 0.7182	 0.6699	 0.7428	

	
	

	

Figure	3.	Characteristics	of	empirical	feature	space.	In	(A),	regional	distributions	of	Abeta,	Tau,	and	LFP	
frequency	are	shown	for	all	groups	in	a	3D	scatterplot.	Red	datapoints	symbolize	regions	of	AD	patients,	
green	points	MCI	patients,	and	blue	points	HC.	Each	scatters	point	stands	for	one	region	of	one	subject.	Color	
density	is	normalized	between	groups.	A	kernel	density	estimate	of	the	corresponding	histograms	is	shown	
(projection	of	the	3D-plot	to	one	axis).	In	particular,	it	can	be	seen	a	string	of	outliers	with	very	high	Tau	
values	 in	 the	 AD	 group	 and	 in	 parts	 in	 the	 MCI	 group,	 which	 does	 not	 appear	 for	 HC.	 Moreover,	 AD	
participant’s	regions	show	higher	Abeta	values,	in	particular	for	lower	frequencies.	Besides,	boxplots	are	
presented	for	groupwise	comparisons	for	the	features	mean	Abeta	per	subject,	mean	Tau	per	subject,	mean	
simulated	LFP	frequency	per	subject,	and	mean	Volume	per	subject.	A	Kruskal-Wallis-test	was	performed	
to	assess	significance:	*	marks	significance	with	p>0.05;	**	marks	significance	after	Bonferroni-correction	
with	p	<	0.0042.	(B)	Abeta	SUVR	is	significantly	different	between	AD	and	HC	(p	=	0.0018)	and	MCI	(p	=	
0.0454),	but	not	between	HC	and	MCI	(p	=	0.8113).	(C)	Tau	SUVR	is	only	significantly	different	between	AD	
and	HC	 (p	=	0.0005),	 but	 not	 between	AD	and	MCI	 (p	=	0.1736)	 or	HC	 and	MCI	 (p	=	0.2671).	 (D)	 LFP	
frequency	is	only	significantly	different	between	AD	and	MCI	(p	=	0.0316),	but	not	between	AD	and	HC	(p	=	
0.2160)	 or	 HC	 and	 MCI	 (p	 =	 0.4716).	 (E)	 The	 mean	 Volume	 of	 all	 regions	 does	 not	 show	 significant	
differences:	AD	and	MCI	(p	=	0.7056,	AD	and	HC	(p	=	0.5102)	or	HC	and	MCI	(p	=	0.1405).	

	

3.3.	Classification	Using	Random	Forest	and	SVM	Together		

Random	Forest	was	used	 in	 the	 inner	 cross-validation	 loop	 (10	 iterations)	 to	perform	
multivariate	 feature	 selection.	 In	 the	 outer	 cross-validation	 loop	 (100	 iterations),	 the	
features	used	by	the	best	random	forest	model	were	then	used	to	train	an	SVM.		

Classification	 F1-score	 and	 normalized	 confusion	matrices	 are	 given	 in	Figure	 4.	 The	
combined	 approach	 (0.7428)	 outperformed	 the	 empirical	 one	 (0.6434)	 by	 about	 0.1	
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(Figure	4D),	mainly	because	of	an	 improvement	 in	 the	classification	of	 the	MCI	group	
(Figure	4A-C).	We	used	the	Wilcoxon	Signed-Rank	test	from	100	cross-validation	runs	to	
assess	significance	(Shapiro-Wilk	test	of	normality	for	the	F1	score	distributions	revealed	
p	<	0.01	for	empirical	and	combined	approach	and	p=0.07	for	the	simulated	approach,	
leading	 to	 the	usage	of	 a	non-parametric	 test).	The	differences	between	 the	 combined	
approach	and	both	other	approaches	were	highly	significant	(combined	and	empirical:	p	
=	2.52	x10-11;	combined	and	simulated:	p	=	1.6	x10-7),	meanwhile	there	was	no	significant	
difference	between	the	empirical	and	simulated	approach	(p	=	0.34).		

	

	

Figure	 4.	 Results	 of	 the	 nested	 cross-validation	 classification	 approach.	 (A-C)	 Confusion	 matrices	 are	
computed	by	summing	 the	confusion	matrices	across	all	100	cross-validation	runs	and	normalizing	per	
class.	In	particular,	the	combined	approach	improved	the	prediction	of	MCI	participants,	as	AD	and	HC	were	
already	 quite	well	 distinguishable	 by	 the	 empirical	 features.	 (D)	 Boxplots	 of	mean	 F1-scores	 for	 three	
different	 feature	 spaces.	The	 combined	approach	 (0.7428)	outperformed	 the	empirical	one	 (0.6434)	by	
about	0.1.	 Significance	 assessment	with	 the	Wilcoxon	Signed-Rank	 test	 from	100	 cross-validation	 runs:	
combined	vs.	empirical:	p	=	2.52	x10-11;	combined	vs.	simulated:	p	=	1.6	x10-7,		empirical	vs.	simulated	p	=	
0.34.	
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As	 a	 further	 analysis	 to	understand	 this	 classification	 improvement,	we	 calculated	 the	
feature	importance.	Figure	5A	shows	the	mean	entropy-based	feature	importance	given	
by	the	Random	Forest	classifier	for	100	outer	cross-validation	runs.	This	is	used	just	to	
show	that	there	is	a	decreasing	curve,	as	we	would	expect	if	meaningful	features	are	found	
(as	opposed	to	a	more	uniform	distribution).		Many	of	the	more	important	features	seem	
to	be	biologically	plausible	in	context	of	AD	(Figure	5B),	as,	e.g.,	Tau	in	entorhinal	cortex	
(Braak	 stage	 1),	 frequencies	 in	 the	 thalamus	 (as	 important	 rhythm	 generator)	 	 and	
putamen,	and	volumes	in	putamen	and	hippocampus	(as	signs	of	atrophy).	Moreover,	we	
observed	 that	 features	 related	 to	 important	 AD-related	 functional	 networks	 (as	 the	
default-mode	network	(Grothe,	Teipel	et	al.	2016)	and	the	visual	ventral	stream	(Grill-
Spector	and	Malach	2004,	Kravitz,	Saleem	et	al.	2013))	are	involved	with	a	higher	feature	
importance	 rank.	 A	 table	 with	 the	 full	 name	 and	 corresponding	 functional	 network	
according	 to	Rosen	 and	Halgren	 (Rosen	 and	Halgren	2020)	 for	 the	 50	highest	 ranked	
features	is	given	in	Table	2.		

We	 also	 showed	 that	 feature	 relevance	 is	 dependent	 on	 the	 structural	 degree	 of	 the	
regions	in	the	underlying	SC	network	(Figure	5C).	This	is	an	indicator	of	network	effects	
contributing	 to	 the	 improved	 classification	 and	 another	 indicator	 for	 meaningful	
classification	results.		

	

	

Figure	5.	Feature	importance	(FI)	distribution.	(A)	Mean	RF-derived	feature	importance	from	100	outer	
cross-validation	 runs.	 Entropy	 criterion	 with	 combined	 feature	 types	 shown	 here.	 Feature	 importance	
values	are	normalized,	so	all	features	sum	to	1.	In	shaded	blue,	half	standard	deviation	𝜎	is	displayed	for	
each	feature.	(B)	Top	50	features	across	all	cross-validation	runs.	Both	empirical	(Tau	in	dark	blue,	Abeta	
in	 green,	 Volume	 in	 light	 blue),	 as	 well	 as	 simulated	 frequencies	 (red),	 contributed	 to	 the	 improved	
classification.	Many	features	seem	moreover	to	be	biologically	plausible	in	the	context	of	AD,	e.g.,	Tau	in	the	
entorhinal	cortex,	thalamic	and	putaminal	frequencies,	and	putaminal	as	well	as	hippocampal	volumes.	(C)	
Visualization	of	the	SC	graph	with	color	indicating	FI	of	the	regional	LFP	frequencies,	while	vertex	diameter	
reflects	the	structural	degree.	It	shows	a	network	dependency	of	the	LFP	FI.	Only	edges	with	connection	
strength	above	the	95th	percentile	are	shown.	
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4. DISCUSSION	
	
In	this	study,	we	show	that	the	involvement	of	virtual,	simulated	TVB	features	into	ML	
classification	can	lead	to	an	improved	classification	between	HC,	MCI,	and	AD.		
The	diagnostic	value	of	the	underlying	empirical	features	can	be	improved	by	integrating	
the	 features	 into	a	multi-scale	brain	simulation	 framework	 in	TVB.	We	showed	for	ML	
algorithms	a	superiority	of	 feature	sets	 that	contain	both	the	empirical	and	the	virtual	
derived	 metrics.	 The	 absolute	 gain	 of	 accuracy	 was	 10	 %.	 Keeping	 in	 mind	 that	 all	
differences	 between	 the	 subjects	 have	 to	 be	 derived	 from	 their	 amyloid	 PET	 signal	
(because	all	other	factors,	e.g.	the	underlying	SC,	are	the	same)	this	provides	evidence	that	
TVB	is	able	to	decode	the	information	that	is	contained	in	empirical	data	like	the	amyloid	
PET.	More	specific	for	the	PET	and	its	usage	in	diagnostics,	it	highlights	the	relevance	of	
spatial	distribution,	which	is	often	not	considered	in	its	analysis.	
	
The	main	reason	for	this	improvement	seems	to	be	a	better	classification	of	MCI	subjects.	
without	the	simulated	features,	the	models	frequently	misclassify	MCI	subjects	as	HC.		

In	 contrast,	 the	 simulated	 features	 alone	 result	 in	 more	 misclassification	 of	 healthy	
controls	 as	 either	MCI	or	AD	subjects	 compared	 to	using	 the	empirical	 features	alone.	
However,	combining	both	the	empirical	features	with	the	simulated	features	appears	to	
add	their	strengths	in	a	clinically	beneficial	way;	these	models	retain	all	or	most	of	the	
ability	to	correctly	classify	healthy	controls	with	the	empirical	Features	and	retain	much	
of	the	ability	of	the	simulated	Features	to	classify	MCI	patients.	The	processing	inside	TVB	
seems	to	reorganize	the	existing	data	beneficially.		
In	 theory,	a	 larger	 number	 of	 available	 features	 could	 provide	 a	 machine	 learning	
algorithm	greater	 flexibility	 in	 finding	useful	combinations,	simply	due	to	there	being	a	
higher	degree	 of	 freedom	during	 feature	 selection	 and	 weighting.	 However,	 the	 equal	
empirical	 data	 source	 in	 combination	 with	 the	 used	 nested	 cross-validation	 method	
protects	from	an	overfitting	bias	due	to	the	larger	feature	space.	If	the	explanation	for	the	
improvement	 in	 classification	 accuracy	 was	 simply	 the	 presence	 of	 additional	 noisy	
features,	we	would	see	a	flatter	feature	importance	distribution	than	shown	in	Figure	5,	
and	 therefore	 a	 more	 random	 distribution	 of	 selected	 features	across	 the	 100	 cross-
validation	iterations.	 Instead,	we	see	that	only	a	few	features	with	high	 importance	are	
consistently	 guiding	 classification,	 indicating	 that	 they	 in	 fact	 provide	 useful	
discriminative	information.	Preventing	this	kind	of	overfitting	via	feature	selection	is	a	
key	 motivation	 behind	 our	 use	 of	the	 nested	 cross-validation	 approach	(Figure	
2):	since	the	features	 are	 selected	 on	 the	 training	 and	 validation	(test)	set	 in	 the	 inner	
loop,	any	overfitting	due	to	feature	selection	should	not	be	transferred	to	the	test	set	in	
the	outer	loop.	
We	 have	 shown	 that	 only	 a	 few,	 selected	 features	 seem	 to	 play	 a	 crucial	 role	 in	
classification	throughout	the	cross-validation	iterations	(Figure	5).	In	the	following,	we	
will	 further	evaluate	 the	plausibility	of	 these	 features	with	a	detailed	 interpretation	of	
these	features	in	a	biological	context.	

Following,	we	 take	a	closer	 look	at	 the	50	 top	 features	 (which	represent	4.24%	of	 the	
total)	comprised	of	33	empirical	features	(17	Abeta,	12	Tau,	4	Volume)	and	17	simulated	
features	 (Table	2).	The	anatomical	distribution	of	 feature	 relevance	 is	 summarized	 in	
Figure	6,	 for	each,	Abeta,	Tau,	and	LFP.	We	will	 therefore	elucidate	 in	how	far	the	top	
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features	are	biologically	plausible	in	context	of	AD,	and	if	this	offers	a	possible	explanation	
for	the	improved	classification	performance	with	simulated	features.	

Table	2.	Full	name	description	and	functional	network	association	of	the	50	top	features	with	the	
highest	feature	importance	in	the	classification	problem.	Parcellation	adapted	from	(Glasser,	Coalson	
et	al.	2016).	Functional	networks	adapted	from	(Rosen	and	Halgren	2020).	DS:	Dorsal	Stream,	VS:	Ventral	

Stream,	SMA:	Supplementary	motor	area	

Rank	 Feature	Name	 Full-Parcel-Name	 Network	

1	 L_EC_ROI_Tau:	 Entorhinal	cortex	 Default	mode	

2	 L_TGd_ROI_Abeta	 Dorsal	temporal	gyrus	 Default	mode	

19	 R_PHA1_ROI_Tau	 Parahippocampal	area	1	 Default	mode	

21	 L_POS1_ROI_Tau	 Parieto-occipital	sulcus	area	1	 Default	mode	

22	 L_EC_ROI_Abeta	 Entorhinal	cortex	 Default	mode	

26	 R_POS1_ROI_Abeta	 Parieto-occipital	sulcus	area	1	 Default	mode	

32	 L_pOFC_ROI_Tau	 Posterior	orbitofrontal	cortex	 Default	mode	

4	 R_FST_ROI_Tau	 Fundus	of	superior	temporal	sulcus	 Visual	

8	 R_V3_ROI_LFP	 Visual	area	3	 Visual	

9	 L_V2_ROI_Abeta	 Visual	area	2	 Visual	

10	 R_V1_ROI_Abeta	 Visual	area	1	 Visual	

13	 R_ProS_ROI_Abeta	 Prostriate	region	 Visual		

38	 R_FST_ROI_Abeta	 Fundus	of	superior	temporal	sulcus	 Visual	

39	 R_MST_ROI_LFP	 Medial	superior	temporal	area	 Visual	

49	 L_MST_ROI_Abeta	 Medial	superior	temporal	area	 Visual	

6	 R_VVC_ROI_Abeta	 Ventral	visual	complex	 Visual	(VS)	

7	 L_VVC_ROI_LFP	 Ventral	visual	complex	 Visual	(VS)	

11	 L_VMV3_ROI_LFP	 Ventromedial	visual	complex	3	 Visual	(VS)	

27	 R_FFC_ROI_Abeta	 Fusiform	face	complex	 Visual	(VS)	

33	 R_VMV2_ROI_LFP	 Ventromedial	visual	area	2	 Visual	(VS)	

35	 L_PH_ROI_Tau	 Area	PH	in	lateral	occipital	lobe	 Visual	(VS)	

40	 R_PH_ROI_Tau	 Area	PH	in	lateral	occipital	lobe	 Visual	(VS)	

45	 R_VMV3_ROI_LFP	 Ventromedial	visual	complex	3	 Visual	(VS)	

47	 R_VMV3_ROI_Abeta	 Ventromedial	visual	complex	3	 Visual	(VS)	

42	 L_V3B_ROI_LFP	 Visual	area	3b	 Visual	(DS)	

16	 R_PGp_ROI_LFP	 Parietal	area	G	posterior	 Dorsal	attention	

17	 R_PGp_ROI_Abeta	 Parietal	area	G	posterior	 Dorsal	attention	

12	 R_PoI1_ROI_LFP	 Posterior	insula	1	 Cingulo-opercular	

18	 R_PI_ROI_Abeta	 Parainsular	cortex	 Cingulo-opercular	

36	 R_PI_ROI_LFP	 Parainsular	cortex	 Cingulo-opercular	

20	 L_TA2_ROI_LFP	 Temporal	region	A	 Auditory	
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30	 L_PBelt_ROI_Tau	 Parabelt	complex	(Auditory	cortex)	 Auditory	

28	 R_6mp_ROI_LFP	 Area	6	medial	posterior	(SMA)	 Somatomotor	

29	 L_Ig_ROI_Abeta	 Insula	granular	cortex	 Somatomotor	

34	 R_5m_ROI_Tau	 Area	5	medial	of	paracentral	lobule	 Somatomotor	

44	 R_3b_ROI_Abeta	 Area	3b	of	postcentral	gyrus	 Somatomotor	

14	 L_TGv_ROI_Tau	 Ventral	temporal	gyrus	 Language	

46	 L_45_ROI_Abeta	 Area	45	of	inferior	frontal	gyrus	 Language	

31	 R_TE1p_ROI_Abeta	 Temporal	area	1	posterior	 Frontoparietal	

37	 R_IFJp_ROI_Tau	 Inferior	frontal	junction	posterior	 Frontoparietal	

3	 Right-Thalamus-Proper_LFP	 Thalamus	proper	 Subcortical	

5	 Left-Putamen_LFP	 Putamen	 Subcortical	

23	 Left-Thalamus-Proper_LFP	 Thalamus	proper	 Subcortical	

41	 Right-VentralDC_LFP	 Ventral	diencephalon	 Subcortical	

43	 Right-Amygdala_Tau	 Amygdala	 Subcortical	

50	 Left-VentralDC_LFP	 Ventral	diencephalon	 Subcortical	

15	 Right-Putamen_Volume	 Putamen	 Volume	

24	 Left-Hippocampus_Volume	 Hippocampus	volume	 Volume	

25	 Right-Hippocampus_Volume	 Hippocampus	volume	 Volume	

48	 Left-Caudate_Volume	 Nucleus	caudatus	 Volume	

	

Most	of	 the	 tau	 top	 features	can	be	allocated	 to	 the	 temporal	 lobule,	which	 is	also	 the	
location	of	 early	Tau	deposition	according	 to	 the	neuropathological	BRAAK	and	Braak	
stages	I-III	(Braak	and	Braak	1991,	Braak	and	Braak	1997,	Braak,	Alafuzoff	et	al.	2006)	
and	the	location	of	increased	in-vivo	binding	of	18F-AV-1451	in	AD	(Cho,	Choi	et	al.	2016,	
Hansson,	Grothe	et	al.	2017).	In	particular,	the	entorhinal	cortex	is	a	consistent	starting	
point	of	the	sequential	spread	of	Tau	through	the	brain	(Braak	and	Braak	1991,	Cho,	Choi	
et	 al.	 2016)	 and	 also	 showed	 the	 most	 robust	 relationship	 between	 flortaucipir	 and	
memory	scores	in	a	recent	machine	learning	study	(Knopman,	Lundt	et	al.	2019).		

The	Abeta	Top	features	showed	a	more	disseminated	allocation	mostly	in	the	temporal,	
occipital,	frontal,	and	insular	cortices,	which	is	also	in	line	with	typical	amyloid	deposition	
and	locations	of	increased	AV45	uptake	in	AD	(Thal,	Rüb	et	al.	2002,	Grothe,	Barthel	et	al.	
2017).	Interestingly	there	is	some	regional	overlap	between	Abeta	and	Tau	top-features,	
namely	the	left	entorhinal	cortex	and	the	right	fundus	of	the	superior	temporal	sulcus.	
This	overlap	could	represent	a	potential	synergistic	effect	between	Abeta	and	Tau	in	these	
regions.	Synergism	effects	between	Abeta	and	Tau	in	the	temporal	lobe	are	an	important	
element	 in	 the	progression	 from	MCI	 to	AD.	They	have	been	described	 in	voxel-based	
analyses,	as	well	as	in	molecular	studies	(Vossel,	Zhang	et	al.	2010,	Khan,	Liu	et	al.	2014,	
Pascoal,	Mathotaarachchi	et	al.	2017).	 In	a	study	by	Halawa,	Gatchel	et	al.	 (2019)	both	
temporal	 tau	and	amyloid	burden	were	associated	with	an	 impairment	of	 activities	of	
daily	living.	Still,	the	combination	of	both	pathologic	markers	showed	an	association,	that	
by	far	surpassed	the	mere	additive	effect.	
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As	atrophy	is	a	known	phenomenon	in	NDD,	we	interpret	the	volume	loss	as	such.	The	
volume	 top	 features,	 derived	 from	 structural	MRI,	 correspond	 to	 the	most	 prominent	
atrophic	regions	in	AD.	Both	hippocampal	(Jack,	Petersen	et	al.	1997,	Killiany,	Gomez-Isla	
et	al.	2000),	as	well	as	striatal	atrophy	(Madsen,	Ho	et	al.	2010),	have	been	described	as	
prognostic	markers	of	AD.	Volumes	of	bilateral	hippocampi	and	the	right	putamen	were	
related	to	a	loss	of	memory	function	(Jack,	Petersen	et	al.	2000,	Zhao,	Li	et	al.	2015).	

	

	

Figure	6.	Anatomical	representation	of	feature	importance	(FI)	distribution.	Displayed	are	cortical	regions	
from	left,	right,	and	inferior	as	well	as	subcortical	regions.	The	color	indicates	the	feature	importance.	(A)	
Abeta	FI.	The	anatomical	patterns	reveal	high	importance	of	left-temporal	regions,	as	well	as	the	left	dorsal	
stream	in	the	parietal	and	occipital	cortex.	(B)	Tau	features	show	a	similar	pattern	as	Abeta,	but	with	a	
higher	focus	on	typical	Braak-stage-1	regions	(as	the	entorhinal	cortex).	(C)	Simulated	frequencies	do	not	
show	strong	 laterality	as	 the	empirical	 features	but	seem	to	have	a	 focus	 in	both	occipital	 lobes,	where	
typically	alpha	oscillations	occur.	Besides	this,	subcortical	areas	like	the	thalami	play	a	more	crucial	role	
than	for	Abeta	and	Tau.	For	more	detailed	information,	see	the	discussion	of	this	paper	and	Table	2.	

	

The	interpretation	of	the	simulated	features	is	more	complicated	and	needs	to	be	treated	
carefully.	While	LFP	and	EEG	differ	in	size	and	location	of	source	recording,	the	prevalent	
model	is	that	both	are	generated	by	synchronized	synaptic	currents	of	cortical	pyramidal	
cells,	and	both	show	the	same	type	of	oscillations	during	states	of	wakefulness	and	sleep	
(Steriade	 2003,	 Nunez	 and	 Srinivasan	 2005,	 Nunez	 and	 Srinivasan	 2006).	 Hence	 it	 is	
reasonable	 to	 assume	 that	 AD	 typical	 disturbances	 in	 EEG	 signal	 can	 in	 some	part	 be	
related	to	LFP	and	vice	versa.		

In	general,	the	simulated	features	depend	on	network	information.	Concurrently,	in	this	
work,	all	subjects	used	the	same	SC.	As	a	consequence,	the	difference	between	subjects	
can	be	attributed	to	the	spatial	distribution	of	their	respective	Abeta	PET.		
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Many	of	the	top	simulated	features	can	be	allocated	to	two	functional	areas.	Firstly,	the	
visual	 cortex	 including	 the	 ventral	 and	 dorsal	 stream,	 and,	 secondly,	 subcortical	
structures	like	the	thalamus	and	the	putamen.		

The	occipito-temporal	 and	occipito-parietal	 regions	 of	 the	 first	 area	 are	 typical	 alpha-
rhythm	generators	in	resting-state	EEG	(Barzegaran,	Vildavski	et	al.	2017).	Alteration	of	
these	posterior	alpha	sources	is	a	typical	phenomenon	in	AD	and	MCI	compared	to	HC	
(Babiloni,	 Del	 Percio	 et	 al.	 2018).	 These	 alterations	 could	 represent	 an	 alteration	 of	
memory	processes	in	the	visuospatial	and	episodic	compartment	and	were	also	used	to	
classify	between	MCI	and	HC	(Babiloni,	Del	Percio	et	al.	2018,	Smailovic	and	Jelic	2019).	

The	ventral	or	 ‘what’	stream	and	the	dorsal	or	 ‘where’	stream	have	been	implicated	in	
object	 recognition	 and	 spatial	 localization	 and	 are	 essential	 for	 accurate	 visuospatial	
navigation	(Grill-Spector	and	Malach	2004,	Kravitz,	Saleem	et	al.	2013).	 Impairment	 in	
visuospatial	navigation	is	a	potential	cognitive	marker	in	early	AD/MCI	that	could	be	more	
specific	than	episodic	memory	or	attention	deficits	(Coughlan,	Laczó	et	al.	2018,	Williams,	
An	et	al.	2020).	This	impairment	seems	to	be	caused	by	a	complex	interplay	of	Abeta	and	
Tau	burden	and	disturbances	in	the	underlying	functional	network,	which	is	represented	
well	 by	 our	 top	 features.	 Higher	 Abeta-burden	 in	 older	 adults	 was	 associated	 with	
decreased	neural	activity	in	the	ventral	visual	stream	(Rieck,	Rodrigue	et	al.	2015)	and	
Abeta-PET	 positive	 MCI	 patients	 perform	worse	 in	 a	 navigation	 task	 than	 Abeta-PET	
negative	MCI	 patients	 (Schöberl,	 Pradhan	 et	 al.	 2020).	 Other	 essential	 contributors	 to	
spatial	 navigation	 in	 the	 brain’s	 navigation	 circuit	 are	 the	 grid	 cells	 in	 the	 entorhinal	
cortex,	which	is	primarily	affected	by	tau	deposition	(Rowland,	Roudi	et	al.	2016).	Tau-
related	disruption	of	grid-cell	firing	in	the	entorhinal	cortex	of	transgenic	mice	expressing	
human	tau	leads	to	increased	theta	oscillations	that	were	associated	with	spatial	memory	
deficits	(Fu,	Rodriguez	et	al.	2017).	In	humans,	the	performance	in	an	entorhinal	cortex-
based	 immersive	 virtual	 reality	 navigation	 task	 helped	 to	 differentiate	 between	 MCI	
patients	at	low	and	high	risk	of	developing	AD	(Howett,	Castegnaro	et	al.	2019).	

	

On	a	network	level,	theta-band	oscillations	in	high-density	EEG	in	a	network	consisting	of	
the	temporal	 lobe,	striatum,	 inferior	occipital	 lobe,	and	cerebellum	correlated	with	the	
performance	in	a	spatial	memory	task	(Bauer,	Buckley	et	al.	2020)	and	the	reduction	in	
visual	processing	network	complexity	correlated	with	the	stage	of	AD	(Huang,	Beach	et	al.	
2020).	Interestingly,	a	recent	review	focused	on	spatial	navigation	measured	with	LFPs	
revealed	that	the	neural	representation	of	spatial	features	occurs	on	a	mesoscopic	level	
of	mainly	theta	oscillations	(Kunz,	Maidenbaum	et	al.	2019)	and	thus	the	same	level	that	
TVB	operates	(Ritter,	Schirner	et	al.	2013).		 	

In	recent	years	there	has	been	considerable	evidence	that	thalamic	dysfunction.	Mainly	
the	 anterior	 thalamus	 has	 been	 identified	 to	 play	 a	 crucial	 role	 in	 early	 disease	
progression	 (Aggleton,	Pralus	et	al.	2016).	The	anterior	Thalamus	 is	part	of	 the	Papez	
circuit	and	as	such	strongly	connected	to	episodic	memory	(Aggleton	2014).	While	the	
relevance	of	the	(unparcellated)	thalamus	is	represented	by	the	simulated	features,	it	did	
not	play	an	important	role	as	an	empirical	feature.	This	disparity	makes	sense	for	Tau,	
considering	that	only	some	of	the	thalamic	nuclei	have	been	shown	to	contain	NFT	even	
in	late	stages	of	the	disease	(Rüb,	Stratmann	et	al.	2016)	and	therefore	a	strong	PET-signal	
is	unlikely.	In	MCI	patients	the	thalamus	displays	both	increased	and	decreased	functional	
connectivity,	which	could	be	a	hint	towards	loss	of	function	or	compensation	mechanisms	
(Cai,	Huang	et	al.	2015).	A	change	in	the	LFP	of	the	thalamus	supports	a	shift	in	function,	
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as	different	 frequency	bands	can	be	attributed	to	various	brain	functions	(Buzsáki	and	
Draguhn	 2004).	 According	 to	 Schnitzler	 and	 Gross	 (2005),	 faster	 rhythmic	 activities	
correspond	to	more	local	neuronal	communication,	while	slower	oscillations	likely	arise	
from	 larger	populations	within	wider-range	networks.	A	 change	 in	 the	 function	of	 the	
thalamus	 and	 other	 subcortical	 hubs	 could	 therefore	 have	 possible	 network	 effects	
detectable	in	LFP/EEG.	Reduced	complexity	of	the	EEG	signal	and	perturbations	in	EEG	
synchrony	are	significant	effects	of	AD	on	EEG	(Dauwels,	Vialatte	et	al.	2010,	Rossini,	Di	
Iorio	et	al.	2020).	

The	default	mode	network	(DMN)	was	exclusively	represented	by	empirical	top	features.	
The	DMN	is	consistently	affected	in	AD	(Grothe,	Teipel	et	al.	2016)	and	shows	the	earliest	
accumulation	of	Abeta	(Palmqvist,	Schöll	et	al.	2017).	Nevertheless,	the	empirical	features	
poorly	 performed	when	 classifying	MCI,	which	 can	 in	 some	 cases	 be	 interpreted	 as	 a	
prodromal	stage	of	AD	(Dubois,	Feldman	et	al.	2010).	This	could	partly	be	explained	by	
the	missing	network	information	of	the	empirical	features.	The	breakdown	of	functional	
connectivity	of	the	DMN	occurs	concurrently	with	Abeta	deposition	in	preclinical	subjects	
(Veitch,	Weiner	 et	 al.	 2019)	 and	 in	 the	 early	 stage	 of	MCI	 (Lee,	 Yoo	 et	 al.	 2016).	 It	 is	
possible	 that	 network	 disturbances,	 detectable	 by	 the	 simulated	 features,	 occur	 even	
earlier	 than	Abeta	deposition	 in	 the	DMN,	but	simulated	 features	do	not	represent	 the	
DMN.	Alves	et	al.	(Alves,	Foulon	et	al.	2019)	proposed	a	new	neuroanatomical	model	of	
the	DMN	that	includes	subcortical	structures	like	the	thalamus,	which	is	represented	by	
the	 simulated	 top	 features.	Following	 this	 approach,	 the	 combination	of	 empirical	 and	
simulated	 top	 features	 yields	 a	 more	 comprehensive	 description	 of	 this	 functional	
network	that	is	an	important	marker	in	the	disease	progression	of	AD.	

Network	disturbances	(as	seen	in	the	subcortical	hub	regions)	may	come	apparent	earlier	
than	stronger	Abeta	or	Tau	uptake	in	the	PET-Imaging	leading	to	a	better	classification	of	
the	MCI	group.	At	the	same	time,	simulated	features	only	use	the	amyloid	PET	and	cannot	
get	the	information	from	the	Tau-PET,	which	seems	to	better	correlate	with	the	cognitive	
decline	 of	 patients	 (Wennberg,	Whitwell	 et	 al.	 2019).	 This	missing	 information	 could	
therefore	be	a	reason	for	the	misclassification	of	HC	by	the	simulated	features.	Hence,	it	
would	be	of	great	interest	how	a	simulation	using	Tau-PET	performs	in	this	classification	
problem.	

As	a	limitation	of	our	study,	we	see	that	the	used	simulated	feature,	the	mean	simulated	
LFP	frequency	(averaged	across	a	wide	range	of	the	large-scale	coupling	parameter	G),	is	
not	directly	equivalent	to	a	biophysical	measurement	like	empirically	measured	LFP.		LFP	
frequency	was	averaged	across	the	global	scaling	factor	G.	G	scales	the	strength	of	long-
range	connections	in	the	brain	network	model	and	is	a	crucial	factor	in	the	simulation.	
Across	the	dimension	of	G,	many	different	dynamics	can	develop,	from	which	some	are	
similar	to	empirically	observed	phenomena,	but	others	are	not.	In	our	former	work,	we	
found	that	particular	areas	of	G	with	non-plausible	frequency	patterns	hold	the	potential	
to	 differentiate	 between	diagnosis	 groups	 (Stefanovski,	 Triebkorn	 et	 al.	 2019).	 This	 is	
mainly	because	of	the	underlying	mathematics	of	the	Jansen-Rit	model:	besides	two	limit	
cycles	that	are	producing	alpha-like	and	theta-like	activity,	the	local	dynamic	model	has	
an	 area	 of	 stable	 focus,	wherein	 no	 oscillations	 are	 produced	 in	 the	 absence	 of	 noise.	
Technically,	this	stable	focus	is	represented	as	a	zero-line	artifact	that	appears	mainly	in	
the	HC	group,	because	only	Abeta	values	above	a	critical	value	led	to	the	presence	of	the	
slower	theta-limit-cycle.	By	averaging	LFP	frequencies	across	the	whole	spectrum	of	G,	
we	 incorporate	 this	zero-line	 information,	which	 leads	 to	apparently	higher	mean	LFP	
frequencies	for	the	AD	group.	In	contrast,	in	the	area	of	plausible	results,	AD	has	lower	
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frequencies	–	as	it	would	be	expected	(Stefanovski,	Triebkorn	et	al.	2019).	This	can	also	
be	seen	as	another	advantage	of	TVB.	It	shows	how	TVB	is	not	just	reproducing	data	that	
we	could	also	obtain	with	EEG	or	intracranial	electrodes	but	delivers	‘artificial’	data	that	
is	still	informative.	

	
Another	limitation	of	this	study	is	the	limited	population	size	and	heterogeneity.	Although	
our	results	were	obtained	undergoing	careful	cross-validation,	future	studies	will	have	to	
reproduce	the	results	using	a	more	extensive	cohort.	Ideally,	external	validation	with	a	
dataset	outside	of	ADNI	could	be	performed.		

We	used	ML	as	an	approach	for	the	comparison	of	classifier	performance	with	empirical	
data	 against	 simulated	 data,	 which	 is	 wholly	 derived	 from	 the	 empirical	 data.	
Improvement	 in	 classification	 is	 then	 strong	 evidence	 for	 successful	 processing	 of	 the	
empirical	 data	 in	 TVB	 –	 TVB	 decodes	 the	 information,	 that	 is	 embedded	 within	 the	
empirical	data,	that	cannot	be	detected	by	statistics	or	ML	classifiers.	We	showed	in	ADNI	
data	that	TVB	can	derive	additional	information	out	of	the	spatial	distribution	pattern	in	
PET	images.		

Our	work	provides	novel	evidence	that	TVB	can	act	as	a	biophysical	brain	model	-	and	not	
just	like	a	black	box.	Complex	multi-scale	brain	simulation	in	TVB	can	lead	to	additional	
information,	 that	goes	beyond	the	 implemented	empirical	data.	Our	analysis	of	 feature	
importance	 supports	 this	 hypothesis,	 as	 the	 features	 with	 the	 highest	 relevance	 are	
already	well-known	AD	factors	and	hence,	biologically	plausible	surrogates	for	clinically	
relevant	information	in	the	data.	Moreover,	in	this	pilot	study,	we	demonstrate	that	TVB	
simulation	can	lead	to	an	improved	diagnostic	value	of	empirical	data	and	might	become	
a	clinically	relevant	tool.		
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