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ABSTRACT. 

INTRODUCTION: Computational brain network modeling using The 

Virtual Brain (TVB) simulation platform acts synergistically with machine 

learning and multi-modal neuroimaging to reveal mechanisms and improve 

diagnostics in Alzheimer’s disease.  

METHODS: We enhance large-scale whole-brain simulation in TVB with a 

cause-and-effect model linking local Amyloid β PET with altered excitability. 

We use PET and MRI data from 33 participants of Alzheimer’s Disease 

Neuroimaging Initiative (ADNI3) combined with frequency compositions of 

TVB-simulated local field potentials (LFP) for machine-learning 

classification. 

RESULTS: The combination of empirical neuroimaging features and 

simulated LFPs significantly outperformed the classification accuracy of 

empirical data alone by about 10% (weighted F1-score empirical 64.34% vs. 

combined 74.28%). Informative features showed high biological plausibility 

regarding the Alzheimer’s-typical spatial distribution.  

DISCUSSION: The cause-and-effect implementation of local hyperexcitation 

caused by Amyloid β can improve the machine-learning-driven classification 

of Alzheimer’s and demonstrates TVB’s ability to decode information in 

empirical data employing connectivity-based brain simulation.  

 

Keywords: Alzheimer’s Disease, The Virtual Brain, Multi-scale brain 

simulation, Machine Learning, Positron Emission Tomography 
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RESEARCH IN CONTEXT. 

 

1. SYSTEMATIC REVIEW. Machine-learning has been proven to augment 

diagnostics of dementia in several ways. Imaging-based approaches enable 

early diagnostic predictions.  However, individual projections of long-term 

outcome as well as differential diagnosis remain difficult, as the mechanisms 

behind the used classifying features often remain unclear. Mechanistic whole-

brain models in synergy with powerful machine learning aim to close this gap. 

2. INTERPRETATION. Our work demonstrates that multi-scale brain 

simulations considering Amyloid β distributions and cause-and-effect 

regulatory cascades reveal hidden electrophysiological processes that are not 

readily accessible through measurements in humans. We demonstrate that 

these simulation-inferred features hold the potential to improve diagnostic 

classification of Alzheimer's disease. 

3. FUTURE DIRECTIONS. The simulation-based classification model 

needs to be tested for clinical usability in a larger cohort with an independent 

test set, either with another imaging database or a prospective study to assess 

its capability for long-term disease trajectories. 
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1. INTRODUCTION

Although the spectrum of Alzheimer’s Disease (AD†)-related disease burden 

is broad and its early diagnosis a common modern health problem, the 

knowledge of underlying disease mechanisms remains incomplete. Besides the 

two hallmark proteins Amyloid β (Aβ) [1, 2] and Tau [3, 4], other involved 

factors have been identified, such as e.g., impairment of the blood-brain-

barrier [5], synaptic dysfunction [6], network disruption [7], mitochondrial 

dysfunction [8], neuroinflammation [9] as well as genetic risk factors [10]. 

While Aβ and Tau are widely accepted as involved core features [11, 12], their 

mutual interaction [13] and interaction with other factors [5] are incompletely 

understood. Comprehensive knowledge of this multifactorial interaction in the 

pathogenesis of AD is crucial for further therapeutic strategies, including 

recent developments of potentially disease-modifying anti-Aβ therapy with 

Aducanumab [14].  

 

The Virtual Brain (TVB, www.thevirtualbrain.org) is an open-source platform 

for modeling and simulating large-scale brain networks by using personalized 

                                                       

†
 ABBREVIATIONS: Alzheimer’s Disease - AD; Amyloid β – Aβ; The Virtual Brain – 

TVB; electroencephalography – EEG; local field potentials – LFPs; positron emission 
tomography – PET; mild cognitive impairment – MCI; healthy controls – HC; machine 
learning – ML; Alzheimer’s Disease Neuroimaging Initiative – ADNI; magnetic resonance 
imaging – MRI; structural connectivity – SC; support vector machines – SVM; random forest 
– RF; standardized uptake value ratio – SUVR; feature importance – FI. 
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structural connectivity models [15, 16]. TVB enables the model-based 

inference of underlying neurophysiological mechanisms across different brain 

scales that are involved in the generation of macroscopic neuroimaging signals 

including functional magnetic resonance imaging, electroencephalography 

(EEG) and magnetoencephalography. Moreover, TVB facilitates the 

reproduction and evaluation of individual configurations of the brain by using 

subject-specific data. In this study, we make use of virtual local field 

potentials (LFPs) from simulated brain data from a recent experiment with 

TVB [17]. We integrate individual Aβ patterns, obtained from positron 

emission tomography (PET) with the Aβ-binding tracer 18F-AV-45, into the 

brain model. Consecutively, distinct spectral patterns in simulated LFPs and 

EEG could be observed for patients with AD, mild cognitive impairment 

(MCI), and healthy control (HC) subjects (Figure 1). Such integration was 

done by transferring the local concentration of Aβ to a variation in the brain 

model’s local excitation-inhibition balance. This resulted in a shift from alpha 

to theta rhythms in AD patients, which was located in a similar pattern as local 

hyperexcitation in core structures of the brain network. The frequency shift 

was reversible by applying "virtual memantine", i.e., virtual N-methyl-D-

aspartate (NMDA) antagonistic drug therapy. An overview of the study results 

is provided in Figure 1. 
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Figure 1. Modified from [17]. Aβ-PET-driven brain simulation model of 
AD (A): Regional PET intensity constraints regional parameters. A sigmoidal 
transfer function translates the regional Aβ load to changes in the excitation-
inhibition balance. (B) Virtual AD patient brains exhibited significantly slower 
simulated LFPs than MCI and HC virtual brains and showed a shift from alpha 
to theta frequency range. While the AD group is solely dominated by two 
clusters in the alpha and theta band, the groups of HC and MCI have an 
additional strong cluster exhibiting no oscillations ("frequency of zero"), 
called a stable focus. This phenomenon is absent in the AD group. The stable 
focus in HC and MCI virtual brains provides an additional – simulation 
inferred - distinctive criterion between groups. The graph in (C) represents the 
SC, wherein the nodes’ size reflects the degree, while color corresponds to the 
relative postsynaptic potentials (relative to the mean postsynaptic potential of 
the simulation). The graph indicates that local hyperexcitation occurs in 
central parts of the networks. Moreover, the observed slowing was spatially 
associated with local hyperexcitation. 

 

AD-specific pathologies, such as deposition of Aβ in neuritic plaques, Tau 

deposition in neurofibrillary tangles, and atrophy of neural tissue, have been 

widely studied with machine learning (ML) approaches [18, 19]. The major 

advantage of employing ML-based classification algorithms on neuroimaging 
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data is the potential for recognizing complex high dimensional, previously 

unknown disease patterns in the data, potentially identifying AD before 

clinical manifestation or predicting a disease trajectory.   

 

In this research, we hypothesize that TVB-inferred features improve the 

classification performance compared to imaging data features alone. 

We further argue that the current sample size of 33 subjects is sufficient to 

achieve a reliable proof-of-concept, considering the following three main 

aspects: 

1. This study aims to show an information gain provided by TVB with 

regards to differential classification between HC, MCI and AD 

populations. We do not aim to push generalizability performance of 

state-of-the-art machine learning methodologies with this sample size. 

This leads to a primary focus on the group level significance of the 

decoding accuracy rather than the accuracies themselves [20]. 

2. This information gain and the significance of the model performances 

are validated by comparing the distributions of model accuracies 

between feature sets and against null distributions of accuracies 

approximated using permutation testing [20]. 

3. As implemented in our approach, nested cross-validation still 

represents the best way to estimate generalizability in the given context 

[21]. In combination with the previous points, this leads to a feasible 

and robust estimation of the information gain. 
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We show that TVB simulations provide additional unique diagnostic 

information that is not readily available using the available empirical data 

alone. This supports the idea that TVB provides value and real-world 

applicability above and beyond merely reorganizing empirical data, and 

suggests that its simulations are biologically plausible.  

 

2. MATERIALS AND METHODS 

2.1. Alzheimer’s Disease Neuroimaging Initiative (ADNI) database 

Data used in the preparation of this article were obtained from the Alzheimer’s 

Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The 

ADNI was launched in 2003 as a public-private partnership, led by Principal 

Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to 

test whether serial magnetic resonance imaging (MRI), PET, other biological 

markers, and clinical and neuropsychological assessment can be combined to 

measure the progression of MCI and early AD. For up-to-date information, see 

www.adni-info.org.  

 

2.2. Data acquisition, processing, and brain simulation 

The detailed methodology of data acquisition, selection, processing, and 

simulation are described in a former study [17]. We included 33 ADNI-3 

participants, thereof 10 AD patients, 15 HC participants and eight MCI 

patients. The selection criteria included availability of both Aβ and Tau PET, 

diffusion-weighted MRI, and all MRI sequences necessary to fulfill the 

standards of the human connectome project minimal preprocessing pipeline 
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[22].   

In addition to the data used in our former study [17], we also used the 

distribution of Tau in 18F-AV-14-51 PET for our analyses to obtain the best 

available empirical data basis. Again, the nuclear signal intensity is related to a 

reference volume in the cerebellum.   

For the subcortical volumetrics used in this study, we obtained the volumetry 

statistics provided by the -autorecon2 command. The segmentation is 

performed with the modified Fischl parcellation [23] of subcortical regions in 

Freesurfer [24]. 

A detailed description of image processing can be found in Appendix A. 

 

Whole-brain simulations with TVB are based on a structural connectivity (SC) 

matrix derived from diffusion-weighted MRI. After processing the empirical 

imaging data, we used the SC of the HC population to generate an averaged 

standard SC for all participants. For the simulations, we made use of the 

Jansen-Rit neural mass model [25, 26]. Neural mass models employ a mean 

field simplification to compute electrical potentials on a regional level by 

using oscillatory equations systems [27]. The variables, parameters and model 

equations can be found in [17]. Parameter settings were chosen due to 

theoretical considerations in former studies[17, 28]. We explored a range of 

the global scaling factor G, a coefficient that scales the connection between 

distant brain regions, to capture different dynamic states of the simulation. The 

novelty in our recent simulation study was the introduction of a mechanistic 

model for Aβ-driven effects. We linked local Aβ concentrations, measured by 
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Aβ PET, to the excitation-inhibition balance in the model by defining the 

inhibitory time constant τi as a sigmoidal function of local Aβ burden [17].   

The simulation models electrical potentials in the whole brain, here measured 

on the region level by LFPs. In addition, we calculate the EEG signal as a 

projection of the LFP from within the brain to the surface of the head, taking 

into the concept of a lead-field matrix simplification to three compartment 

borders brain-skull, skull-scalp, and scalp-air [15, 29-31].  

A detailed description of the simulations can be found in Appendix B. 

2.3. Machine Learning Approach 

Our primary objective is to determine if extracted features from TVB add to 

the classifiers’ predictive power. To achieve this, we repeated the ML 

procedure with three different feature sets: a) using empirical features alone, 

b) using simulated features alone, and c) combining both types of features into 

a hybrid model.  

As empirical features, we employed 380 regional values for each Aβ PET 

standardized uptake value ratio (SUVR) and Tau PET SUVR, and 40 

subcortical volumes, leading to 800 empirical features. As simulated features, 

we used 379 regional LFP frequencies from the simulations. The combined 

feature space contains all the above with 1179 features. 

Two types of ML classifiers that are suitable for small-sample classification 

problems were used: the kernel-based support vector machines (SVM) [32] 

and the decision-tree based Random Forest (RF) [33].  

By training two classifiers based on different underlying machine learning 

mechanisms, we provide more robust evidence that the pattern in classification 
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performance, when combining simulated and empirical features, is reliable 

and clinically relevant. Further, this pattern is driven by a reliably reoccurring 

subset of the features themselves, rather than by particular mechanisms 

underlying a classification algorithm. 

 

Our ML approach is designed to fulfill primarily two goals: 

1. Providing a robust, reproducible, and accurate evaluation of classification 

performance with the data. 

2. Facilitating exploration of the empirical and simulated features that are 

most important for achieving optimal separation between the AD, MCI, 

and HC groups. 

 

To satisfy the first goal, we implement a strict nested cross-validation scheme 

that allows us to obtain statistically reliable classification performance metrics 

while minimizing overfitting in a P >> N setting (i.e., we have a small sample 

size N, but a very large number of features P). Our cross-validation method is 

adapted from earlier work in machine learning for clinical neuroscience [34], 

and is described in greater detail in Figure 2.  
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Figure 2. Nested cross-validation loop design. Starting in the outer loop: 
stochastic cross-validation starts with 100 iterations using 25% of data 
(randomly selected per iteration) for testing. The training subset goes to the 
inner loop after the train-test split. In the inner loop: split data again just like in 
the outer loop to obtain training set and validation set for an inner 10 cross-
validation iterations with each hyperparameter setting (in total 192 
combinations for RF and 384 for SVM, leading to 73,728 combinations with 
every 10 iterations). Next, we scale training features by subtracting the median 
and dividing by the inter-quartile range (makes them robust to outliers we 
identified above). We apply these scaling statistics calculated from the training 
set also to the test set. Then, we iterate through hyperparameters 
(Supplementary Tables C.1 and C.2). RF is used for feature selection. 
Afterward, the remaining features are used for training the SVM classifier 
with specific hyperparameter settings. We track the selected features for each 
run and compute the frequency with which they are selected across iterations 
for the outer loop. The SVM classifications are validated with the test sub-
subset (inner cross-validation). This provides optimized hyperparameter 
settings from the inner cross-validation loop. Back to the outer loop, we 
recombine training and validation data (which were separated in the inner 
loop) - still keeping test data separate. We set hyperparameters to the best 
settings obtained in the inner loop. Then, we train the model and record 
results: RF is again used for feature selection, which leads to feature 
importance (FI) statistics used for the results. Afterward, SVM classifies the 
reaming features, which are then validated with the test set (outer cross-
validation). After this, the next iteration of the outer loop begins. 

 

We satisfy the second goal in two ways. First, our cross-validation scheme 

provides a natural metric for feature relevance, i.e., feature selection frequency 

across cross-validation runs. Additionally, we use feature importance metrics 
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inherent to each feature selection method explored. In our case, the F-statistic 

and the entropy criterion were two metrics used for feature selection for the 

SVM and the RF respectively.  

 

Currently, the most reliable method for statistical control of prediction 

accuracy is permutation testing [20]. To this end, we performed the same 

classification pipeline, including all feature preprocessing, feature selection 

and cross-validation steps, using randomly shuffled class labels. This was 

repeated 750 times to achieve a robust estimate of the null model as an 

approximation for the inherent prediction error of the model and chance 

classification results. 

A detailed technical description of the ML methodology can be found in 

Appendix C. 

3. RESULTS 

3.1. Data properties  

We used basic descriptive statistics to assess data quality prior to machine 

learning analysis. The distribution of simulated LFP frequencies, Aβ PET 

SUVR, Tau SUVR, and regional Volumes and their interdependency are 

shown in Figure 3. Aβ (P = .0018) and Tau SUVR (P = .0005) are 

significantly different between AD and HC after Bonferroni-correction. LFP 

frequency differs significantly between AD and MCI (P = .0316) but is not 

significant after Bonferroni-correction. Interestingly, in the existing data, there 

is no significant difference in the mean volumes between groups. 
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Figure 3. Characteristics of empirical feature space. In (A), regional 
distributions of Aβ, Tau, and LFP frequency are shown for all groups in a 3D 
scatterplot. Red datapoints symbolize regions of AD patients, green points 
MCI patients, and blue points HC. Each scatters point stands for one region of 
one subject. Color density is normalized between groups. A kernel density 
estimate of the corresponding histograms is shown (projection of the 3D-plot 
to one axis). In particular, it can be seen a string of outliers with very high Tau 
values in the AD group and in parts in the MCI group, which does not appear 
for HC. Moreover, AD participant’s regions show higher Aβ values, in 
particular for lower frequencies. Besides, boxplots are presented for groupwise 
comparisons for the features mean Aβ per subject, mean Tau per subject, mean 
simulated LFP frequency per subject, and mean Volume per subject. A 
Kruskal-Wallis-test was performed to assess significance: * marks 
significance with P < .05; ** marks significance after Bonferroni-correction 
with P < .0042. (B) Aβ SUVR is significantly different between AD and HC 
(P = .0018) and MCI (P = .0454), but not between HC and MCI (P = .8113). 
(C) Tau SUVR is only significantly different between AD and HC (P = 
.0005), but not between AD and MCI (P = .1736) or HC and MCI (P = .2671). 
(D) LFP frequency is only significantly different between AD and MCI (P = 
.0316), but not between AD and HC (P = .2160) or HC and MCI (P = .4716). 
(E) The mean Volume of all regions does not show significant differences: 
AD and MCI (P = .7056, AD and HC (P = .5102) or HC and MCI (P = .1405). 

 

3.2. Classification performance  

Overall, we performed nine experiments with three different classification 

schemes and three feature sets (see Appendix D). The hybrid classification 

scheme with SVM and RF performed best. For all schemes, the combined 

feature space outperformed both the empirical and the simulated feature space 
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(Supplementary Table D.1). 

In the hybrid classifier scheme, RF was used in the inner cross-validation loop 

(10 iterations) to perform multivariate feature selection. In the outer cross-

validation loop (100 iterations), the features used by the best random forest 

model were then used to train an SVM.  

Weighted F1-score and normalized confusion matrices are given in Figure 4. 

The combined approach (wF1 = 0.7428) outperformed the empirical one (wF1 

= 0.6434) by about 0.1 (Figure 4D), mainly because of an improvement in the 

classification of the MCI group (Figure 4A-C). We used the Wilcoxon 

Signed-Rank test from 100 cross-validation runs to assess significance 

(Shapiro-Wilk test of normality for the F1 score distributions revealed P < .01 

for empirical and combined approach and P = .07 for the simulated approach, 

leading to the usage of a non-parametric test). The differences between the 

combined approach and both other approaches were highly significant 

(combined and empirical: P = 2.52 x10-11; combined and simulated: P = 1.6 

x10-7), meanwhile there was no significant difference between the empirical 

and simulated approaches (P = .34).  
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Figure 4. Results of the nested cross-validation classification approach. 
(A-C) Confusion matrices are computed by summing the confusion matrices 
across all 100 cross-validation runs and normalizing per class. In particular, 
the combined approach improved the prediction of MCI participants, as AD 
and HC were already quite well distinguishable by the empirical features. (D) 
Boxplots of mean weighted F1-scores for three different feature spaces. The 
combined approach (0.7428) outperformed the empirical one (0.6434) by 
about 0.1. Significance assessment with the Wilcoxon Signed-Rank test from 
100 cross-validation runs: combined vs. empirical: P = 2.52 x10-11; combined 
vs. simulated: P = 1.6 x10-7, empirical vs. simulated P = .34. 

 

3.3. Classification validity 

As a further analysis to understand this classification improvement, we 

calculated the feature importance. Figure 5A shows the mean entropy-based 

feature importance given by the Random Forest classifier for 100 outer cross-

validation runs. This is used to show that there is a decreasing curve, as we 
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would expect if meaningful features were found (as opposed to a more 

uniform distribution). Many of the more important features seem to be 

biologically plausible in the context of AD (Figure 5B), as, e.g., Tau in 

entorhinal cortex (Braak stage 1), frequencies in the thalamus (as significant 

rhythm generator) and putamen, and volumes in putamen and hippocampus 

(as signs of atrophy). A table with the full name and corresponding functional 

network according to Rosen and Halgren [35] for the 50 highest ranked 

features is given in Supplementary Table D.2.  

We also showed that feature relevance is dependent on the structural degree of 

the regions in the underlying SC network (Figure 5C). This is an indicator of 

network effects contributing to the improved classification and another 

indicator for meaningful classification results.  

Using the Wilcoxon signed-rank test, we could further show that the 

classification performance was significantly higher than the null model (with 

P values of 2.2 x10-15 (simulated), 7.8 x10-18 (empirical) and 4.8 x10-18 

(combined)). The average performance of the combined approach showing the 

greatest distance to the corresponding null model laying outside the 100% 

interval (Figure 5D). 
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Figure 5. Feature importance (FI) distribution. (A) Mean RF-derived 
feature importance from 100 outer cross-validation runs. Entropy criterion 
with combined feature types shown here. Feature importance values are 
normalized, so all features sum to 1. In shaded blue, half standard deviation  
is displayed for each feature. (B) Top 50 features across all cross-validation 
runs. Both empirical (Tau in dark blue, Aβ in green, Volume in light blue), as 
well as simulated frequencies (red), contributed to the improved classification. 
Many features seem moreover to be biologically plausible in the context of 
AD, e.g., Tau in the entorhinal cortex, thalamic and putaminal frequencies, 
and putaminal as well as hippocampal volumes. (C) Visualization of the SC 
graph with color indicating FI of the regional LFP frequencies, while vertex 
diameter reflects the structural degree. It shows a network dependency of the 
LFP FI. Only edges with connection strength above the 95th percentile are 
shown. (D) The distributions of weighted F1 scores for permutation based null 
model (left box) and corresponding true model (right box). All models 
significantly outperform the null model with the combined model showing the 
greatest average distance to its null model, indicating the gain in 
differentiating information. 

 

4. DISCUSSION 

In this study, we show that the involvement of virtual, simulated TVB features 

into ML classification can lead to an improved classification between HC, 

MCI, and AD.  

The diagnostic value of the underlying empirical features can be improved by 

integrating the features into a multi-scale brain simulation framework in TVB. 

We showed for ML algorithms a superiority of feature sets that contain both 
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the empirical and the virtual derived metrics. The absolute gain of accuracy 

was 10 %. Keeping in mind that all differences between the subjects have to 

be derived from their Aβ PET signal (because all other factors, e.g., the 

underlying SC, are the same) this provides evidence that TVB is able to 

decode the information that is contained in empirical data like the amyloid 

PET. More specific for the PET and its usage in diagnostics, it highlights the 

relevance of spatial distribution, which is often not considered in its analysis. 

 

The main reason for this improvement seems to be a better classification of 

MCI subjects. without the simulated features, the models frequently 

misclassify MCI subjects as HC. In contrast, the simulated features alone 

result in more misclassification of healthy controls as either MCI or AD 

subjects compared to using the empirical features alone. However, combining 

the empirical features with the simulated features appears to complement  their 

strengths in a clinically useful way; these models retain all or most of the 

ability to correctly classify healthy controls with the empirical features and 

retain much of the simulated features’ ability to classify MCI patients. The 

processing inside TVB seems to reorganize the existing data beneficially.  

In theory, a larger number of available features could provide a machine 

learning algorithm greater flexibility in finding useful combinations. This is 

the case simply due to a higher degree of freedom during feature selection and 

weighting. However, the equal empirical data foundation (only PET as 

individual features) in combination with nested cross-validation method 

protects from an overfitting bias due to the larger feature space, with 

additional evidence of this provided by the chance level performance of the 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 13, 2021. ; https://doi.org/10.1101/2021.02.27.433161doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.27.433161
http://creativecommons.org/licenses/by-nc-nd/4.0/


20

null distributions. If the explanation for the improvement in classification 

accuracy was simply the presence of additional noisy features, we would see a 

flatter feature importance distribution than shown in Figure 5, and therefore a 

more random distribution of selected features across the 100 cross-validation 

iterations. Instead, we see that only a few features with high importance are 

consistently guiding classification, indicating that they in fact provide useful 

discriminative information. Preventing this kind of overfitting via feature 

selection is a key motivation behind our use of the nested cross-validation 

approach (Figure 2): since the features are selected on the training and 

validation (test) set in the inner loop, any overfitting due to feature selection 

should not be transferred to the test set in the outer loop. 

We have shown that only a few selected features seem to play a crucial role in 

classification throughout the cross-validation iterations (Figure 5).  

We take a closer look at the 50 top features (which represent 4.24% of the 

total) comprised of 33 empirical features (17 Aβ, 12 Tau, four Volume) and 17 

simulated features (Supplementary Table D.2). The anatomical distribution 

of feature relevance is summarized in Figure 6, for each, Aβ, Tau, and LFP.  
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Figure 6. Anatomical representation of feature importance (FI) 
distribution. Displayed are cortical regions from left, right, and inferior as 
well as subcortical regions. The color indicates the feature importance. (A) Aβ 
FI. The anatomical patterns reveal high importance of left-temporal regions, as 
well as the left dorsal stream in the parietal and occipital cortex. The Aβ Top 
features showed a more disseminated allocation mostly in the temporal, 
occipital, frontal, and insular cortices, which is also in line with typical 
amyloid deposition and locations of increased AV-45 uptake in AD [37, 38]. 
(B) Tau features show a similar pattern as Aβ, but with a higher focus on 
typical Braak-stage-1 regions (as the entorhinal cortex). Most of the tau top 
features can be allocated to the temporal lobule, which is also the location of 
early Tau deposition according to the neuropathological BRAAK and Braak 
stages I-III [39-41] and the location of increased in-vivo binding of 18F-AV-
1451 in AD [42, 43]. In particular, the entorhinal cortex is a consistent starting 
point of the sequential spread of Tau through the brain [39, 43] and also 
showed the most robust relationship between flortaucipir and memory scores 
in a recent machine learning study [44]. (C) Simulated frequencies do not 
show strong laterality as the empirical features but seem to have a focus in 
both occipital lobes, where typically alpha oscillations occur. The occipito-
temporal and occipito-parietal regions of the first area are typical alpha-
rhythm generators in resting-state EEG [45]. Alteration of these posterior 
alpha sources is a typical phenomenon in AD and MCI compared to HC [46]. 
The ventral or ‘what’ stream and the dorsal or ‘where’ stream have been 
implicated in object recognition and spatial localization and are essential for 
accurate visuospatial navigation [47, 48]. Impairment in visuospatial 
navigation is a potential cognitive marker in early AD/MCI that could be more 
specific than episodic memory or attention deficits [49, 50].  Besides this, 
subcortical areas like the thalami play a more crucial role than for Aβ and Tau.  
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The interpretation of the simulated features is more complicated and needs to 

be treated carefully.  

In general, the simulated features depend on network information. 

Concurrently, in this work, all subjects used the same SC. Consequently, the 

difference between subjects can be attributed to the spatial distribution of their 

respective Aβ PET.  

Many of the top simulated features can be allocated to two functional systems. 

Firstly, the visual cortex including the ventral and dorsal stream, and, 

secondly, subcortical structures like the thalamus and the putamen.  

As a limitation of our study, we see that the used simulated feature, the mean 

simulated LFP frequency (averaged across a wide range of the large-scale 

coupling parameter G), is not directly equivalent to a biophysical 

measurement like empirically measured LFP. LFP frequency was averaged 

across the global scaling factor G. G scales the strength of long-range 

connections in the brain network model and is a crucial factor in the 

simulation. Many different dynamics can develop across the dimension of G, 

from which some are similar to empirically observed phenomena, but others 

are not. Our former work has found that particular ranges of G with non-

plausible frequency patterns hold the potential to differentiate between 

diagnosis groups [17]. This is mainly because of the underlying mathematics 

of the Jansen-Rit model: besides two limit cycles that produce alpha-like and 

theta-like activity, the local dynamic model has a region of stable focus 

wherein no oscillations are produced in the absence of noise. Technically, this 
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stable focus is represented as a zero-line artifact that appears mainly in the HC 

group, because only Aβ values above a critical value led to the presence of the 

slower theta-limit-cycle. By averaging LFP frequencies across the whole 

spectrum of G, we incorporate this zero-line information, which leads to 

apparently higher mean LFP frequencies for the AD group compared to non-

AD groups. In contrast, in the region of biologically plausible results, AD has 

lower frequencies – as would be expected [17]. This can also be seen as 

another advantage of TVB. It shows how TVB does not just reproduce data 

that could also be obtained with EEG or intracranial electrodes, but delivers 

‘artificial’ data that is still informative. While particular parameter ranges 

deliver biologically plausible results, even other (less plausible) parameter 

settings provide unique individual patterns and can contribute to the 

classification. 

 

This work’s primary aim is not to develop a ready-to-use ML classifier for 

AD, but to show the potential of brain simulation to enhance empirical 

datasets in clinically relevant ways. While the limited sample size used in this 

study would potentially be problematic in a more traditional ML study aimed 

at providing an ML-based diagnostic aid, combined with our careful cross-

validation methodology, it does not detract from our primary conclusion. 

Future studies will have to reproduce these results using a more extensive 

cohort for further clinical usage of this work. Ideally, external validation with 

a dataset outside of ADNI would be performed.  

We used ML as an approach for the comparison of classifier performance with 

empirical data against simulated data, which is wholly derived from the 
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empirical data. Improvement in classification is then strong evidence for 

successful processing of the empirical data in TVB – TVB decodes the 

information embedded within the empirical data, that cannot be detected by 

statistics or ML classifiers. We showed in ADNI data that TVB can derive 

additional information out of the spatial distribution pattern in PET images.  

Our work provides novel evidence that TVB can act as a biophysical brain 

model - and not just like a black box. Complex multi-scale brain simulation in 

TVB can lead to additional information, that goes beyond the implemented 

empirical data. Our analysis of feature importance supports this hypothesis, as 

the features with the highest relevance are already well-known AD factors and 

hence, biologically plausible surrogates for clinically relevant information in 

the data. Moreover, in this pilot study, we demonstrate that TVB simulation 

can lead to an improved diagnostic value of empirical data and might become 

a clinically relevant tool.  

 

 

APPENDICES. 

A- Image Processing  

B- Electrophysiological Simulation with The Virtual Brain  

C- Machine Learning Methodology 

D- Supplementary Results 
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