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ABSTRACT 

 

Antiangiogenic therapy began as an effort to inhibit VEGF signaling, which was thought to be the 

sole factor driving tumor angiogenesis. It has become clear that there are more pro-angiogenic 

growth factors that can substitute for VEGF during tumor vascularization. This has led to the 

development of multi-kinase inhibitors which simultaneously target multiple growth factor 

receptors. These inhibitors perform better than monotherapies yet to date no multi-kinase 

inhibitor targets all receptors known to be involved in pro-angiogenic signaling and resistance 

inevitably occurs. Given the large number of pro-angiogenic growth factors identified, it may be 

impossible to simultaneously target all pro-angiogenic growth factor receptors. Here we search for 

kinase targets, some which may be intracellularly localized, that are critical in endothelial cell 

proliferation irrespective of the growth factor used. We develop a quantitative endothelial cell 

proliferation assay and combine it with “kinome regression” or KIR, a recently developed method 

capable of identifying kinases that influence a quantitative phenotype. We report the kinases 

implicated by KIR and provide orthogonal evidence of their importance in endothelial cell 

proliferation. Our approach may point to a new strategy to develop a more complete anti-

angiogenic blockade. 

 

 

 

 

 

 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 14, 2022. ; https://doi.org/10.1101/2021.02.28.433132doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.28.433132
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 

 

 

Introduction 

 

Nearly all tissues require vascularization to maintain homeostasis. Angiogenesis, or the formation 

of new microvasculature from existing vessels, allows for tissue growth in both normal and 

pathological circumstances (Potente, Gerhardt, and Carmeliet 2011). A few examples include 

much of development, wound healing, the formation of the placenta during pregnancy, diabetic 

retinopathy, and cancer. The complex process involves the coordination of many growth factor-

dependent processes including matrix degradation, cell proliferation, motility, morphogenesis, and 

apoptosis. It was originally thought that vascular endothelial growth factor, or VEGF, was 

necessary and sufficient for both normal and pathological angiogenesis (Carmeliet 2005). Indeed, 

blocking VEGF signaling can greatly improve clinical outcomes in the pathological cases of diabetic 

retinopathy (Crawford et al. 2009) and macular degeneration (Cabral et al. 2017). However, given 

the somewhat disappointing failure of therapies targeting VEGF in cancer, it appears that, at least 

in the case of tumor angiogenesis, other growth factors can suffice in the absence of VEGF 

signaling (Jászai and Schmidt 2019; Khan and Bicknell 2016; Grépin and Pagès 2010). 

 

Renal cell carcinoma (RCC), the most common form of kidney cancer, is one particular cancer 

where the inhibition of angiogenic signaling is under heavy investigation (Hsieh et al. 2017). RCC 

provides an instructive example of the importance of VEGF and other angiogenic growth factors. 

RCC patients treated with VEGFR2 kinase domain inhibitors show moderate increased survival but 

also eventually develop resistance (Grünwald and Merseburger 2013; Choueiri et al. 2015). 

Upregulation of other pro-angiogenic growth factors, namely HGF and FGF, have been suggested 

as potential factors leading to such resistance (Mollica et al. 2019; Zhou et al. 2016). Interestingly, 

newer generation VEGFR inhibitors which also possess the ability to inhibit other pro-angiogenic 

factors provide clinical benefit even in patients with total resistance to VEGFR2 mono-inhibition 

(Choueiri et al. 2015). This has led to calls for the development of a more complete angiogenic 

blockade (Grünwald and Merseburger 2013). Given the lack of direct comparative studies on the 

pathways used by different pro-angiogenic growth factors, it is currently unclear what a complete 

angiogenic blockade would require.  

 

Growth factors have many effects on cells, with perhaps none so well appreciated as their 

requirement for the passage of untransformed cells through the cell cycle (Gross and Rotwein 

2016). Upon the completion of mitosis, if cells in culture find themselves in the absence of growth 

factors, they exit the cell cycle and enter into a reversible quiescent state (Zetterberg and Larsson 

1985). If growth factors are subsequently replaced, cells re-enter the cell cycle, resume growth, 

duplicate their genome, and divide. The intracellular signaling pathways that transduce the growth 

factor signal to cell cycle machinery have been intensively studied and many key signaling 

pathways have been identified for specific growth factors. However, many cell types, such as 

endothelial cells, respond to multiple growth factors, raising the question of uniqueness and 

redundancy in growth factor signaling pathways.  

 

In the absence of growth factors, untransformed cells with intact apoptotic pathways also become 

apoptotic (Sarkar and Mandal 2009; Letai 2006). Thus, the addition of growth factors also serves to 

suppress pro-apoptotic signaling and cell death. From this perspective, growth factors are often 
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referred to as survival factors (Collins et al. 1994). The mechanisms by which individual angiogenic 

factors promote passage through the cell cycle and suppress death have been studied to a certain 

extent. How growth factor signaling pathways comparatively influence cell proliferation is less well 

studied. 

 

We present here a quantitative assay to study the intracellular signaling responses to 

proangiogenic growth factors with the goal of identification of shared pathways in primary dermal 

human microvascular endothelial cells (DMECs). We focus on how growth factors influence 

proliferation, or the growth of endothelial cell populations. Proliferation is a complex phenotype 

determined by a balance of birth and death. The assay requires the formulation of a basal 

proliferation medium in which a low rate of proliferation is achieved through the balance of a low 

birth rate and a low, but non-zero, death rate. The assay is used to screen ~30 reported angiogenic 

growth factors for effects on proliferation and identify three that produce a robust increase in 

proliferation. We then assay the effects of a carefully chosen panel of kinase inhibitors, which 

when combined with KIR, a recently developed machine learning method (Taranjit Singh Gujral, 

Peshkin, and Kirschner 2014; Rata et al. 2020; Taranjit S. Gujral et al. 2014), implicates specific 

kinases as important in DMEC proliferation in response to specific growth factors. Focusing on the 

intersection of the implicated kinases in each growth factor tested, we identify kinases that are 

central to endothelial cell proliferation regardless of the growth factor input. Finally, we apply an 

orthogonal method to contribute to the evidence for the kinases implicated by KIR.  

 

Establishment of a Quantitative Endothelial Cell Proliferation Assay 

 

We wish to create an assay and accompanying analytical framework that will produce quantitative 

measures of DMEC proliferative response to single purified pro-angiogenic growth factors. This 

includes generating an experimental system that allows for the passive counting of cells over time, 

computing proliferation rates and characterizing the proliferative response of DMCEs to pro-

angiogenic growth factors. We then use the assay to determine the quantitative effects of a highly 

characterized set of kinase inhibitors on DMECs’ proliferation rate. Inhibitor alteration of the 

proliferation rate is then fed into KIR analysis, generating a ranked list of kinases with predicted 

contribution to setting the proliferation rate.  

 

The Experimental System  

 

To create a quantitative, time-lapse assay of proliferation in response to purified growth factor, we 

labelled the nuclei of primary dermal microvascular endothelial cells with nuclear-localized 

mCherry (Fig1A). Imaging of NLS-mCherry-labeled DMECs counterstained with a DNA-binding dye 

revealed the labelling efficiency to be ~97% (not shown). Using 384-well plates, with a single 4x 

image, we were able to image the entire population of labeled cells within a well. Expression of 

the nuclear-localized mCherry offered the ability to use image processing methods to count cells in 

real-time (FigS1A). Through comparison with manually counted images, we estimated an absolute 

counting error of 3% (not shown). The counting error from the automated method was 

independent of cell density (Fig.S1B). Finally, expression of this nuclear reporter proved to be 

passive as it did not alter the doubling time when compared to unlabeled parental population (Fig 

S1C). Therefore, we are able to count cells proliferating in vitro in a reliable, non-invasive manner.  
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Box 1 

Cell proliferation, or growth of cell population, combines the rates of birth and death. The per capita 

proliferation rate, P, is the difference between the birth rate ��� and death rate ��� 

     

                                                                                 � � � � �.     Eq.1 

 

It is worth specifically pointing out some implications of the fact that the proliferation rate is determined by 

a balance of cell birth and death. On the extreme end of the spectrum where conditions are entirely 

favorable, the death rate will be zero and P = B. Conversely, when conditions do not allow for birth but also 

lead to death, P = -D. In conditions in between these two extremes, any observed proliferation rate can be 

achieved through a balance of birth and death.  

      The per capita birth rate has units of births per cell per unit time while the death rate has units of deaths 

per cell per unit time. As our experimental system allows for the measurement of live and dead cells over 

time, we wish to obtain estimates of birth and death rates through time-lapse measurements of the 

number of nuclei and the number of dead cells. To do so, we first define the proliferation rate as: 

 
��

��
� ��	�
�	�,                   Eq. 2 

 

where 
�	� is the number of nuclei at time 	 and ��	� is the instantaneous proliferation rate. The 

generality of this simple model is apparent since from it one can arrive at a whole family of commonly 

applied models of population growth. For example, if ��	� is defined as a constant, say ��, then equation 2 

has the solution of exponential growth: 


�	�  �  
� ���       Eq.3 

  

Where 
� is the population size at time 	 � 0. Equation 3 well describes many populations, particularly in 

the early phase of growth (i.e., before density-dependent effects begin to dominate). Likewise, if one 

assumes a density dependence of the population growth of a specific form, then equation can be solved to 

yield the logistic growth model.  

 

Since equation 2 depends on ��	�, the issue therefore becomes a matter of discovering what ��	� looks 

like in our assay. Equation 2 can be rearranged to  

 

��	� �
��

��

�	�� ,      Eq. 4 

 

to obtain a useful form for examination of P(t) from the data as everything on the right-hand side is easily 

observable. Similarly, we can study the death rate by defining it as 

 
��

��
� ��	�
�	�,      Eq. 5 

 

where ��	� is the number of dead cells at time 	 and ��	� is the time-dependent death rate. Equation 5 

can be rewritten in the same manner as equation 2 to reveal a useful formula for the death rate.  

   

��	� �
��

��

�	�� .      Eq. 6 

 

Armed with ��	� and ��	�, we can then easily obtain ��	� from Equation 1, i.e., 

 

��	�  �  ��	�  � ��	�  
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The Proliferative Behavior of Cells in the Experimental System 

 

Next, we examined the proliferative behavior of DMECs after plating in full growth medium. Full 

growth medium contains 5% FBS and a cocktail of growth factors. Following an approximately 24-

hour period of attachment in this rich growth medium (Fig. S1D), the cells entered a phase of 

exponential growth (Fig 1B). Proliferation continued exponentially for another 70 hours, deviating 

only as the confluency reached ~70%. Such exponential growth is expected in a population where 

there are abundant resources (excess growth factors), and inhibitory crowding effects (contact 

inhibition) are absent (see Box1). These results also defined the confluency below which contact 

inhibition remains insignificant and we were able to directly verify that in the presence of growth 

factors, the proliferation rate is independent of plating density (Fig, S1E).  

 

Having characterized the proliferative response in the presence of excess growth factors, we next 

attempted to isolate the proliferative effects of purified growth factors. To accomplish this, we 

formulated a basal proliferation medium (BPM) without any exogenous growth factors and 

significantly reduced serum. The goal of this medium was three-fold: 1.) to increase the dynamic 

range of the assay by a reduction in the basal proliferation rate compared to that observed in full 

growth medium, 2.) to achieve specificity through a reduction in background growth factor 

signaling due to their presence in serum, and 3.) to model the re-entry of resting endothelial cells 

in vessels into the cell cycle by synchronization of cells in the G0 phase of the cell cycle. Ideally, 

cells in a basal medium would show little to no net proliferation. We explored the possibility of 

achieving this goal via titration of serum in a commonly used endothelial basal medium 

(Zetterberg and Larsson 1985). When the serum content was too low (i.e., < 0.5%) a net loss of 

cells occurred, suggesting that many cells died from growth factor withdrawal. From these 

experiments we defined basal proliferation medium (BPM) to contain 1% serum. Comparing the 

proliferative response of DMECs in BPM (Fig. 1B, E), where there is very little net increase in the 

number of cells over time, to full growth medium (Fig. 1B), it is clear BPM offers considerable 

dynamic range.  

 

Resting endothelial cells in a blood vessel, before receiving pro-angiogenic stimuli, would be in a 

quiescent state, or the so-called G0 phase of the cell cycle. Using DNA-staining for cell cycle 

analysis and comparing DMECs in full growth medium and in BPM shows the effects of BPM on the 

cell cycle (Fig. 1C). Specifically, in growth medium, the majority of cells are found in G1/G0, but a 

significant number of cells are in S- and G2/M-phases. At this level of analysis, it is impossible to 

distinguish between cells in G0 and G1. However, EdU labeling of DMECs in full growth medium 

shows that within the length of the typical DMEC cell cycle (~28 hours), nearly all cells pass 

through S-phase suggesting that there are no cells in G0 in growth medium (not shown). In BPM, 

we see a nearly complete loss of cells in S and G2/M and a concomitant increase in cells (>91%) 

arrested in G0/G1. As we will show later in the section titled “Features of Growth Factor-Induced 

Population Dynamics,” we have reason to believe that the dominant peak in BPM (Fig 1C, right 

panel) contains cells in G0. Therefore, BPM offers desirable dynamic range, reduces background 

pro-proliferative signaling, and isolates DMECs in G0 or a quiescent state.  
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The realization that DMECs not only cannot proliferate in low growth factor conditions but in fact 

die led us to wonder if the overall low proliferation rate in BPM was achieved through a balance of 

birth and death (see Box 1). To measure dead cells, we optimized the use of the cell-impermeable 

DNA-binding dye, YOYO1. With this dye, a dead cell can be easily seen as the mCherry signal fades, 

membrane integrity is lost, cellular DNA is exposed, and the YOYO1 signal appears (see Fig. 1D). 

The dye is easily detected at low concentrations, stable throughout the timeframe of the assay 

(not shown) and appears to be passive in that it has no effect on proliferation (Fig S1F). 

Importantly, cell death in BPM was infrequent and occurred in a reproducible manner with a cell 

rounding up and blebbing, followed by death with little further fragmentation and the cell most 

often remaining attached in place. The exception to remaining attached was an occasional 

tendency for living, motile cells to adhere to the dead cell body. These favorable features allowed 

for the quantitation of cell death using YOYO-1. 

 

In BPM, there was a small but reproducible death of cells (Fig. 1E) revealing that the low level of 

net proliferation in BPM is due to a balance between the birth and death rate. Since DMECs are a 

primary cell isolate rather than a transformed cell line, we assume them to be more sensitive to 

growth factor levels and more susceptible to pro-apoptotic signals. Give the morphological 

changes seen during cell death (Figure 1D), we hypothesized that the death in BPM was due to 

apoptosis. The spontaneous cell death in BPM appears to be apoptosis as it can be inhibited by 

pretreatment with the caspase inhibitor, Q-VD-OPh (Fig. 1F, S1G). As a negative control, 

pretreatment with necroptosis inhibitor necrostatin was ineffective at blocking cell death in BPM 

(Fig. S1H). 

  

In summary, we have generated an experimental system that allows for the quantitative study of 

in vitro endothelial cell proliferation. We can accurately count living and dead cells accurately 

without considerable impact on proliferative behavior. BPM reduces background pro-proliferative 

signaling, offers significant dynamic range and models the cell cycle state of endothelial cells in 

resting blood vessels. Furthermore, BPM creates a state where birth and death are balanced and 

the effect that growth factors may have on this balance can be examined. 

 

Identification of Growth Factors with Pro-Proliferative Behavior in the Experimental System 

 

Having established an experimental system for studying the proliferation of endothelial cells, we 

sought to identify growth factors with pro-proliferative activity. Through literature search we 

identified more than 30 growth factors suggested to be pro-angiogenic. We obtained 33 from 

commercial sources and tested them in the DMEC proliferative setup described above (Table S1). 

We were disappointed to see that the vast majority of these reported growth factors had no effect 

on DMEC proliferation. The source of discrepancy between reported results and our results is not 

immediately clear but may include differences proliferation assays as well as in endothelial cell 

isolates. We found that four families of growth factors were capable of increasing proliferation: 

members of the FGF (FGF1 and 2), VEGF (VEGFA165 and VEGFA145), and EGF (EGF and TGFα) 

families along with HGF. The effects of EGF were significantly weaker than the others and 

therefore was not included in subsequent analysis. It must be noted that both FGF and HGF are 

commonly indicated as sources of resistance to VEGF blockade in many cancers, including RCC 

(Mollica et al. 2019; Zhou et al. 2016). 
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Features of Growth Factor-Induced Population Dynamics 

Having generated and characterized an experimental system to study the proliferative effects of 

identified growth factors on DMECs, we sought to determine mathematical definitions for 

proliferation, birth, and death rates. Although the proliferation rate in full growth medium was 

constant over time, it was not immediately clear that the proliferation rate in response to 

starvation and stimulation with single purified growth factors would behave similarly. The data for 

each well is quite noisy and the detailed study of the proliferation, birth, and death rates requires 

numerical differentiation of the noisy data. To limit the effect of applying noise-amplifying 

numerical process to noisy data, we performed a set of experiments with hundreds of replicates 

(wells in a 384 well plate) for each condition and applying data smoothing where necessary to 

generate easily interpretable data. As it is appreciated that such smoothing can affect the exact 

timing of events, here we focus on a qualitative description of the data and analyses with the 

intention of using it to arrive at simple definitions for the rates of interest that do not require 

numerical differentiation. 

 

The number of cells per well (N) in response to addition of purified FGF2 is shown as a function of 

time in Figure 2A. In contrast to the simple case of exponential growth in full growth medium (Fig. 

1B), there appears to be two phases: slow steady population growth from the initiation of the 

experiment to around 24 hours followed by a second phase of more rapid proliferation. The first 

phase displays mild dependence on growth factor concentration while the second phase showed 

strong dose dependence. At this level it is not clear whether the time of entry into the second 

phase is sensitive to FGF2 concentration. We note that the duration of the first phase of 

population growth is consistent with the time it typically takes for cells to exit G0 and enter the 

cell cycle. 

 

The number of dead cells per well (M) from the same experiment is shown in Fig 2B. It too shows 

two phases, albeit on a separate time scale compared to the two phases of net population growth 

seen in Figure 2A. For dead cells, the first phase is short lived transitioning into the second phase 

after only ~10 hours. Given that the death that is occurs in BPM in the absence of added growth 

factors is apoptosis (Fig. 1F), the change in death rate over the first few hours following growth 

factor addition likely reflects the rapid suppression of apoptosis by the presence of growth factor 

signaling. This suggests that the first phase of population growth seen in Figure. 2A results from 

the rapid reduction in the basal death rate.  

 

The plots of N and M over time reveal intriguing characteristics of the concentration-dependent 

proliferative behavior of DMECs. Taken alone, however, they do not provide deep insight into the 

proliferative behavior we isolate in the experimental system developed here. To better 

understand the proliferative behavior of DMECs following the addition of purified growth factors 

to BPM, we compute the proliferation, birth, and death rates (see Box 1). In general, the rates of 

interest could be a function of the density of cells (here called N) or the time, t.  

 

To examine the potential time and density dependence of the endothelial cell proliferation, we 

computed the proliferation rate and plotted it vs density and time (Fig. 2C). In contrast to density, 

where we saw no obvious relationship, there is strong time dependence with the proliferation rate 
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peaking at around 30 hours after the addition of growth factor. The rise and fall of the 

proliferation rate occurred in a dose-dependent manner and the time of maximum proliferation 

rate was consistent. It begins around the same time, peaks at the same time, and ends at the same 

time regardless of growth factor dose. The proliferation rate begins to rise around 20 hours and 

peaks around 30 hours and returns to low level by 40 hours. The mean cell cycle length of these 

cells was determined by measurement of the doubling time in complete medium to be 21 hours. 

We interpret the extra time needed to divide during the first division post growth factor treatment 

to be the passage of cells from G0 in to G1. Thus, the time dependence of the proliferation rate is 

a direct consequence of the synchronization of the population in G0. 

 

We suspected that the growth factor dependence of the first phase to be the result of growth 

factors’ rapid effect suppressing apoptosis. Furthermore, the abrupt transition from the first slow 

phase to the second faster phase was due to the degree of synchrony in the cell cycle introduced 

by BPM and the time required for cells to re-enter the cell cycle, synthesize DNA, and undergo 

mitosis. Examination of the birth rate over time (Fig. 2D) showed that, indeed, cells appeared to 

divide with some degree of synchrony, producing a spike in the birth rate. Meanwhile, the death 

rate, after the initial rapid decline, proved to be more-or-less constant over the course of the 

experiment (Fig. 2E). From here, we considered extracting parameters such as the maximum time-

dependent proliferation rate or the time of maximum proliferation rate. However, these 

parameters required more replicates than feasible, given our intention of screen numerous 

inhibitors in multiple growth factors. For the sake of simplicity in application and interpretation, 

we applied an exponential model for proliferation. Even though the model assumes the 

proliferation rate to constant over time, the model fit the raw data reasonably well (Fig. S1I) and 

resultant proliferation rates were dose-dependent and reproducible.  

 

Dose-Response Behavior to Pro-Angiogenic Growth-Factors 

 

The dose-response behavior of pro-angiogenic growth factors is shown in Figure 3. The 

proliferation rate (Fig. 3A) shows FGF2 to be the most potent and efficacious at driving 

proliferation. VEGFA and HGF both shared similar efficacy but VEGFA was slightly more potent in 

that it could produce measurable effects at lower molar concentrations. Since the proliferation 

rate is the difference between the birth and the death rate (see Box 1) the proliferation rate alone 

does not completely characterize the system. Comparing the proliferation rate (Fig. 3A) to the 

birth and death rates (Fig. 3B and C, respectively) shows a more complete story. Two interesting 

and related features appear: 1.) given the relatively low magnitudes of the death rates the 

proliferation rate is mostly governed by the birth rate and 2.) growth factors, even at low 

concentrations push the low death rate closer to zero. Thus, the action of growth factors in the 

assay is two-fold: first they quickly reduce the death rate while initiating the re-entry into the cell 

cycle leading to a semi-synchronous wave of birth.  

 

Testing a Panel of Kinase Inhibitors  

To identify kinases that are used by endothelial cells regardless of the growth factor input, we 

applied KIR (Rata et al. 2020; Taranjit Singh Gujral, Peshkin, and Kirschner 2014; Taranjit S. Gujral 

et al. 2014). KIR consists of two steps, first measuring the quantitative effects of 58 kinase 

inhibitors on proliferation rate in the presence of FGF2, VEGFA, and HGF. The kinase inhibitors 
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used here have been fully characterized against 369 human protein kinases in in vitro biochemical 

assays and have been chosen to provide coverage of the human kinome. The second step 

compares the biochemical kinase inhibition data for each inhibitor at each dose tested with the 

degree of inhibition of proliferation within a regularized regression framework to identify kinases 

important for proliferation.  

 

It was qualitatively apparent that some kinase inhibitors, especially at higher concentrations, 

produced cell death to an extent that exceeded the apoptosis seen in BPM. Examination of the 

calculated death rates in the presence of kinase inhibitors confirmed that there were in some 

cases rapid and massive death. In many cases, the proliferation rate was negative, indicating net 

loss of cells. These scenarios, where it can be assumed that the birth rate is negligible, provide two 

independent approximations of cell death. Often in these situations, the loss of cells indicated by 

the loss of nuclei exceeded the independently measured increased number of dead cells measured 

via YOYO-1, resulting in unrealistic negative birth rates. This indicates a failure of YOYO-1 to 

accurately reflect cell death in cases of rapid and extensive death.YOYO-1 was optimized for the 

detection of death in BPM where the death rate is low and exactly how the error in death rate 

measured by YOYO-1 increases with increased death rate remains unclear, for the remaining 

analysis we focus on the proliferation rate which is obtained through high confidence counting of 

labeled nuclei. 

 

Regularization Regression to Identify Universal Kinases  

Kinases were identified as the output of regularized regression using the package glmSparseNet 

(Veríssimo et al. 2018) with the regularization weight alpha set to 0.15 and the kinases were taken 

as the set of kinases that had nonzero coefficients at the value of lambda with lowest mean-

squared error (Fig. S2B). A dataset of mRNA expression levels in DMECs (Davis et al. 2018; ENCODE 

Project Consortium 2012) was used to identify the set of kinases expressed (Fig. S2A). This 

procedure produced a ranked order list of kinases important for proliferation for each of the three 

growth factors tested. The output is shown in Figure 4A. Most kinases appeared in more than one 

growth factor indicating a degree of similarity in signaling pathways that drive proliferation in 

endothelial cells. To reduce the complexity of returned kinases and focus on a subset that might 

prove an enticing target for a more complete antiangiogenic blockade, we chose to compile the 

intersection of the ranked kinases from each growth factor (Figure 4B). The identity of the kinases 

in the intersection, ranked by the sum of each kinases’ rank in all three growth factors, are listed in 

Figure 4C. The kinases in the intersection proved to be a mix of kinases with well appreciated roles 

in basal metabolism (IR) or proliferation (AKT2 (Shiojima Ichiro and Walsh Kenneth 2002), CDK6 

(Sherr, Beach, and Shapiro 2016), PKACG (Yang et al. 2013), and PEAK1 (Wang et al. 2018)) but also 

some with understudied roles in proliferation (e.g., DCLK2, GRK5/6, and DMPK). Interestingly, the 

magnitude of the regression coefficient for kinases showed no relationship with the mRNA 

expression level, suggesting that the method is not simply isolating highly expressed kinases (Fig 

S3). 

Orthogonal Experimental Evidence for Kinases Returned from KIR 

We used siRNA to obtain orthogonal evidence that the kinases that were contained within the 

intersection had impact on the proliferation rate. First, siRNA transfection was optimized for 

DMECs and the specific plating conditions of the proliferation assay (not shown). We are aware 
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that siRNAs have considerable limitations in this setting for at least two reasons. The first is 

general to siRNA and is that application of too much siRNA can produce significant off-target 

effects and therefore false positives while too little might obscure real contributions to 

proliferation and lead to false negatives. The second is more specific to this system – as large 

numbers of cells are not easily obtainable from primary DMEC isolates with low replicative 

potential, independent confirmation of siRNA-mediated knockdown is not feasible. Although, 

determination of the degree of siRNA knockdown for each kinase of interest could help to reduce 

false negatives it would not provide any information on false positives. Overall, we wish to address 

these limitations using a conservative approach, with the goal of leveraging the assay’s 

reproducibility and quantitative sensitivity to small reductions in proliferation to reduce off target 

effects at the potential expense of on-target effects.  

For the first limitation, we determined the concentration at which siRNAs targeted to each growth 

factor receptor inhibited the proliferation of DMECs in the presence of its cognate growth factor 

but not the others. Although there is only one known receptor for HGF (namely MET), the fact that 

there are four potential FGFRs and three VEGFRs required us to first determine experimentally 

which receptors are expressed. Via western blot, we identified the receptors expressed to be 

FGFR1 for FGF2, VEGFR2 for VEGFA, and Met for HGF (Figure S3). We attempted to account for the 

second limitation by using three siRNAs directed towards each gene of interest and considered the 

effect to be an average of all three siRNAs.  

Using the optimized transfection conditions, we determined the concentration of siRNAs directed 

toward the expressed growth factor receptors which resulted in a reduction of the proliferation 

rate in the presence of the cognate growth factor but not the other two. For example, a specific 

knockdown of FGFR1 would be expected to reduce the proliferation rate of DMECs in the presence 

of FGF2 but not VEGFA. We found that using 5 nM produced little to no effect while 15 nM 

produced strong off-target effects (not shown). siRNAs directed toward growth factor receptors at 

10 nM appeared to generate specific, on-target reductions in proliferation rate while avoiding off-

target responses (Figure 5A). Note that for each target, the reductions in the proliferation rate are 

incomplete, suggesting that we can indeed measure difference using low concentration of siRNA 

which should limit non-specific, off-target effects. 

Next, we tested the intersection kinases using three independent siRNAs to each kinase and the 

effect of knockdown of each gene was taken to be the average of the effect of all three siRNAs. 

This conservative approach was chosen because of the difficulty in ascertaining the extent of 

knockdown in limiting numbers of primary cells on the scale necessary for this work. We present 

the magnitude of each kinase knockdown in Figure 5B as the proliferation rate following siRNA 

treatment normalized to the no siRNA control. The magnitude of each effect was tested with 

ANOVA followed by multiple comparisons. In general, that the siRNA as used resulted in relatively 

mild to moderate, yet reproducible, inhibition of proliferation. The observed degree of inhibition is 

consistent with our intention of minimizing off-target responses. All the kinases assessed by siRNA 

knockdown, except for CDK17 and MKK7 produced a significant reduction in kp for at least one 

growth factor. We also note that inhibition of several kinases via siRNA resulted in significant 

reduction in proliferation in both VEGFA and HGF but not in the most potent driver of 

proliferation, FGF2. As we are interested in kinases that are involved in the signaling downstream 

of all three growth factors, we elected to focus on kinases with a statistically significant effect in all 

three growth factors. The results provide secondary evidence for four kinases to be important for 
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endothelial cell proliferation in FGF2, VEGFA, and HGF: AKT2, CDK6, CAMKL2, and PKACG. Of 

these, three (AKT2, CDK6, and PKACG) are well characterized. The role of the fourth kinase, DCLK2, 

in endothelial cell proliferation has not been studied and is therefore of considerable interest as a 

new regulator of endothelial cell proliferation and angiogenesis.  

Discussion 

One of the most appealing aspects of anti-angiogenic therapy was its potential to treat a wide 

variety of cancers. Unfortunately, current usage of anti-angiogenic therapy remains limited to a 

smaller subset of cancers than originally envisioned and the efficacy remains lower than hoped. 

The reason for this limited efficacy remains unclear although redundancy in pro-angiogenic 

mechanisms is often offered as an explanation. Nonetheless, the fundamental theory behind anti-

angiogenic therapy, that all tissues, whether normal or cancerous require adequate blood supply, 

remains sound. Furthermore, given the fact that angiogenesis is critically involved other 

pathological disorders as well as in wound healing, the desire for a more thorough understanding 

of the regulation of the process remains high. Here, we present a novel approach for the 

identification of critical kinases downstream of growth factor receptors. 

There have been many successful efforts to quantify cell proliferation and related analyses have 

produced many insights into mechanisms governing cell proliferation(Harris et al. 2016; Gross and 

Rotwein 2016). In general, most approaches fall within two extremes, high through put 

experiments which tend to rely on endpoint measurements and time-lapse, single cell approaches. 

High-throughput, end point assays can provide a wealth of data on the effects of an enormous 

number of perturbations on cell proliferation. An end-point assay may reveal an increase or 

decrease in the number of cells upon perturbation but offers no insight on whether those changes 

resulted from impacting birth and/or death. Conversely, detailed single cell tracking-based data 

can offer information on cell cycle transitions, birth, pro-apoptotic signaling events and death. 

Despite the development of many tools to analyze such detailed experiments, the throughput 

remains low. With our assay design, we have tried to thread the needle between the wealth of 

data provided by increased throughput while also attempting to acquire kinetic data that can 

provide insight into time-dependent responses. 

We observed some interesting aspects of the effects of growth factors on the cell cycle and 

proliferation. Fig. 2D clearly shows that there is a ‘wave” of cell division upon addition of growth 

factor that lasts roughly 20 hours. From the raw cell counts in Fig. 2A, we can read off the number 

of new cells and see that at the highest FGF2 concentrations the population goes from ~320 to 

450. In other words, over the course of the growth factor driven wave of birth, only roughly 130 

new cells are produced from 320. (Note that this analysis ignores the low level of cell death.) 

Clearly, the entire population is not dividing upon the addition of FGF, the single most potent and 

efficacious growth factor in the assay. We see similar behavior for HGF and VEGF (data not 

shown). Furthermore, the number of cells in that do divide is concentration dependent suggesting 

that increasing concentrations of growth factors increase the fraction of cells that re-enter the cell 

cycle. This type of threshold behavior has been seen before in fibroblasts (Gross and Rotwein 

2016). 
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This raises two questions: 1.) What causes a subset of cells to re-enter the cell cycle and, more 

importantly for the current work, 2.) are the cells that do not re-enter the cell cycle even capable 

of doing so or is there something about BPM that causes them to enter an irreversible quiescence? 

All we can definitively say about it is that the DMECs under study were isolated from a single 

donor to reduce genetic heterogeneity and, more importantly, that we have evidence that the 

addition of a combination of purified growth factors results in >99% of DMECs plated in BPM for 

24 hours dividing (not shown). Thus, the state is not irreversible and results in no artifact vis a vis 

our analysis of pro-angiogenic kinases. We believe the kinetic assay of proliferation and apoptosis 

developed here provides a method for addressing this and other unanswered questions regarding 

these two critical cellular functions and their interaction. 

Using KIR, we identified 19 kinases to be important for endothelial cell proliferation in the 

presence of multiple bona fide pro-angiogenic factors. Furthermore, we also provide additional 

evidence that four of these 19 are critical for endothelial cell proliferation using an orthogonal 

method, siRNA-mediated knockdown. At this scale, the siRNA approach has several limitations, 

including a lack of validation of efficient gene knockdown. To overcome this weakness, we chose 

to take a conservative approach to out interpretation of the results by focusing on the kinases that 

were found to statistically impact proliferation while avoiding statements about those that had no 

large, reproducible effect. Our siRNA results show that within the optimized format, the siRNAs 

produced mild to moderate effects. Therefore we emphasize that while the knockdown of a kinase 

producing an effect in all three growth factors certainly provides strong evidence for a role in 

proliferation, we cannot with great confidence exclude the possibility that those that did result in 

an effect in one or two growth factors (or even those that had no significant effect at all) do not 

also have a considerable impact on endothelial cell proliferation. For example, it would seem 

unlikely that the insulin receptor is somehow not important in FGF driven proliferation. It is 

interesting that MKK7, which has been implied in pro-angiogenic signaling (Mitchell et al. 2006), 

dominated the KIR output yet was not corroborated by siRNA. This possibly reflects the differences 

in between the two methods and their sensitivity to functional redundancy. For example, consider 

a scenario where two kinases are similar enough to functionally compensate for each other and 

they share similar sensitivity to a subset of KIR compounds. In this scenario, KIR might return one 

or both of these kinases. However, siRNAs with specificity to only one of these kinases would fail 

to produce any effect due to redundancy.  

One of these four kinases identified and further validated here, CDK6, has an inhibitor palbociclib 

approved for treatment of hormone positive, HER2 negative metastatic breast cancer. Indeed, 

some have speculated that at least some of Palbociclib’s efficacy is due to an anti-angiogenic 

effect (Liu, Liu, and Chen 2018; Ehab and Elbaz 2016). Recently, palbociclib in combination with 

taxanes, was shown to increase apoptosis and reduce HIF-1α in a pre-clinical model of squamous 

cell lung cancer (Cao et al. 2019). Similarly, the pan-Akt inhibitor capivasertib has been shown to 

improve outcomes in a variety of Akt1 E17K mutant cancers (Kalinsky et al. 2021). Another Akt 

inhibitor, ipatasertib, in combination with androgen pathway inhibition, improved progression free 

survival in prostate cancer (Sweeney et al. 2021). Protein kinase A (PKA) has been shown to be 

important for directly regulating endothelial cell during angiogenesis (Zhao et al. 2019), and 

indirectly through tumor associated macrophage-based secretion of VEGF (Na et al. 2020).  

The present work also indicates the DCLK2 as a novel regulator of endothelial cell proliferation. 

DCLK1 and 2 are understudied kinases, with the majority of work being upon DCKL1 and its role in 
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cancer (Ferguson et al. 2020), neuronal survival (Nawabi et al. 2015), and maintenance of 

intestinal crypt cell stemness (Chandrakesan et al. 2017). DCLK2 was identified as having synthetic 

lethal interaction with mutant Ras in colorectal cancer (Luo et al. 2009), suggesting that it may be 

an enticing target for cancers drive by the Ras oncogene. It will be of interest to further explore 

the role of DCLK2 in endothelial cell biology and cancer.  

Methods: 

Growth Factors and Cytokines. All human recombinant growth factors and cytokines were 

purchased from PeproTech (NJ) and resuspended in the solvent recommended by the 

manufacturer at 100µg/mL, aliquoted, and frozen until use. 

Cloning. The viral transfer plasmid expression a nuclear-localized mCherry was obtained using 

standard cloning techniques. First, pLVX-EF1α-mCherry-N1 (puro) was digested with EcoRI and 

NotI. The 8.5kB band representing the backbone of the vector was excised and purified. The 

nuclear-localized mCherry was digested from pBRY-nuclear mCherry-IRES-PURO (Addgene plasmid 

52409) and the ~860bp band was gel purified. The insert was ligated into the pLVX vector 

overnight at room temperature, transformed into Stbl3 bacteria and plated on LB/ampicillin 

plates. Colonies were picked, cultured overnight, and tested for proper ligation using digestion 

with EcoRI and NotI. Positive clones were tested be sequencing and the sequence of both the 3X-

NLS and mCherry was confirmed to be correct. 

Cell Culture, Virus Production, and Viral Transduction. Human Dermal blood microvascular 

endothelial cells (DMECs) isolated from a single donor were purchased from Lonza (CC-2183). 

DMECs were cultured in EGM2-MV (Lonza) and passaged using trypsin and trypsin neutralization 

solution (Lonza). Viruses carrying a gene for the expression of nuclear localized mCherry were 

produced via triple transfection of HEK-293T cells using FuGENE. The plasmids used were psPAX2, 

pMDG.2, and pLVX- E1α-NLS-mCherry. Twenty-four hours after transfection, the medium was 

replaced. For the next 3 days, the supernatant was collected, spun at 500xg to remove large 

debris, and stored at 4C. After all supernatant was collected, the pooled supernatant was passed 

through a 0.45 µm filter and transferred to centrifuge and centrifuged for 90 minutes in a SW28 

singing bucket rotor. After centrifugation, the supernatant was discarded and the pellet containing 

concentrated virus was resuspended in 100 µL of PBS. To create a large supply of labeled DMECs, 

three tubes of purchased DMECs were thawed, counted, plated at 5000 cells/cm
2
 and cultured 

overnight. The next day purified and concentrated virus was added to the cells at MOI = 5 in 

medium containing 8 µg/mL polybrene. The next day, the medium was changed, and the cells 

were cultured continuously, passaged when ~80% confluent until reaching the sixth passage (cells 

are purchased at passage three). At this point, the cells were trypsinized, pelleted, counted, and 

resuspended in EGM2-MV supplemented with 10% DMSO at a density of 500,000 cells/mL. The 

labeled DMECs were aliquoted in 500 µL aliquots and frozen at -80C overnight and then 

transferred to long term storage in liquid nitrogen. For every experiment presented here, tubes 

were thawed, viable cells determined and plated at 5000 cells/mL, cultured for 6 days with 

medium changes before being collected, counted, and plated. For proliferation assay in 384 well 

plates, cells were plated at 255 cells per well or 3591 cells/cm
2
. 

Formulation of Basal Proliferation Medium (BPM). BPM contains 0.5% human AB serum (0.5%), 

insulin, r-Transferrin, 0.5% BSA, hydrocortisone.  
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The proliferation assay. YOYO-1 iodide was purchased from ThermoFisher (Y3601) and added to 

BPM immediately before plating cells for the proliferation assay. DyeCycle Green was purchased 

from ThermoFisher and used as a live cell stain at a final concentration of 10 µM to count living 

nuclei and determine the labeling efficiency of nuclear mCherry transduction and expression. 

Image Analysis for Counting Nuclei and Dead Cells. Time-lapse imaging of DMEC proliferation was 

done in an IncuCyte ZOOM (Sartorius) with a 4x objective. Nuclei and dead cells were counted 

using the built-in image analysis capabilities of the IncuCyte ZOOM. 

Cell Cycle Distribution and EdU Incorporation. DMECs were plated on poly-L-lysine-coated 6-well 

glass-bottom plates at 8,450 cells per cm
2
 in either BPM or growth medium (EGM2-MV, Lonza). 

After 24 hours, cells were fixed with 4% paraformaldehyde in PBS for 10 minutes, permeabilized 

with 0.1% triton in PBS for 10 minutes, then stained with DAPI (Cell Signaling) for one hour at 

room temperature. Following staining, cells were washed once with PBS and then imaged 

immediately on a Nikon at 10x.  

For long-term EdU incorporation, we first optimized the concentration of EdU that could be 

detected but not greatly alter the proliferation rate. We did this by plating cells in varying 

concentration of EdU in growth medium and fixing after various times. We found that culture in 

240 nM EdU for 48 hours resulted in a less than 5 % reduction of the proliferation rate while being 

incorporated into ~95% of cells. For experiments, we then plated cells in BPM, and 24 hours later, 

added EdU with the growth factor or added complete growth medium.  

ELISA. Pre-coated ELISA plates were purchased from R&D Systems and protocols were performed 

according to manufacturer instructions. Cell culture supernatants were obtained by plating 600 

cells per well in 384-well plates in 60 µL BPM. After 24 hours, 20 µL of BPM containing growth 

factors at 4x intended final concentration were added. Twenty-four hours following growth factor 

addition, 60 µL of supernatant was removed from each well and pooled according to growth factor 

and concentration. The pooled supernatants were then clarified by centrifugation to remove any 

cell debris and frozen at -20C until all replicates were performed. Supernatants were thawed to 

room temperature and utilized immediately in the ELISA. 

Analysis of kinetic measurements of cellular proliferation and death.  

We applied the following definitions, as approximation to obtaining the proliferation rate from an 

exponential fit, to calculate per capita proliferation rates for each well: 
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Where 	��� is the number of nuclei as a function of time, 
	� is the average number of nuclei over 

the experiment, and �� and ���� is the first and last time points in the experiment. The death rate 

was defined similarly: 
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The birthrates were then calculated as �
 �  ��  �	. These definitions assume that the rates are 

independent of the overall density and time. Although we show that density is not a critical factor 
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(Figure S1E), the rates are clearly dependent on time (Figure 2). We use these definitions as they 

are simple to compute and calculation of time-dependent rates were not feasible with the noise 

inherent in the data.  

Kinase Inhibitor Screen 

Extensively characterized kinase inhibitors were tested in the proliferation assay in the presence of 

each of the three growth factors. Inhibitors were tested with four replicates at each of six 

concentrations, the highest being 5 µM with serial 3-fold dilution.  

 

 

Kinome Regression (KIR) 

Kinome regression was performed as regularized regression using the R package glmSparseNet. 

The input was the calculated difference between each inhibitor/growth factor combination and 

the appropriate control (DMSO/growth factor combination) contained on the same plate. The 

kinase data from the in vitro characterization was filtered according to endothelial cell expression 

(www.encodeproject.org, identifier: ENCFF110UGQ) using a cutoff of 1.5 arbitrary expression units 

(see Figure S2). The following parameters were used in the analysis: α = 0.15 and standardize = 

TRUE. 

siRNA Validation of Kinases Identified by KIR  

We tested four different siRNA transfection reagents (RNAiMAX, DharmaFECT 4, for two 

properties: 1.) To efficiently knock-down a gene of interest and 2.) to have minimal impact on 

proliferation in the assay. To evaluate transfection efficiency, we used KIF11 which is critical for 

cytokinesis and when knocked down results in easily scored rounded cells. We found that 1uL/mL 

of RNAiMAX resulted in 95% rounded cells in while decreasing the proliferation rate by less than 

3%. We knocked down kinases using siRNAs from Qiagen (see spreadsheet for the ordering 

numbers of the siRNAs used) at 10 nM. For transfection, cells were plated in BPM containing 

YOYO1 in 384 well plates as usual for the proliferation assay. While the cells were adhering, siRNA 

transfection complexes were formed after a 10-minute incubation and added to the cells with four 

replicates. Twenty-four hours after plating/transfection, growth factors were added at the 

following concentrations: FGF2, 1.25 ng/mL; VEGFA, 20 ng/mL, and HGF, 20 ng/mL. The plates 

were then added to the IncuCyte ZOOM and imaged every two hours for 48 hours. The 

proliferation rates were extracted as described in the section.  
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FIGURE LEGENDS 

Figure 1. Establishment of the Experimental System. A. Demonstration of Dermal Microvascular 

Endothelial Cell (DMEC) labeling. Fluorescent image of nuclear-localized mCherry overlaid on a 

phase contrast image of confluent DMECs. B. The proliferation of DMECs in full growth medium 

(dotted line) is exponential (solid line is a fitted exponential curve). C. Cell cycle analysis of relative 

DNA content determined by labeling live cells with Hoescht and imaged with a microscope. Full 

growth medium (left) produces a familiar distribution of cells while 24 hours in Basal Proliferation 

Medium (BPM) (right) produces far fewer cells in S- and G2/M- phases. D. Demonstration of YOYO-

1 dye to detect dead cells. E.) Example of nuclei (closed circles) and dead cells (open circles) over 

time in BPM. F. Cell death in BPM is countered by inhibition of caspase activity via 10 µM Q-VD-

OPh.  

Figure 2. Concentration-Dependent Population Dynamics of Dermal Microvascular Endothelial 

Cells (DMECs) in the Presence of Pro-Angiogenic Growth Factors. A. The number of cells (N) over 

time for four concentrations of FGF2. B. The number of dead cells (M) over time for the 

experiment shown in panel A. C. The proliferation rate, P, for the same experiment as in panels 

A,B. D. The birth rate, B, as a function of time. E. The death rate, D, as a function of time. 

 

Figure 3. The dose-response proliferative behavior of Dermal Microvascular Endothelial Cells 

(DMECs) to Three Pro-Angiogenic Growth Factors. The proliferation rate (A), the birth rate (B), and 

the death rate (C) for FGF2, VEGFA, and HGF over a range of concentrations. Note that the y-axes 

share the same scale to facilitate comparison of the relative magnitude of each. 

 

Figure 4. Identification of kinases important for the proliferation rate of Dermal Microvascular 

Endothelial Cells (DMECs) in each pro-angiogenic growth factor studied. A. Magnitudes of the 

Kinome Regression (KIR) coefficients (i.e., influential kinases) for each identified growth factor. B. 

Venn diagram revealing the exclusivity and commonalities in the set of kinases identified for each 

growth factor. C. The list of the intersection of kinases implicated in all three growth factors. 

Kinases are ordered according to a rank obtained by summing each kinase’s ranks across all 

growth factors. 

 

Figure 5. Orthogonal evidence supporting the role of kinases identified by Kinome Regression (KIR) 

Analysis. A. Targeting growth factor receptors with 5 nM of siRNA reduces the proliferation rate of 

Dermal Microvascular Endothelial Cells (DMECs) in the presence of cognate growth factors while 

minimizing reduction in proliferation in other growth factors. B. Targeting kinases with siRNA 

largely agrees with kinases implicated by KIR. Here, the effect is defined as the average over all 

three siRNAs used for each kinase and normalized to the no-siRNA control. Error bars are s.e.m. 

The asterisks indicate growth factors context in which the siRNA targeting a given kinase produced 

a statistically significant result (� � 0.05 from multiple comparison testing).  
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SUPPLEMENTARY FIGURE LEGENDS 

Figure S1. More on the Establishment of the Experimental System. A.) Nuclei can be counted via 

image processing. The right panel shows a fluorescent micrograph of nuclear mCherry labeled 

Dermal Microvascular Endothelial Cells (DMCEs), while the center panel shows the mask 

generated by automated image analysis. The right panel shows the overlay of the two. B.) There is 

a high degree of correspondence between automated counting (x-axis) and manual counting of 

nuclei (y-axis). Additionally, the error is apparently independent of density. C.) Labeling DMECs 

with nuclear mCherry via lentivirus-mediate gene transfer does not alter the doubling time of 

DMECs. D.) Left panel: Nuclear labeled DMECs produce exponential growth over an interval of 

time as evidenced by linear relationship between time in hours (x-axis) and the natural logarithm 

of cell number (y-axis). Right panel: Percent confluence for the same experiment. Note the 

deviation from exponential growth occurs at ~120 hours or when confluency grows above ~70%. 

For both panels, solid line is data, dashed line is a fitted exponential curve. E.) The proliferation 

rate (defined as in main text, section Features of Growth Factor-Induced Population Dynamics) is 

independent over a range of plating densities in the presence of growth factors. F.) YOYO-1, at 

concentrations as high as 50 nM, have no effect on the proliferation of DMECs. G.) The inhibition 

of death rate in (Basal Proliferation Medium) BPM (defined as in main text, section Features of 

Growth Factor-Induced Population Dynamics) is dependent on the concentration of inhibitor. H.) 

The death rate in BPM is not inhibited by relevant concentration of the necroptosis inhibitor 

necrostatin. I.) The raw data for cells proliferating in response to growth factors added to BPM 

(here 20 ngs/mL VEGFA) are well approximated by an exponential fit.  

Figure S2 Additional data regarding Kinome Regression (KIR). A.) From left to right we detail the 

RNA-seq dataset used to identify the set of kinases expressed by Dermal Microvascular Endothelial 

Cells (DMECs). On the far left is shown the histogram of expression levels of all 17,698 genes in the 

dataset. The bimodal nature of the expression data is easily seen and suggests that genes in the 

first peak with relatively low expression values are not actually expressed while those in the 

second more broad peak with higher expression values are. Moving rightward, the histogram of 

the expression of only protein kinase genes (N = 493) is shown. It can be seen that kinases too 

follow the expected bimodal distribution as seen for all genes. We use these two observations to 

justify the selection of a threshold for real kinase expression. This threshold was set at 1.5 

arbitrary units. Next histogram shows the distribution of the 377 expressed kinases in DMECs. 

Finally, on the far right we see the histogram of the intersection between expression kinases and 

KIR kinases, i.e., those for which the compounds have been thoroughly characterized. Thus, we 

arrive at 265 kinases which could potentially be returned from KIR analysis. This is not the final 

number as will be detailed next. Note that in Fig. S2A the number of kinases in the RNA-seq 

dataset is 493. This is 25 shy of the total number of kinases thought to be in the human genome. 

Of the 25 kinases not in the expression data, five are KIR kinases. To be conservative, we include 

those kinases in our analysis. B.) Plots of log(λ) vs mean-squared error (MSE) from leave-one-out 

cross-validation. We used the kinases from the model that minimize MSE (vertical dashed line).  

 

Figure S3. The Kinome Regression (KIR) coefficients plotted against the mRNA expression level. 

Note the lack of relationship between expression level and magnitude of contribution. It can also 
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be seen that two kinases for which we lack expression data, PEAK1 and PKACG, were returned by 

the analysis.  

Figure S4. The identification of relevant growth factor receptors expressed on Dermal 

Microvascular Endothelial Cells (DMECs) via western blotting. There are two VEGF receptors in the 

genome with kinase activity, VEGFR2 and VEGFR3. DMECs only express VEGFR2. Similarly, there 

are four FGFRs in the human genome and DMECs only express FGFR1. 
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FIGURE 1 
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FIGURE 4 
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FIGURE 5
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TABLE  S1 

Growth Factor Supplier MW (kDa) Highest Concentration 

Tested (nM) 

Pro-Proliferative? 

Activin A PeproTech 26 3.85 N 

Ang1 PeproTech 56.3 1.78 N 

Ang2 PeproTech 50.1 2 N 

CTGF PeproTech 11 9.09 N 

EG-VEGF PeproTech 9.6 10.42 N 

EGF Millipore 133.95 0.01 Y (weak) 

FGF1 PeproTech 16.8 5.95 Y 

FGF2 PeproTech 17.2 5.81 Y 

FGF3 R&D 21.1 7.11 N 

G-CSF PeproTech 18.7 5.35 N 

GM-CSF PeproTech 14.6 13.7 N 

Heregulin 1 PeproTech 7.5 13.33 N 

HGF PeproTech 79.4 2.52 Y 

IGF-1 R&D 7.6 26.32 N 

IL-1β R&D 17.3 5.78 N 

IL8 PeproTech 8.9 11.24 N 

Leptin R&D 16 62.5 N 

MCP-1 PeproTech 8.6 11.63 N 

PDGF-BB R&D 24.3 4.12 N 

PlGF PeproTech 29.7 5.05 N 

SDF-1α PeproTech 8 25 N 

TGF-α PeproTech 5.5 18.18 Y (weak) 

TGF-β1 PeproTech 25 4 N 

TGF-β2 PeproTech 25 4 N 

TGF-β3 PeproTech 25 4 N 

VEGFA 121 R&D 28 5.36 Y (weak) 

VEGFA 145 R&D 34 4.41 Y 

VEGFA 165 PeproTech 38.2 3.93 Y 

VEGF B PeproTech 38 3.95 N 

VEGF C PeproTech 27 5.56 N 

VEGF D PeproTech 26.2 5.73 N 

Wnt1 PeproTech 38.4 2.6 N 

Wnt7B PeproTech 35.5 2.82 N 
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FIGURE S1 
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