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Abstract

With recent advances in multiplexed imaging and spatial transcriptomic and pro-
teomic technologies, cell segmentation is becoming a crucial step in biomedical im-
age analysis. In recent years, Fully Convolutional Networks (FCN) have achieved
great success in nuclei segmentation in in vitro imaging. Nevertheless, it remains
challenging to perform similar tasks on in situ tissue images with more cluttered
cells of diverse shapes. To address this issue, we propose a novel transfer learning,
cell segmentation framework incorporating shape-aware features in a deep learning
model, with multi-level watershed and morphological post-processing steps. Our
results show that incorporation of geometric features improves generalizability to
segmenting cells in in situ tissue images, using solely in vitro images as training
data.

1 Introduction

Studying the diversity and complex organization of cell types in tissues provides insight into their
various biological functions, maintenance and transformation. Single-cell technologies are powerful
in revealing the heterogeneity of cell types and cell states. However, they rely on tissue dissociation
and are thus agnostic to the spatial context and intercellular interactions. More recent multiplexed
imaging technologies with fluorescence in situ hybridization [9] provide the advantage of mapping
the spatial context of cells in addition to profiling gene expression of individual cells. Emerging
single cell proteomic technologies [9, 5] also allow for the direct study of protein expression levels.

With the rapid growth of these spatial imaging technologies, there is a strong demand for computa-
tional tools for analyzing this data. One crucial step prior to most downstream analysis is performing
high-quality image segmentation. By successfully isolating each discrete cell in an image, we can
perform other analyses such as quantifying the expression of each gene or protein in individual cells,
which enables the characterization of cell types (e.g. by clustering cells based on expression profile)
or cell state transitions (e.g. by trajectory inference) while accounting for the spatial organization and
context of cells.

Despite recent success on specific cell imaging datasets [13, 6], Fully Convolutional Networks (FCN)
models are unable to generalize across cell, culture, and tissue types; most success so far has been
observed on symmetrical, well-separated in vitro nuclei stained cells [4]. Thus, developing pipelines
for segmentation of in situ images which contain valuable biological information in the context of the
tissue is an urgent, unmet need. Moreover, the scarcity of comprehensive annotated training datasets
on tissue images, makes the generalizability of methods from the in vitro domain to other domains
more essential.
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1.1 Related Works

The U-Net architecture [13] is recognized as a popular and representative FCN for image segmentation
in biomedical applications and beyond. However, to perform high-quality instance segmentation at
the single cell resolution, especially for in situ tissue images, the base U-Net struggles with separating
adjacent, clustered cells, leading to multiple methods that incorporate shape-aware priors during
training or post-processing. Guerrero-Pena et al. [6], for example, designed a Shape-Aware Weight
map (SAW), assigning higher weights to pixels corresponding to borders of attaching cells and lower
weights to background regions in the cross-entropy loss calculation.

Traditionally, the Watershed algorithm, based on the concept of flooding from local minima to edges
[2, 11], and accurate prediction of membrane markers at local minima is used to separate attached
cells. Al-Kofahi et al. [1] expanded upon this by preceding the water-shedding with a deep learning
output with h-minima and multiple rounds of Otsu-thresholding to separate connected cells in the
prediction. Other approaches have attempted to learn the watershed energy levels in neural networks
by performing distance transform to the ground-truth masks [3, 10].

Nevertheless, these methods have been either solely applied to certain image datasets (e.g. cluttered
T-cells, Cityscapes), suffer from class imbalance or over-fitting issues, or are inflexible due
to significant feature engineering. To address these issues, we propose a new approach that
utilizes and adapts these ideas to incorporate geometric features as priors, while transferring
knowledge attained from in vitro nuclei segmentation to the domain of in situ segmentation. This
generalizability is important as there are many annotated in vitro nuclei segmentation training datasets
available while in situ annotated data are rare, requiring time-consuming, expert manual segmentation.

2 Methods

2.1 Model Architecture

Our method utilizes a Feature Pyramid Networks (FPN) architecture with residual blocks (Figure
1)[12]. It maintains the contraction path from the U-Net architecture with major modifications to the
extraction path. In every double-convolutional layer within the contraction path, a shortcut connection
is added from the input to the output [7]. While U-Net-like architectures only make predictions at the
last layer, the FPN utilizes feature maps from all resolution levels along the extraction path, which
directly contribute to the output predictions.

Figure 1: Overview of transfer learning approach with shape-aware priors in a Feature Pyramid
Network and multi-level watershed post-processing
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2.2 Preprocessing & Shape-Aware Weight Maps

We expanded upon the typical label augmentation for attaching cell borders [6] by assigning both the
cell borders and contour pixels as a third label, besides background and nuclei. This modification
combats class imbalance arising from border pixel sparsity in the in vitro training set, allowing our
approach to generalize to various cell types.

We also modified the calculation of Shape-Aware Weight maps (SAW), which encodes geometric
properties of cells in loss functions during training as following. For each pixel, the original equation
of SAW Guerrero-Pena et al. [6] defines the weights as the sum of class imbalance weight and a
"complexity" weight, which focuses on cell borders and narrow, irregular cell shapes:

Wsaw(p) =Wclass(p) +GaussianBlur(Wcomplexity(p))

where Wcomplexity applies distance transformations as in Guerrero-Pena et al. [6] to each individual
mask and its concave complement to address higher weights at smaller or concave cell regions.
Gaussian blur (smoothing) is applied to assign relatively high weights to pixels close to those
"complex" pixels. L = {0, 1, 2} denotes the set of all possible ground-truth labels, with integer
labels from 0 to 2 representing background, foreground, and contour & attaching border pixels
respectively. gi ∈ L represents class labels and Wclass assigns the class weight inversely proportional
to the total counts of each class labels wi = 1/|gi|. However, for training sparse images with few
cells, such class weight assignment would generate extremely low weights for background pixels,
which may encourage the model to under-optimize at certain background regions. Therefore, for each
class label gi ∈ L, we reassigned the class weights as wi = 1/

√
|gi| followed with normalization

(
∑

i wi = 1) to compensate for this problem.

For computational efficiency, both the label augmentation and the SAW maps for each input mask
were calculated before the training (Figure 1). The pre-trained FPN model based on SAW with
cross-entropy loss was then applied to a new domain involving in situ images with nuclei markers for
testing.

2.3 Multi-level Watershed Post-processing

Despite the increase in accuracy over U-Net from the aforementioned model architecture with the
incorporation of SAW, in situ intact tissue images with cluttered cells, especially when they are
visually indistinguishable, are extremely difficult to accurately segment. We thus propose a fully
automated multi-level watershed post-processing method (Algorithm 1) to detach connected cells
in our FCN + SAW output. Given an arbitrary prediction map G′ = {g′0, g′1, g′2} with three channel
predictions for background (0), foreground (1), and cell boundary & attaching borders (2), we first
select the predicted foreground regions, denoted as Gpred = {p | p ∈ G′, g′1(p) > 0.5}. We then
calculate the solidity3, which reflects the convexity level of each individual mask. For all masks
with solidity higher than the cutoff parameter θ (i.e. "convex-like" masks), we measure the average
area aavg and diameter davg representing average cell size. All the other masks will be passed to
the first-round watershed if their area exceed aavg . We set the closest possible distance between any
two local minima in the watershed as davg, the diameter learned from all convex-like masks. Such
restrictions help avoid over-segmentation with false-positive local minima.

After the first-round watershed, we set the centroid of all candidate individual masks as the markers for
the second-round watershed. The topography for watershed is set as the inverse distance transform4

from Gpred, and the candidate regions for watershed are set as Gregion = {p | p ∈ G, g′1(p) >
0.5 or g′2(p) > 0.5} for all possible foreground, border or contour pixels. The second-round
watershed recovers the maximized area of each individual nuclei mask and detects non-convex (e.g.
bean-shaped concave cells).

Note that all the parameters in our multi-level watershed post-processing pipeline can be learned.
aavg and davg are estimated from each individual prediction maps during the first-round watershed.

3By definition, solidity of any close-loop shape g is the ratio of its area divided by its convex hull’s area:
Solidity(g) = Area(g)/Area(ConvexHull(g))

4Define InverseDistanceTransform as the operation of 0 - Euclidean distance transform from each pixel to its
closest background. This generates a topography where the cell’s central regions have lower values than cell
boundaries.
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θ is calculated by the average solidity in the training set. In the Data Science Bowl training set[4], the
average solidity is 93.90 so we roughly set θ = 0.9.

Algorithm 1: Multi-level Watershed Post-processing
Input :G′: 3-channel prediction map

θ: Cutoff value for selecting "convex-like" cells
Output :gTws: Set of post-processed individual prediction masks
Gpred ← {p | p ∈ G′, g′1(p) > 0.5}
Gregion ← {p | p ∈ G, g′1(p) > 0.5 or g′2(p) > 0.5}
gT ← set of individual masks in Gpred

gTshape ← ∅
aavg ← Mean(Area(g)) ∀g : Solidity(g) ≥ θ, g ∈ gT
davg ← Mean(2 ·Area(g)/π) ∀g : Solidity(g) ≥ θ, g ∈ gT
for g ∈ gTpred do

if Solidity(g) < θ and Area(g) > aavg then
t← InverseDistanceTransform(g)
m← LocalMaxima(g,minDistance = davg)
gshape ← Watershed(image = t,markers = m,mask = g)
gTshape.append(gshape)

end
end
mT ← Centroid(gTshape);
tT ← InverseDistanceTransform(gTshape);
gTws ← Watershed(image = tT ,markers = mT ,mask = gTshape);

3 Results

3.1 Dataset

We gathered nuclei images from multiple sources for in vitro and in situ cells. In vitro cell images
are downloaded from the 2018 Data Science Bowl Challenge (stage 1)[4], along with corresponding
ground-truth expert manual annotations.

For consistency across cell-types and microscope technologies, we selected a subset of the 2019
Data Science Bowl Challenge dataset with dark backgrounds, resulting in 546 nuclei images, with
a 80/20 train/validation split. In situ cell images are retrieved from the TNBC breast cancer MIBI
(Multiplexed Ion Beam Imaging) dataset [9] for testing. Following suggestions from Keren et al.
[9], we overlaid three nuclei marker channels (dsDNA, H3k27me3 and H3K9a) to generate each
individual image. To evaluate our performance, we include the only two images (from Patient 1 & 2)
which had manually annotated ground-truth masks [9]. For each 2048× 2048 raw input images, we
split each into 16 non-overlapping 512× 512 patches, and further resize each patch into 256× 256
to match our training image size. In summary, we trained on 437 (80% of nuclei images) in vitro
nuclei images and evaluated our method on 32 in situ MIBI test images.

Table 1: Performance comparison on MIBI in vivo dataset.
Model Accuracy F1 IoU AUC Hausdorff
U-Net 0.7494 0.7115 0.3091 0.6478 9.6090

U-Net + SAW 0.7543 0.7157 0.3168 0.6516 9.5787
FPN + SAW 0.7589 0.7244 0.3324 0.6606 9.4976

U-Net + Multi-level Watershed 0.8216 0.8114 0.5260 0.7624 8.6590
U-Net + SAW + Multi-level Watershed 0.8396 0.8338 0.5814 0.7934 8.4070
FPN + SAW + Multi-level Watershed 0.8435∗ 0.8397∗ 0.6021∗ 0.8055∗ 8.2529∗

*p < 0.05 (paired t-test comparing to U-Net)
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3.2 Experiment

In vitro training We resized each image to 256× 256, and converted it to grayscale. We trained
the model for 50 epochs with early-stopping (patience count = 30) guided by the validation metrics.
By default the learning rate is set as 1e−3. After training the model, we employed our multi-level
watershed post-processing to achieve the final cell segmentation results.

In situ predictions To evaluate our pipeline’s generalizability to in situ tissue data, we benchmarked
it on the MIBI dataset. Table 1 compares the performance of our proposed method FPN+SAW+Multi-
level Watershed using the manually annotated ground-truth masks, against U-Net, U-Net + SAW, and
FPN + SAW, with or without Multi-level Watershed.

Across our four evaluation metrics, FPN + SAW outperforms base U-Net and U-Net + SAW on
the test in situ dataset. Our proposed method (FPN + SAW + Multi-level Watershed), not only
significantly improves the segmentation pixel-wise accuracy by 10% when compared to base U-Net,
but also outperforms the other models that leverage the same post-processing technique.

(a) MIBI Patient 1 Raw input (b) MIBI Patient 1 Predictions

(c) MIBI Patient 2 Raw input (d) MIBI Patient 2 Predictions

Figure 2: Panoptic predictions (right column) for patients 1,2 compared to actual image (left column)
from MIBI dataset [9]. Yellow box indicates region zoomed-in in Figure 3.

Figure 2 shows the result predictions5 for patients 1,2 where our method is able to segments cells
even in densely populated regions without including any images from this tissue type or technology

5We applied the mask_rgb function in Cellpose [14] to generate colored masks
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Figure 3: Zoom-in view of segmentation result for patient 1 in MIBI in situ dataset compared to
ground truth annotations and prediction from base (vanilla) U-Net. Red boxes indicate regions with
attached cells that are succesfully separated using our pipeline.

in the training set. Figure 3 shows a zoomed-in region in patient 1 illustrating that our pipeline can
successfully separate most of adjacent cells, some of which are difficult to separate even visually
from the raw images (i.e. red box regions). In addition to the quantitative results from Table 1, this
image highlights the generalizability of our model from in vitro to in situ cells as it is able to use the
geometric features learned from the in vivo training data to precisely predict accurate segmentation
masks for the in situ test set.

4 Conclusion & Future Directions

Our novel cell segmentation pipeline leverages shape-aware map pre-possessing and weights, and
multi-level watershed post-processing to in situ tissue images captured with MIBI technology. To
the best of our knowledge, this is the first method that can accurately segment in situ tissue data
with pre-training solely on in vitro nuclei images, and this was accomplished with incorporating
geometric features of cells into a deep-learning framework. Based on these promising results, our
future directions will aim at expanding this idea by incorporating topological priors into the loss
function [8] in addition to the SAW geometric features, leveraging the concept of persistent homology.
Additional work down the line would be to extend our method to 3D segmentation and further test its
robustness on single cell proteomics data as it becomes available.
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