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tasks (Mobbs, Trimmer, Blumstein, & Dayan, 2018;
E. Schulz et al., 2019). For example, in reinforcement
learning problems with several options of unknown
value, agents face an exploration-exploitation dilemma
(E. Schulz & Gershman, 2019; Sutton & Barto, 2018).
The essence of this dilemma is deciding whether to pick
the option currently thought to be most valuable (ex-
ploit), or to sample from another option which might
end up being better (explore). Similar to our problem,
this also requires agents to balance the acquisition of
information with some (opportunity) cost.

Theoretical treatments of (optimal) exploration (Git-
tins, 1979; Schwartenbeck et al., 2019; Sutton & Barto,
2018) and empirical investigations (Boldt et al., 2019;
Speekenbrink & Konstantinidis, 2015; Wilson et al.,
2014; Wu et al., 2018) of human exploration also high-
light the key role of uncertainty in this decision prob-
lem. For example, the widely used Upper Confidence
Bound exploration strategy (Sutton & Barto, 2018)
drives agents to choose options about which they are
more uncertain. These models almost always consider
uncertainty in what we would characterise a first-order
computation — at most wondering about the effect of
different prior distributions over unknown quantities.
It would be interesting to think about the equivalent
of postdecisional and second-order models — where
agents could gain some extra, partially independent,
information about the quality of their actions, for in-
stance by observing other agents (Zhang & Gléascher,
2020). It might then be possible to use the sort of meth-
ods we have discussed to draw out the implications for
exploration.

Outside of areas related to information acquisition,
confidence also plays a key role in controlling other
processes. For example, cognitive offloading (Gilbert
et al., 2020; Hu, Luo, & Fleming, 2019; Risko & Gilbert,
2016), such as setting reminders, is closely tied to our
subjective feeling of future success. Humans also pri-
oritize the completion of different tasks as a func-
tion of their confidence (Aguilar-Lleyda, Lemarchand,
& de Gardelle, 2020) and use confidence to decide
adaptively when to deploy attention (Desender, Boldt,
Verguts, & Donner, 2019; van den Berg et al., 2016). On
a longer time horizon, confidence also shapes learn-
ing (Bjork, Dunlosky, & Kornell, 2013; Metcalfe & Finn,
2008). Here, computational modelling has shown, that,
on the one hand, we learn from our local confidence
about our own broader skills (Rouault, Dayan, & Flem-
ing, 2019). On the other, we use momentary estimates
of uncertainty to steer how much we learn from er-
rors (Behrens, Woolrich, Walton, & Rushworth, 2007;
McGuire, Nassar, Gold, & Kable, 2014; Vaghi et al.,
2017). Investigating these phenomena computation-

ally through a more detailed and integrated model of
metacognitive monitoring and control might provide
insights into both their function and dysfunction.

Whether in our paradigm or in exploration-
exploitation, the collection of information serves to in-
crease an agent’s reward and thus has a direct instru-
mental purpose. However, there is also a large litera-
ture dealing with what at first glance appears to be non-
instrumental information seeking. Such "curiosity" for
seemingly (at least currently) reward-irrelevant infor-
mation has long been a puzzle to experimentalists and
theoreticians (Gottlieb & Oudeyer, 2018; ligaya, Story,
Kurth-Nelson, Dolan, & Dayan, 2016; Kidd & Hayden,
2015; Kobayashi, Ravaioli, Baranes, Woodford, & Got-
tlieb, 2019). As in instrumental information search,
confidence often plays a key role in the treatment of
such behaviour, although its role is contested. Whereas
some propose a monotonic relationship between confi-
dence and curiosity similar to our instrumental results
(Berlyne, 1950; Lehman & Stanley, 2011), others argue
that intermediate levels of confidence are most con-
ducive to curiosity (Baranes, Oudeyer, & Gottlieb, 2014;
Kang et al., 2009; Kidd, Piantadosi, & Aslin, 2012).°
Others have attempted to reconcile these two perspec-
tives (Dubey & Griffiths, 2020). These various models
might benefit from the sort of explicit treatment of the
underlying confidence that we have discussed.

In the real world, information is often not solely pro-
vided by faceless sources, but by other agents with
their own intentions. Over and above just being noisy
(and indeed nosey), such social sources might have
their own biases and interests of which successful
agents need to be aware when evaluating whether they
should invest in hearing their opinion and using them
to inform themselves (Hiitter & Ache, 2016; Pescetelli
& Yeung, 2020; van der Plas, David, & Fleming, 2019).
This is a particular pressing issue when faced with
mis- and dis-information (Lazer et al., 2018; Penny-
cook & Rand, 2020). Such scenarios will require adap-
tive metacognitive systems to make inferences not only
about themselves but also about others. Theories such
as cognitive hierarchy (Camerer, Ho, & Chong, 2004) or
interactive POMDPs (Gmytrasiewicz & Doshi, 2004) or
Rational Speech Acts (Goodman & Stuhlmidiller, 2013)
could be adapted to consider hierarchies of partially
self-aware agents interacting with each other.

Finally, we note that hierarchies of ever more sophis-
ticated sub-agents that model each other inside a sin-
gle decision-maker constitute a form of theory of (an
internal) mind that is somewhat reminiscent of these

SWe observe inverse U-shapes under some extreme pa-
rameter settings, but stress that these are due to the signal and
noise properties of the second-order model (see appendix B)
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externally-directed cognitive hierarchies (Carruthers,
2009). If the internal sub-agents enjoy their own par-
tially individual rewards — so, for instance, the rater
might have an incentive to lie about its confidence if it
faces an overwhelming loss for being wrong — we can
expect very rich patterns of behaviour to emerge, with
agents partially fooling themselves as well as others.
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Appendix A
Model details
Postdecisional model

Predicting Xr

To predict the location of X for the value of seeking,
the seeker combines the two possible normal distribu-
tion weighted them by the associated confidence:

p(XrlZp) = p(Xpld = -1)P(d = —1|Z))+

(22)
p(Xpld = 1)P(d = 11Z;)

Second-Order Model
Confidence

Fleming and Daw (2017) describe the computations
underlying their second-order model. Here, we present
them in our notation. Recall that the rater observes the
actor’s decision a; and receives its own cue Y; and has
to use this information to compute the probability that
the actor’s decision was the correct one:

P(d = 1Y,a5;Xp)
P(d = -1|Y;,a5; %)

if ayp = 1.
if a; = -1.
(23)
As with the postdecisional model, we apply Bayes-
rule to compute this. In the following, we suppress X;
for clarity:

c;=Pla;=dYZ)) = {

P(d|Y1)P(a;|Y], d)
Pd|Y;,a;) = 24
) = S Py PlaY . d) 29
We begin teasing this apart, beginning with the sec-
ond term:

P(01|Y1,d)=fP(£11|X1)P(X1|Y1,d)dX1 (25)
X

Because P(a/|X;) is contingent on the threshold (so
that a; = 1 if X; > 0), this can also be expressed as:

[PX|Y, dydX, ifa;=1.
P(a/lY;.d) =1°, (26)
[ PCIY, dydX, ifay=-1.

—00

This is cumulative density function of the condi-
tional density of a multivariate Gaussian. This condi-
tional density of a multivariate Gaussian is itself simply
a univariate Gaussian.

P(X|Y;, d) ~ N(ux, v, ox,1v,) (27)

The conditional parameters of this distribution are
defined as follows:

g
fixy, = d + T—’p(YI ~d) (28)
1

oy, = (1= p?o; (29)

The first term is the normalized likelihood of Y; con-
ditioned on a d:

P(d|Yy) o« P(Y]ld) (30)

P(Y|ld) in turn equals the density of a unidimen-
sional Gaussian with mean d and standard deviation
Tr at Y].

Optimal weighting of X; and Y, for Y; under covariance

In contrast to the postdecisonal model, we cannot
simply weigh X; and Y; according to their variances
when combining them to Z;. Rather, we need to take
into account their covariance (Orug, Maloney, & Landy,
2003). As a result, X; and Y; are summed with their re-
spective weights wy, and wy,

Zr = wx, X1 + wy, Yy (31)

These weights are functions of the reliabilities of the
cues which in turn are corrected for the correlation.

/ /

7
X Y
1/ and Wy, == [/

+}"X[ rY,+rX1

WX, = ; (32)

l"Yl

ry, =rx, —piNrxry, and ry =ry, —prrxry, (33)

1
and ry, = (34)
o ™

rX,=—2
I

This way we can also define the standard deviation
§ )4 of Z[.

1
{1 = | — (35)
rZ,
rx, + ry, — 20 \rx, 1y,
rZ, = 2 (36)
1-p 7

This form of cue combination can give rise to sev-
eral non-intuitive results which we discuss further be-
low.


https://doi.org/10.1101/2021.03.01.433342
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.01.433342; this version posted March 2, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

32 SCHULZ, FLEMING, DAYAN

Value computations

In the following, we detail the value computations
in the the second-order model. First, if there is no seek-
ing, the actor uses Z; (see above) to make its decision.
The value of this combined stimulus is defined as:

Vg, = max{P(d = 11Z)), Pd = =1|Zp}rp  (37)

This is then used in the Q-value computations for
the Q-value of not seeking (see equation 17)

However, the seeker does not know Z;, because it
does not have access to X;. It therefore has to marginal-
ize out this quantity

V;,Y,,o=fzP(Zl|Yl,al)V;Z,dZ, (38)
1

= f pXilYr,anVi,dX;  where (39)
X;

p&XilYy, ap) = pXilYy,d = -1)P(d = =1|Y, ap)+ (40)
p(XilY;,d = 1)P(d = 1|Y;, a;)

Given seeking, the actor receives X (again as per
equation 10) which it combines with Z; to form a joint
variable Zy (see equation 12). This variable can then
again be compared against a threshold for ar;. Given
this set-up, we can now consider the values that go into
the individual Q-value computations.

Viz, = max{P(d = 1|Zr), P(d = -1|Zp)}rp (41)

Similarly to the first-order and postdecisional mod-
els, the seeker does not know all the variables under-
lying Zr, when it decides whether to seek, and it also
does not know Z;. Therefore, it has to marginalize over
them both:

Vv =fz P(ZrlY1,an)Vi,, dZr (42)

F

=f f pX1, XplY1,apVi, dXpdX; (43)
X, Ix»

where

pX1, Xp|Yy, ap) = p(XilY1, a)(p(Xpld = —1)P(d = =1|Y7, ap)+
p(Xrld = 1)P(d = 1|Y;, a;)
(44)
Notice how both the with- and without-search
value computation contain, P(d|Y;,a;), or the rater’s

confidence.

Appendix B

Further Second-Order Results
Confidence and general stimulus conditions

Signal, noise correlation

In the second-order stimulus condition, the correla-
tion can give rise to counterintuitive confidence curves.
This is visible in Fig B1 where we plot confidence val-
ues for a positive decision (¢; = 1) varying the param-
eters individually. We observe a few aspects already
reported by Fleming and Daw (2017):

¢ Panel A: Increasing the accuracy of the actor
(lower o) increases the boost that the confidence
receives through the action. If the actor is very
accurate, it takes a highly negative Y; to overturn
the decision.

e Panel B: Higher rater noise (r;) means the confi-
dence curves will be less well-tuned.

¢ Panel C: Higher correlations (p;) also results in a
reduced sharpness in the confidence curves.

However, what has yet to be reported is the follow-
ing: Under conditions of metacognitive hyposensitiv-
ity, that is when o7 is sufficiently smaller than 7;, and
when p; is large enough, confidence will begin rising
again with seemingly contradictory Y;’s. This is partic-
ularly visible in the rightmost panel where p; is most
pronounced, but is also visible in the most extreme
cases in panels A and B. As an example, imagine the
actor has received X; = 0.5 and decides a; = 1. If the
rater receives ¥; = -5, this would usually be a strong
error signal and the confidence in the initial decision
very lower than when ¥; would have had more inter-
mediate values. However, under some parameter con-
ditions, the exact opposite is the case: There, when Y;
strongly contradicts the decision sign, confidence will
in fact be higher for this very low ¥; than for ¥; = 0.

While we note that the marginal probability of these
cases is relatively low given the underlying correlation,
such a pattern is striking. The reason for it lies in the
the way the two possible sources occupy the X; and Y;
space and create signal and noise (compare Figure 1 E).
A crucial aspect of this is the line on which the poste-
rior based on Z; (i.e. the combination of X; and Y;) is
uniform, so that P(d = 1|1X;,Y;) = P(d = —11X;,Y;) = 0.5.
It is this posterior that the rater only has partial infor-
mation about. The equality line subdivides the space
in two zones where the likelihood of d = 1 is larger
than the likelihood of d = —1 (or vice versa). Given the
equal prior, this line of equality in turn is defined by the
points at which the two likelihoods equal each other.

pXp, Yld =-1) = p(X;,Yild = 1) (45)
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Second-order confidence (for a,= 1)

A B -
TI
° 0.54 I5 05
-1
‘|:|=2,p,=0.5 0.0 G|=2,P|=0.5 0.0-
10 -10 -5 0 5 10 -10 -5 0 5 10
Y, Y,
Posterior equality line
D E
10 10
N ° Pd=1X,Y,)>
- P(d = -1X,Y)
> 0 0
Pd=-1X,Y)>
-51 54 Pa=1xy)
-104, . | TS . |
10 -5 0 10 10 -5 0 5 10
X X,
Figure B1

Second-order confidence across parameter regimes. (A-C) Second-order confidence as a function of Y; for
ar = 1. In general, note how confidence for a completely ambiguous rater cue (Y; = 0) doesn’t necessarily mean
that confidence c; will be 0.5. (A) This is mainly a function of the relationship between oy and t;. (B) High values
of 7y for a fixed o can lead to the confidence being less sensitive to Y;. When 1y is particularly large in relation to
o1, the confidence will in fact again begin to rise for negative Y,’s (which intuitively contradict a;). Grey line in
(A) and (B) highlights an equivalent parameter setting of t; = oy = 2,p; = .5. (C) This rise of confidence with
contradictory rater cues Y; is particularly pronounced for high correlations p;. The rising confidence is tied to the
way the correlation affects signal and noise and in extension the line on which the joint posterior P(d|X;,Y;) is
equivalent between the two d. This line is plotted in (D-F). When metacognitively hyposensitive (o; < 1) and
when the correlation p; between Yy and X; is high enough, confidence will not decrease for negative Y; but rather

again rise.

The two likelihoods are defined by the bivariate
normal distribution’s density:

Xp=d)?  2p(Xp-d)(¥;-d) | (Y[-d)*
1 e

p(XI, Y1|d) R Ty 2

2r0 T A1 = p?

From this, we can can define the values of Y; for
which the two posteriors equal each other as a function
of X, I+

(46)

Y] = —mX]

where from equation 45, we get:

(47)
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(48)

m =

1

I

L

2 o

We plot this in Figure B1 D-F for a range of parame-
ter combinations. When there is no correlation p; = 0, m

(panel F) this line is defined by ;—i and the space is thus

divided diagonally from a positive ¥; to a negative Y;
with the slope defined by the relationship between the
two parameters. This general result holds, even when
re-introducing the correlation. Importantly, what this
division of space means is that for every possible actor
cue X;, more positive rater cues ¥; will favour d = 1 and
more negative ¥; will favour d = —1. Crucially how-
ever, under metacognitive hyposensitivity (r; > o) this
diagonal becomes steeper and steeper until it is fully
vertical. This point is defined when:

o
pr=— (49)
T
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In other words, at this point, the decision rule based
on Y; and X; is the same as based on X; alone — Y; thus
affords no additional help with the decision. Beyond
this vertical point, the space is again divided diago-
nally, but the dividing line now has a positive rather
than negative slope. This only appears under relatively
extreme parameter combinations, but will crucially flip
the logic outlined above. Now, for every X;, lower val-
ues of Y; will begin providing more evidence for d = 1
instead of d = —1. This then in turn gives rise to the
confidence rising with seemingly contradictory values
of ¥;. This phenomenon will appear once the equality
lines have ‘flipped’, as is visible when comparing the
confidence curves and slopes depicted in Fig. B1.

Relationship between ¢; and o, 7/, o/

As alluded to in the main text, the joint standard
deviation ¢; produced from optimally combining o, 7;
and p; stands in a non-trivial relationship with its sub-
parts.

For context, recall how the o; and 7; are combined
when there is no correlation (see equation 5). As we
discussed in the main text, the maximum of ; is then
defined by the smaller of the two standard deviations
o; and 7;. Additionally, the smaller the larger of the
two is, the smaller ; becomes. In other words, the
agent would benefit from a reduction of noise in both
cases. For an illustration of this effect, see the yellow-
most lines in Figure B2A that show a cue integration in
accuracy space (¢({;)) as a function of ¢(o) for p; = 0.
Notice how lower 7,’s shift the baseline upwards and
how the better accuracy of afforded by ¢ increases the
accuracy afforded by ;.

In most cases of optimal cue combination, two inde-
pendent sources (low p;) of information hold more in-
formation (lower ¢;) than two correlated sources (high
pr). This is also the case for most parameter combina-
tions in our scenario. Crucially however, this intuitive
relationship fails for some specific combinations of val-
ues, particularly for very high correlations. This is vis-
ible in Figure B2A where for a fixed rater noise t; lower
accuracy o produce more accurate {; than higher accu-
racy o (especially 7; = 2 in panel A and p; = 0.8 in
panel B).

Figure B2 shows these non-monotonic relationships
for a range of parameter combinations. This broadly
highlights that, if parameter combinations are extreme,
then there is no monotonic relationship between the
three initial source parameters and the accuracy af-
forded by their combination (¢({;).

These pattern again partially stem from how the
space is optimally divided by the two sources. Specif-
ically, when the equality line "flips’, the posteriors get

compressed differently between the two sources, al-
lowing a better inference than in the classical separa-
tion of Xj, ¥; space.

The effects of this "flip" are formally analogous to
the way in population codes that correlations between
the activities of units can either help or hurt discrimi-
nation and decoding depending on their alignment rel-
ative to the way that signals are coded (the mean dif-
ference) (Abbott & Dayan, 1999).

Seeking and final accuracy for the high p;

The two aforementioned particularities of the
second-order model also impact the agent’s search be-
haviour and final accuracy, which we depict in Figure
B3.

The fact that confidence rises again with contradic-
tory values of ¥; will result in U-shaped seeking curves
for most 7;. This is because the rising confidence will
favour not seeking, rather than seeking once the ac-
tor accuracy is below a specific value while keeping ;
fixed.

With regards to the final accuracy, the maximum at-
tainable accuracy from combining X; and ¥; (and Xr)
will be impacted by the combination of o, 7; and p;
giving rise to {; (discussed above). This will for ex-
ample mean that more accurate (low 7;) raters can pro-
duce less accurate final judgements than noisier (high
7;) raters.

Appendix C
Methods
We implemented our models and simulations in R. Our
code will be provided as online supplemental mate-
rial upon publication and hosted openly on a dedicated
github repository (github.com/lionschulz/).
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Figure B2
Accuracy obtainable through the standard deviation {; of combined cue Z; in the second order model.
Optimally combining the parameters of the initial decision ( oy, T; and p;) can give rise to non-monotonic rela-
tionships between initial accuracy and accuracy attained through ¢, i.e. ¢(Zp).
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Figure B3

Effects of high correlation between actor and rater signal. (A) Average search by average initial accuracy
and rater noise t;. (B) Final accuracy by average initial accuracy and rater noise, and conditioned on whether the
agent sought out information or not.
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