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Abstract  

Phages - viruses that infect bacteria and archaea - are dominant in the virosphere and play an important 

role in the microbial community. It is very important to identify the host of a given phage fragment from 

metavriome data for understanding the ecological impact of phage in a microbial community. State-of-

the-art tools for host identification only present reliable results on long sequences within a narrow 

candidate host range, while there are a large number of short fragments in real metagenomic data and the 

taxonomic composition of a microbial community is often complicated. Here, we present a method, 

named HoPhage, to identify the host of a given phage fragment from metavirome data at the genus level. 

HoPhage integrates two modules using the deep learning algorithms and the Markov chain model, 

respectively. By testing on both the artificial benchmark dataset of phage contigs and the real virome 

data, HoPhage demonstrates a satisfactory performance on short fragments within a wide candidate host 

range at every taxonomic level. HoPhage is freely available at http://cqb.pku.edu.cn/ZhuLab/HoPhage/. 
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1. Introduction 

Viruses are the most abundant organism on earth and phages - viruses that infect bacteria and archaea 

- are dominant in the virosphere (Breitbart et al., 2005) and play an important role in the microbial 

community (Shkoporov et al., 2019). To explore the ecological impact of phage in a community, it is 

imperative to assign the host of a given phage (de Jonge et al., 2019). With the help of metagenomics 

technology, a wealth of novel phages that cannot be cultured are identified. Compared to the traditional 

culturing-based approach which naturally carries direct host information, the metagenomic method, 

especially metavirome, lacks the links between phages and their hosts, thus brings the increasing demand 

to develop computational tools for host identification of short phage fragments. However, the relevant 

research is still insufficient until now. 

Recently, several computational strategies , mainly based on abundance profiles, genetic homology, 

CRISPRs, exact matches, and oligonucleotide profiles, have been proposed for host identification 

(Edwards et al., 2016). Some of these strategies rely on a known database. For example, since some 

phages can integrate their genomes into host chromosomes, a prokaryote containing homologous regions 

with the given phage may be the potential host. Also, some prokaryotes can incorporate some DNA 

fragments from phages that have infected them into their own genome forming interspaced short 

palindromic repeats (CRISPR) spacers, hence searching the CRISPR spacers on a bacterial genome can 

help to identify the phage which can infect it if it contains the CRISPR system. Another strategy is based 

on the abundance profiles. Because phages cannot thrive without their host, the bacterium which has a 

good correlation in abundance with a phage across multiple samples may be the host of it. However, such 

approaches mentioned above present poor performance in metagenomic data. The microbial community 
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contains a large number of novel phages that have low similarity with the known phages in the current 

database (Hayes et al., 2017), and therefore, a similarity search-based approach cannot handle the task 

of host prediction of novel phages. Also, a strategy based on CRISPR spacers only works well when the 

phage fragment is long enough to cover the CRISPR region, hence it is not suitable for metagenomic 

data which contains a large number of short fragments. Moreover, a strategy based on abundance profiles 

requires multiple samples to calculate the correlation between each phage and bacterium, and the 

population dynamics between phages and their hosts often present non-linear behavior (Edwards et al., 

2016), increasing the difficulty of host identification.  

In contrast, strategies based on sequence signatures are more suitable for metagenomic data. Phages 

must survive together with their host and are under strong selection pressures during the phage/host co-

evolution. As the result, phages will adapt the sequence signatures of their host, such as GC content and 

codon usage, to its host (Edwards et al., 2016). It is considered that sequence signatures between phage 

and host or between phages that infect the same host are similar. Since prokaryotes of different genera 

often contain different sequence signatures, it is thus considered that sequence signatures can be used to 

classify the infection relationship between a phage sequence and a specific prokaryote. For instance, a 

research has shown that k-mer frequencies can be used to identify some phages whose hosts belonging 

to certain genera (Zhang et al., 2017). Because sequence signatures often distribute over the phage whole 

genome, identifying the host of a given phage fragment using sequence signatures is relatively effective. 

Also, such an approach does not rely on sequence alignment so it can identify hosts of fragments that 

derive from novel phages. Currently, some computational tools based on sequence signatures have been 

developed. VirHostMatcher (Ahlgren et al., 2017) calculates the oligonucleotide frequency dissimilarity 

between a phage sequence and each candidate host and the one with the lowest dissimilarity will be 

selected as the predicted host. WIsH (Galiez et al., 2017) uses the Markov chain model to calculate the 

similarity between phage sequence and each candidate host, and similar to VirHostMatcher, the one with 

the highest similarity is selected as the predicted host. VirHostMatcher-Net (Wang et al., 2020) is an 

upgraded tool that integrates multiple features, including CRISPR spacers and alignment-free similarity 

measures used in VirHostMatcher and WIsH. However, the performance of these tools in short DNA 

fragments generated by large-scale sequencing technology is rather unsatisfactory. Moreover, with the 

expansion of candidate host range, the accuracy of these tools decreases drastically. As the state-of-the-

art tool for short phage fragments, WIsH only acquires an accuracy at the genus level of about 60% for 

3,000 bp fragments among 20 candidate host genera while a considerable proportion of assembled 

contigs in the metagenomic data obtained by next-generation sequencing are shorter than 3,000 bp (Smits 
et al., 2014).  

Machine learning algorithms, especially deep learning algorithms, have been widely used to infer the 

relationship between two biological elements in the field of bioinformatics, such as gene-gene 

relationships (Yuan et al., 2019), protein-protein interaction (Hashemifar et al., 2018), RNA-protein 

interaction (Yang et al., 2018). Deep learning algorithms have been further applied to the host prediction 

of a virus. VIDHOPHAGE (Mock et al., 2020) is a deep learning-based virus-host prediction tool that 

obtains highly accurate predictions on three different virus species while using only fractions of the viral 

genome sequences. Markov chain model is also a popular method for researches of biological sequence. 

WIsH (Galiez et al., 2017) is a phage host prediction tool that uses the Markov chain model, and obtains 

relatively good performance on short phage fragments. The availability of the Markov chain model used 

by WIsH is also validated by VirHostMatcher-Net (Wang et al., 2020) since it integrates multiple features, 

including the score of WIsH, to predict the host of short phage fragments. 

Considering the phage fragment in the metagenomic data of real community is short in length, as well 

as the taxonomic composition of microbial community is complex, we developed HoPhage (Host of 

Phage), a tool of host identification for a given phage fragment, which demonstrates high performance 

on short fragments within a much wider candidate host range. HoPhage integrates two modules, 

HoPhage-G and HoPhage-S, to improve performance, G and S respectively mean that the model is built 

at the genus level and the strain level. HoPhage-G is a deep learning-based module to judge whether the 

given phage fragment can infect any prokaryote from a specific genus. By constructing pairs of phage 

fragments and prokaryotes at the genus level, host identification is transformed from a complex multi-

class prediction issue to a binary classification task of judging whether there is an infection relationship 

between a pair. In order to improve model performance, we adopted the inception module from 

GoogLeNet (Szegedy et al., 2016), which can extract features at multiple scales. However, the 
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distribution of the number of phages infecting different host genera is uneven in the current database and 

a large proportion of known phages derives from a narrow host range (Roux et al., 2016). As we all know, 

machine learning methods rely on the existing data that is used for training. So as a complement, we 

incorporated HoPhage-S which is a Markov chain model-based module to address this challenge. 

HoPhage integrates the scores of these two modules by calculating the weighted average score of them 

and select the host genus with the highest score as the final prediction. Testing on the benchmark dataset 

of artificial phage contigs and real virome data, HoPhage demonstrates superior performance on short 

fragments within a wide candidate host range at every taxonomic level. HoPhage is freely available at 

http://cqb.pku.edu.cn/ZhuLab/HoPhage/ or https://hub.docker.com/repository/docker/jietan95/hophage. 

 

2. Material and Methods 

2.1. Benchmark datasets and training-test splitting 

We first downloaded 5,314 complete prokaryote genomes which are included in the KEGG GENOME 

database from NCBI through its GeneBank accession number. These 5,314 prokaryote genomes range 

from 1,192 different genera while 100 genomes have no genus annotation. ‘prokaryotes_info.csv’ is the 

information list of these prokaryote genomes and is available in 

http://cqb.pku.edu.cn/ZhuLab/HoPhage/data/. 

We then retrieved all the 3,106 phages included in Virus-Host DB (Mihara et al., 2016) from NCBI 

and kept phages that can infect the prokaryote belonging to the genera with at least 2 phages are annotated 

to infect them. At last, 2,965 genomes of phages whose host range from 155 genera are used in our study. 

The accession number list of these phage genomes and their host annotations are shown in 

‘phages_hosts_info.csv’ and the distribution of host genera according to the number of phages annotated 

to infect them in VirusHost DB is shown in ‘genus_distribution.csv’.  

As an ab initio tool, it is important to evaluate whether the algorithm can identify the hosts of the 

fragments from a novel phage. Due to the lack of phage fragments with detailed host annotations from 

experimental metagenomics, we used MetaSim (Richter et al., 2008) to generate a benchmark dataset of 

artificial short contigs after the whole genomes of phages were downloaded from the NCBI database. 

For HoPhage-G, to ensure that all test data is “novel” for the model, we split the training and test set of 

phage genomes by the date when the phage was firstly published before we simulated artificial fragments. 

In general, phage genomes released before 2015 were used to train the deep learning model, and those 

released after 2015 were used to evaluate the algorithm. After this decisive partition, the ratios of the 

number of genomes in the training set to the test set of some genera were unreasonable compared with 

the traditional ratio. Therefore, we manually adjusted the genomes of phages that can infect these genera 

to meet a reasonable proportion of genomes in training and test data. To ensure that the training and the 

independent test set do not have identical or near-identical phage genomes, we followed these two 

principles during the adjustment process: 1) the same phage genomes will not exist in the training set 

and test set at the same time; 2) different phage genomes from the same study must exist in the training 

set or test set at the same time. For HoPhage-S, all prokaryote genomes in our dataset were used to 

construct the codon Markov chain model. Since there is no need to use phage genomes to construct a 

Markov chain model, all test set used in HoPhage-G were kept to evaluate the performance of HoPhage-

S.  

In the first place, three groups of phage fragments with different length intervals were constructed 

separately, which were 100-400 bp, 401-800 bp, and 801-1,200 bp. Since the input length of the deep 

learning model is fixed, we independently constructed training sets of corresponding length intervals to 

train the deep learning model for each group in HoPhage-G. Besides, test sets of each group were also 

simulated independently to evaluate the performance of HoPhage. As a result, we constructed 500,000 

training fragments and 5,000 test fragments for each group. Subsequently, two test sets of longer phage 

fragments were constructed to further verify the effectiveness of HoPhage, which are 1,201-3,000 bp, 

3,001-5,000 bp.  
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2.2. HoPhage-G: the deep learning model based module 

In the existing dataset we used in this study, the number of phages that can infect a specific genus 

varies greatly, which can be seen from the distribution list in ‘genus_distribution.csv’. For deep learning 

or other machine learning algorithms, it is difficult to train a multi-classification model using a quite 

unbalanced dataset, especially when there is no sufficient data for some classes. It has been pointed out 

that the hosts of most phages have specificity at the genus level (Koskella et al., 2013). We counted all 

3356 host annotations of phages in VirusHostDB and found that only 72 (2.15%) annotations lack the 

genus-level information, and 278 (8.28%) annotations lack the species-level information, but 2599 

(77.44%) annotations miss strain-level information. Since it is easy to understand that the host prediction 

of phages can be regarded as the interaction prediction between phages and their candidate hosts, that is, 

to determine whether there is an infectious relationship between the phage fragment and a potential host. 

It is more appropriate that the pairs are constructed at the genus level for the above reasons. Therefore, 

in HoPhage-G, this complex multi-classification host prediction issue transformed into a two-

classification task through constructing pairs of phage fragments and genera of prokaryotes. This module 

was named HoP-G because the pair was constructed at the genus level. 

The process of data preparation for HoPhage-G is mainly the transformation of phage fragments and 

the extraction of sequence features of prokaryote genomes (Fig. 1A). For phage fragments, we first 

extracted artificial contigs from the phage whole genomes in the training set and the test set respectively 

by MetaSim. Each artificial contig was represented by “one-hot” encoding form, namely, base A, C, G, 

T was represented by the “one-hot” vector of [1,0,0,0], [0,1,0,0], [0,0,1,0] and [0,0,0,1]. As mentioned 

earlier, the length of the phage fragments in the simulated data set we constructed varies within 3 length 

intervals, and the input length of the deep learning model is fixed. Hence, for phage fragments whose 

length is shorter than Len_group (the longest length of their group), we used [0,0,0,0] to pad the end of 

these fragments to Len_group to make all fragments in the same group get a 4×Len_group matrix. The 

reverse complement sequences of all phage fragments were performed with the same operation to obtain 

other 4×Len_group matrices. These two matrices were concatenated to form the ‘Input1’, which is a 

4×2Len_group matrix. Then we annotated the regions of coding sequence (CDS) for each contig from 

the training set through GenBank annotation. It is worth noting that for the phage fragments in the test 

set, considering that researchers generally do not have sufficient annotation information for the query 

phage when using our tool, we just used the gene prediction tool Prodigal (Hyatt et al., 2012) to annotate 

the CDS region of phage fragments from the test set. The CDS information of each fragment was also 

represented by “one-hot” encoding form, vector [1,0] and [0,1] indicates noncoding region and coding 

region, respectively. As before, [0,0] was used to pad this matrix and ‘Input2’ is a 2×2Len_group matrix. 

For prokaryotes, i.e. candidate hosts, we first clustered the prokaryote genomes by their genera, then we 

calculated the di-codon frequency of CDS and the 5-mer frequency of all prokaryote genomes in each 

cluster of different genera. The di-codon frequency of a specific genus (‘Input3’) is a 64×64 matrix and 

the 5-mer frequency (‘Input4’) is a 1024-dimensional vector. Finally, we constructed the pair of each 

phage fragment and each candidate host genus and assigned a label to it according to the annotations of 

Virus-Host DB. Label 0 indicates that the pair has no infectious relationship while label 1 means that 

there is an infectious annotation between the phage and a prokaryote belonging to the genus in VirusHost 

DB.  
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Fig. 1. Data preparation for HoPhage-G and structure of deep learning neural networks in HoPhage-G. A). Constructing 

pairs of phage fragments and genera of prokaryotes and assigning labels to the pairs. B). Conv: Convolution neural network layer, 

BatchNorm: Batch normalization, FC: Fully connected layer. The numbers in Conv layer (green box) are kernel size and the 

number of channels. The numbers in FC layer (green box) are the input size and the output size. The six numbers in Inception 

module (red box) corresponding to out_ch_1, mid_ch_13, out_ch_13, mid_ch_15, out_ch_15, ch_pool_conv in dashed box on the 

right. 

HoPhage-G module was built up by a deep learning model based on the inception module adopted 

from GoolgLeNet (Szegedy et al., 2016) and the normal convolution neural network. The structure of 

the deep learning model of HoPhage-G is shown in Fig. 1B. The inception module is also based on the 

convolution neural network, and it innovatively adopts a multi-path design, and each path uses a different 

convolution kernel size. Therefore, sequence features can be extracted at multiple scales by using the 

inception module. For each pair, HoPhage-G takes four inputs described above and outputs a score 

representing the possibility that the phage fragment and a prokaryote belonging to the genus has an 

infectious relationship.  

Since the input length of the deep learning model is fixed, we independently trained the deep learning 

model in HoPhage-G for the three groups mentioned above. Due to the training set and the test set were 

separated before the phage fragments were simulated, we just respectively used the pairs constructed 

from genomes in the training set and the test set to train and test the model in HoPhage-G. However, a 

phage fragment often forms only one positive pair with one of the candidate host genera, and all other 

combinations are negative pairs. For the pairs used to train models in HoPhage-G, it is easy to think of 

an imbalance between the positive and negative samples. When there were a large number of candidate 

genera of hosts, this imbalance would be more serious. In our prokaryotes dataset, 1192 genera were 

included. To overcome this problem, we only constructed positive and negative pairs within one mini-

batch during the training process. The size of the mini-batch was set as 8, this means that the ratio of 

positive pairs to negative pairs during the training process has changed from 1:1192 to 1:8. We further 
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selected another 4 genera that do not exist in the minibatch to construct some additional negative pairs. 

These processes much help train the deep learning model. Moreover, to alleviate potential false-negative 

interactions, we only constructed negative pairs on the phage fragments and the genera which do not 

belong to the same family as the annotated host of this phage. But we still used all candidate 1192 genera 

to construct pairs for each phage fragment in the test set because it is unrealistic to correctly reduce the 

candidate host range to 8 genera in advance. During the training process, one-tenth of the training data 

was randomly selected as the validation set to tune the parameters in the deep learning model and 

determine when to stop training. After the parameters were adjusted by the validation set, all data in the 

training set was used to retrain the model in HoPhage-G with the same parameters. 

However, it is cannot be ignored that phages with host annotation are relatively limited and many 

available phage genomes are distributed over a small proportion of the prokaryote genera in the current 

database. Since the machine learning algorithm relies much on the training dataset, it is difficult for any 

machine learning algorithm to handle totally novel data without any known knowledge related to it. So 

we could anticipate that for the results of HoPhage-G, compared with some dominant host genera, some 

of the genera which just have few phages annotated to infect them would have a poorer prediction 

performance. 

 

2.3. HoPhage-S: the codon Markov chain model based module 

To solve the above-mentioned problem that some of the genera with a small amount of data may obtain 

a poor prediction performance, we developed an auxiliary module HoPhage-S. Because of the genome 

amelioration, foreign DNA will change its sequence signatures toward its host (Suzuki et al., 2010). The 

Markov chain model has been widely used to measure the sequence signatures similarity between two 

DNA sequences. In previous work, WIsH used the Markov chain as a mathematical model to predict the 

host of phage and the ability of WIsH in predicting hosts of phages was further verified by 

VirHostMatcher-Net since it integrated the score of WIsH to improve performance. However, the 

Markov chain model in WIsH was constructed based on the base sequence. It has been pointed that most 

phages have to adapt to the tRNA pool of their host due to the lack of tRNA and show more consistent 

codon usage biases with their host (Carbone 2008). Besides, our related work showed that constructing 

the mathematical model based on the codon sequence was more effective than on base sequence because 

the sequence signatures were more significant in the coding region (Fang et al., 2019). Considering that 

the CDS density of phage is much higher than that of bacteria (Amgarten et al., 2018) and the reasons 

mentioned above, in HoPhage-S, we trained a homogeneous codon Markov chain model for each 

candidate prokaryote genome using codon sequences of the CDS in it and calculated the log-likelihood 

of a phage fragment based on each codon Markov chain model. This module was named HoPhage-S 

because the Markov chain model was constructed for a single prokaryote genome (strain). 

For each prokaryote in our candidate host dataset, the CDSs of each prokaryote genome were extracted 

based on the annotation information in GeneBank. We assumed CDSi
n represents the nth CDS region on 

prokaryote i; Ni represents the total number of CDSs in prokaryote i; x1x2…xk represents a codon 

sequence; #x1x2…xk represents the number of this specific codon sequence in a certain CDS region. Then 

the transition probability of the codon Markov chain model for prokaryote i can be represented as 

followed:  

𝑝𝑖(𝑥𝑘+1|𝑥1 … 𝑥𝑘)  = ∑
#𝑥1 … 𝑥𝑘+1 𝑖𝑛 𝐶𝐷𝑆𝑛

𝑖 + 1

#𝑥1 … 𝑥𝑘  𝑖𝑛 𝐶𝐷𝑆𝑛
𝑖 + 64

𝑁𝑖

𝑛=1

  

where we set k=2 in HoPhage-S, so the transition probability of the Markov chain model is a 4096×64 

matrix. 

For a given phage DNA fragment to be predicted, the CDS regions were firstly extracted using 

Prodigal (Hyatt et al., 2012). Then the similarity score of codon sequence signatures of this query 

fragment which based on the codon Markov chain model of prokaryote i was calculated as: 
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𝑠𝑐𝑜𝑟𝑒𝑖  =
∑ ∑ log𝑝𝑖(𝑦𝑗+𝑘

𝑚 |𝑦𝑗
𝑚 … 𝑦𝑗+𝑘−1

𝑚 )
𝑙𝑚−𝑘
𝑗=1

𝑀
𝑚=1

∑ 𝑙𝑚 − 𝑘𝑀
𝑚=1

  

where ym
j represents the jth codon of the mth CDS region on the phage fragment, M represents the total 

number of CDS regions on the fragment, lm represents the number of codons on the mth CDS.  

When the query phage fragment is too short, in a few cases, no CDS on the fragment could be 

annotated by Prodigal. This might be because the gene prediction software misses some positive 

predictions, or there is indeed no CDS on the given fragment. In this case, we would directly extract six 

codon sequences from the six phases of this phage DNA fragment, and each codon sequence would be 

served as a CDS to calculate the similarity score. The codon sequence with the maximum score would 

be considered as the 𝑠𝑐𝑜𝑟𝑒𝑖 . 

2.4. Module integration  

The whole workflow of HoPhage is shown in Fig. 2. For a query phage fragment, the CDS regions are 

firstly annotated by Prodigal. Then HoPhage employs HoPhage-G to score the pairs of this phage 

fragment and each candidate host genus in the database.  

 

Fig. 2.  The flowchart of HoPhage. HoPhage-G is first used to predict the host of given phage fragments, then how to use 

HoPhage-S depends on the score of HoPhage-G. 

For a binary classification task, the output of the deep learning model can represent the possibility that 

it is a positive sample. 0.5 is the default threshold for the prediction. A higher score means that it is more 

likely to be a positive sample, and it also means that the prediction is more reliable. Hence, pairs of phage 
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fragments and candidate host genera are divided into three categories depending on the score of 

HoPhage-G and then different strategies are used to predict the host:  

1) The highest score of all pairs in HoPhage-G (i.e. Score_Gmax) is greater than 0.8. In this case, the 

results of HoPhage-G are highly reliable, so in HoPhage-S we only retain the Markov chain models of 

prokaryotes which belong to the genera with a score higher than 0.8  

2) The Score_Gmax is between 0.4~0.8 In this case, the reliability of the results of HoPhage-G is 

relatively high, so in HoPhage-S we retain the Markov chain models of prokaryotes which belong to the 

genera with a score higher than 0.25 in HoPhage-G. 

3) The Score_Gmax is less than 0.4. In this case, the reliability of the score of HoPhage-G's deep 

learning model is low. Therefore, in HoPhage-S we retain the Markov chain models of all prokaryotes 

in the existing data set.  

Then the codon Markov chain models of prokaryotes retained in HoPhage-S are used to score each 

phage fragment, the maximum score among all Markov chain models constructed from prokaryotes that 

belong to the same genus will represent the score of this genus. All scores obtained by HoPhage-S are 

normalized to [0, Score_Gmax]. Hence, the weighted average of the highest score among one prokaryote 

genus in HoPhage-S and the score of this genus in HoPhage-G is set as the incorporated score for this 

genus. Finally, the genus with the highest score is used as the default output of HoPhage, indicating that 

this phage fragment is most likely to infect prokaryotes belonging to this genus. 

 

3. Results 

3.1 Evaluation of the performance on artificial phage fragments 

To evaluate the prediction performance of HoPhage on short phage fragments, the benchmark datasets 

of artificial short contigs with three different lengths, 100-400 bp, 401-800 bp and 801-1,200 bp, were 

generated. 

We first assessed the performance of host prediction using HoPhage-G and HoPhage-S individuals 

alone. Results showed that HoPhage-G outperforms other existing tools and achieved AUCs (area under 

ROC curve) of 0.989~0.993, which were evidently higher than that of other tools (Fig. S1B). As for the 

HoPhage-S, the AUCs of it were 0.712~0.739, which were also better than these tools in general (Fig. 

S3). More detailed results and comparisons with other tools are included in the Supplementary Material. 

Considering that in practical applications, there are not as many as 1192 prokaryotic genera 

dominant in a microbial community, we limited the range of candidate hosts to 50 genera. For each 

comparison, we randomly selected 50 host genera from 155 genera included in Virus-Host DB as 

candidate host genera. Once the range of host genera is clarified, we would only use these genera 

and phage fragments to form the pairs in HoPhage-G, and only keep models constructed by the 

prokaryotic genomes belonging to these genera in HoPhage-S, and test fragments generated from 

phage genomes that can infect prokaryotes from one of these 50 genera were retained to evaluate 

model performance. Such an evaluation was repeated 20 times for each group in the test sets. 

We set the weight of HoPhage-G/HoPhage-S to 0.5/0.5 and compared the performance of incorporated 

prediction of HoPhage with other tools. The details on the weight selection are described in 

Supplementary Material. Although the advantages of HoPhage-S compared with other tools were not 

significant, after narrowing the host range by HoPhage-G in advance, HoPhage which integrates these 

two modules achieved significantly better performance compared with all other tools. The prediction 

accuracy was calculated as the percentage of phage fragments whose predicted hosts had the same 

taxonomy as their respective annotated hosts. As a result, the average accuracies of HoPhage for the 

three groups were 25.0%, 29.0%, and 31.4% higher than that of WIsH at the genus level (Fig. 3), 

respectively. 
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Fig. 3. Performance of HoPhage on artificial phage fragments. Prediction accuracies of HoPhage at different taxonomic levels 

and comparisons with related tools. VHM-Net: VirHostMatch-er-Net, VHM: VirHostMatcher. The solid lines with error bars are 

the average accuracy of 20 randomly selected data. The light-colored area indicates the range of prediction accuracies. 

3.2. Evaluation of the performance on longer fragments 

We further constructed two additional length intervals, which are 1,201-3,000bp and 3,001-

5,000bp, to evaluate the performance of HoPhage on longer phage fragments. As we only trained 

the deep learning-based model in HoPhage-G on the above three preliminary groups with the shorter 

input size, we first evaluated the performance of using HoPhage-G alone to test the model’s ability 

to handle sequences whose length is not within the preset range. For sequences longer than 1,200 

bp, a scan window will move across the sequence without overlapping, and the weighted average 

score of all windows’ predictions is calculated. Confusion matrics (Fig. 4) of these two groups 

showed that HoPhage-G achieved better performance on longer phage fragments, despite using the 

models training by shorter fragments. The final prediction accuracies (Fig. 5) of HoPhage at every 

taxonomic level were also much better than related tools. 
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Fig. 4. Confusion matrices of HoPhage-G on longer phage fragments. ‘Inf’ means that the pair of phage fragment and host 

genus has an infection relationship while ‘Uninf’ means that there is no infection relationship. 

 

Fig. 5. Prediction accuracies of HoPhage on longer phage fragments and comparison with the related tools. A, B are the 

accuracies of the top 1 prediction of host genus of HoPhage-S, WIsH, VHM-Net and VHM on 1200-3000, 3,000-5,000, 

respectively. Orange, blue, brown, green lines represent the results of HoPhage, WIsH, VHM-Net and VHM, respectively. The 

solid lines with error bars are the average accuracy of 20 randomly selected data. The light-colored area indicates the range of 

prediction accuracies. 

3.3. Evaluation of the performance on real data from the mock virus communities 

We also used the real virome data set to evaluate the host prediction performance of HoPhage. 

This data set comes from the mock virus communities which are comprised of 12 specific phages 

that grow on Pseudoalteromonas, Cellulophaga baltica, and Escherichia coli (Roux et al., 2016). 

The virus particles were enriched together and sequenced. We downloaded the assembled contigs 

from three samples, MCB1, MCB2, and MCB3. Then we generated a local BLAST database with 

12 phage genomes mentioned above and used blastn to trace back the source of the phage contigs, 

fragments with e-value less than 0.1 and length longer than 800 bp were kept. For the fairness of 

comparison, we excluded the 12 phages contained in the mock virus communities and regenerated 

the training data, and then retrained the deep learning model in module HoPhage-G.  

Among the host range of all 1192 genera in our data set, the overall accuracy of HoPhage at the 

genus level was 70.90% while WIsH was 58.54%, VirHostMatcher-Net was 42.70%. For each 

sample, the host prediction accuracies of HoPhage, WIsH and VirHostMatcher-Net of these contigs 

at the genus level are shown in Fig. 6. The average host prediction accuracies of HoPhage for phage 

contigs of three samples whose hosts are Cellulophaga, Pseudoalteromonas, and Escherichia were 
34.85%, 84.44%, 44.44%, respectively, which were 1.89%, 12.54%, and 44.44% higher than those 

of WIsH and 32.20%, 24.62%, 44.44% higher than those of VirHostMatcher-Net. In addition, WIsH 

and VirHostMatcher-Net did not correctly predict any phage contig whose host belonging to 
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Escherichia. These results on the real virome data showed that HoPhage does have obvious 

advantages in predicting hosts of phage contigs. 

 

Fig. 6. Genus accuracies of HoPhage and related tools on contigs from three real virome samples. ‘C+P+E’ indicates the 

overall accuracy of all three genera, while ‘Cellulophaga’, ‘Pseudoalteromonas’, and ‘Escherichia’ are calculated separately. 

In this practical application, we adjusted the scoring weights of the two modules in HoPhage 

according to the preliminary results. The above statistical results were finally obtained by setting 

the weight of HoPhage-G as 0.2 and the weight of HoPhage-S as 0.8. In this process, we found that 

increasing the weight of HoPhage-G can improve the prediction performance of phage contigs 

whose host is Escherichia, but at the same time, the prediction accuracy of phage contigs whose 

host is the other two genera decreases. When increasing the weight of HoPhage-S, the situation was 

just the opposite. This is probably because the volume of phages that can infect Escherichia is large, 

so that the deep learning model in HoPhage-G can well summarize the relationships between these 

phages fragments and potential hosts and make better predictions, while the other two genera cannot 

obtain good prediction in deep learning model due to the relative lack of related data. Therefore, if 

possible, we recommend users to choose appropriate weights for the two modules in HoPhage based 

on the community from which the phage fragments come when using HoPhage. If there are many 

dominant genera in this community belonging to the categories which have a large number of related 

records, the higher weight of module HoPhage-G may improve the prediction performance as a 

whole. 

3.4. Exploration of the marker genes in phages through HoPhage-S 

It has been pointed out that the evolutionary pressure of phage genome in the co-evolution process 

with hosts is not uniform, and the codon usage preference will only be more prominent on some 

genes of phages (Carbone 2008). Since phages lack conservative genes like 16S rRNA in 

prokaryotes, the taxonomic classification of phages often depends on their morphology. Therefore, 

we assumed that based on the potential of a phage gene in identifying its host, genes that are more 

consistent with their host during the co-evolution can be regarded as the marker genes of phages.  

As can be seen from our above results, HoPhage-S, which used the codon Markov chain model 

to measure the similarity between phage fragments and potential hosts, showed better performance 
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than WIsH which used the base Markov chain model. In order to quantify the potential of different 

genes of phage in identifying the host, we used all single genes extracted from the phages in the 

training and test set as the inputs of HoPhage-S for host prediction. Then we calculated the 

accuracies of host prediction at the genus level for genes with the annotations containing different 

keywords. 16 keywords were used to extract the DNA sequence of annotated genes from phage 

genomes. According to the functions of the proteins they encode, these genes were divided into 

three categories, including proteins used for the processes of the central dogma (‘polymerase’, 

‘ligase’, ‘primase’, ‘helicase’, ‘exonuclease’), proteins function in morphology (‘head’, ‘tail’, 

‘scaffold’, ‘capsid’, ‘fiber’, ‘baseplate’) and proteins involved in the infection processes (‘lysin’, 

‘holin’, ‘integrase’, ‘transposase’, ‘excisionase’).  

Table 1. Prediction accuracy of HoPhage at the genus level with different weights. 

keyword accuracy average length of genes (bp) number of genes potential 

polymerase 16.54% 1683 3423 1 

ligase 11.17% 1106 1101 1.027653 

primase 13.59% 1231 1854 1.123337 

helicase 17.57% 1402 2971 1.275183 

exonuclease 15.94% 903 1286 1.796177 

baseplate 8.09% 1225 2956 0.671987 

fiber 14.20% 1785 2521 0.809466 

tail 21.69% 1242 14427 1.776996 

capsid 25.84% 1096 3285 2.399002 

head 17.52% 711 4367 2.507339 

scaffold 17.80% 712 1337 2.543833 

lysin 30.46% 1099 2088 2.820206 

holin 27.69% 364 1477 7.740521 

integrase 50.72% 1153 905 4.476087 

transposase 51.62% 912 277 5.759327 

excisionase 51.61% 287 93 18.29787 

We used the ratio of prediction accuracy at the genus level to gene length to quantify the potential 

of a gene to identify the host and used the potential of genes whose annotations include 

"polymerase" as the reference value 1. As shown in Table 1 and Fig. 7, there was roughly a trend 

that infection-related genes had the greatest potential, morphology-related genes were the second, 

and the central dogma-related genes had the lowest potential. In more detail, in addition to the two 

genes encoding non-important structural proteins, baseplate and fiber, other morphology-related 

genes were slightly more potential to identify hosts than the central dogma-related genes, and the 

potential of infection-related genes was significantly higher than the previous two categories. This 

result was reasonable and in line with our expectations since the proteins involved in infection 

processes can directly interact with the host, which will inevitably lead to more evolutionary 

pressure of these relevant genes from their hosts in the co-evolution. It is worth noting that the 

functions of proteins ‘integrase’, ‘transposase’ and ‘excisionase’ are integration genome sequence 

of temperate phage into or excision it from the host chromosome (Baker 1995; Cho et al., 2002), 

while proteins ‘holin’ and ‘lysis’ are function in cytolytic lysis process (Ugorcakova et al., 2003) 

which exists in both temperate and virulent phages. The results showed that genes encoding 

temperate phage-specific proteins had a higher potential for host identification. For example, the 

‘excisionase’ gene achieved a 51.61% accuracy of host prediction at the genus level as the average 

length of this gene was as short as 287 bp, hence its potential in identifying the host was 18 times 

that of gene ‘polymerase’. This was also rational since temperate phages may integrate their genome 
into the host chromosome and reproduce with the host, therefore, adapting more host sequence 

signatures for better survival. 
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Fig. 7. The potential of phage genes annotated with different keywords in identifying host. 

The tetranucleotide frequency has been used to construct a phylogenetic tree of phages and found 

that phages with the same host converge on the tree (Pride et al., 2006). As holin exists in both 

temperate and virulent phages, we further constructed the phylogenetic tree of phages using the 

genes annotated as ‘holin’ or ‘Holin’. The holin genes which correctly predicted the host genus and 

gained scores ranked in the top 50 were selected. Fig. 8 is the phylogenetic tree constructed by these 

50 holin genes. It can be seen that genes derived from phages with the same host converge on the 

tree. We believed that the genes which have high potential in host identification can be used as phage 

marker genes for an alternative taxonomic classification of phages. 
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Fig. 8. Phylogenetic tree constructed by the DNA sequence of ‘holin’ genes from phages. 
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Discussion 

In this paper, we present HoPhage, an ab initio tool for identifying hosts of phage fragments from 

metavirome using the sequence signatures. Testing on a benchmark dataset of artificial short contigs 

and real virome data of mock viral community shows that HoPhage performs much better than the 

state-of-the-art tools for short fragments within a wide candidate host range. HoPhage can directly 

be employed on virome data, in which the viral particle is enriched before sequencing. For 

untargeted metagenomic data, users need to firstly identify the phage contigs from chromosome-

derived contigs using related software such as VirSorter (Roux et al., 2015), VirFinder (Ren et al., 
2017), PPR-Meta (Fang et al., 2019), and DeepVirFinder (Ren et al., 2020) and then use HoPhage 

to identify the host of the phage fragments. Like other host prediction software, users can specify 

the candidate host for HoPhage. In the released package, HoPhage- G contains pre-calculated di-

codon frequencies and 5-mer frequencies of 1192 genera from 5314 prokaryotes and HoPhage-S 

contains all Markov chain models trained by these 5314 prokaryotes. Under default parameters, 

HoPhage will use all candidate hosts in the dataset. In addition, users can also provide a list to 

restrict the host range for virome data from a certain environment. For example, in the human gut, 

about 15 bacterial genera occupy a total of 70% of organisms of the microbial community (Li et al., 
2014). When employing HoPhage over gut virome data, users can restrict the candidate host within 

these genera to avoid false-positive prediction of a host that does not exist in this environment. On 

the other hand, our evaluations show that HoPhage can also achieve satisfactory performance even 

if there are hundreds of candidate host genera, which means that the lack of prior knowledge about 

the candidate host range will not serious affect the usage of HoPhage.  

To make a reliable prediction, we designed two modules to improve HoPhage’s performance, 

named HoPhage-G and HoPhage-S. HoPhage-G is a deep learning-based module. Through 

constructing pairs of phage fragments and genera of potential hosts, this complex multi-

classification host prediction issue transforms into a two-classification task. Hence HoPhage-G aims 

to judge whether the query phage fragment can infect a prokaryote from a specific genus. We also 

adopt the inception module from GoogLeNet, which can extract features at multiple scales. While 

deep learning algorithms have shown a strong ability to extract sequence signatures over a large 

scale dataset to make a reliable prediction and have already been employed by many tools to predict 

the interaction between biological components, HoPhage-G demonstrates superior performance as 

it can obtain a high TPR under a very low FPR. However, machine learning-based tools rely on 

existing data that is used for training. Since the distribution of the number of phages that can infect 

hosts from different genera in the current database is unbalanced and a large number of known 

phages derives from a narrow host range, therefore HoPhage-G presents a poorer performance for 

some phages which lack the related data. So we designed HoPhage-S as the complement, which is 

a Markov chain-based module to overcome this unbalanced problem. The innovation of HoPhage-

S is that we employed a codon Markov chain model for CDS regions in the prokaryote genomes, 

rather than the base Markov chain model that WIsH employed. It has been shown that sequence 

signatures are more concentrated in the coding sequence and the density of CDS on the phage 

genome is higher than that in the prokaryote genome. Our results show that the codon Markov chain 

model is indeed more effective than the base Markov chain model. At last, testing on the artificial 

benchmark dataset of artificial phage contigs and real virome data, HoPhage demonstrates much 

better performance on short fragments within a wide candidate host range at every taxonomic level. 

However, there are still some shortcomings in our work and needed to solve in the future. It must 

be admitted that although HoPhage can handle novel phages, due to the limitations of the algorithm 

and currently accessible dataset, phages with very little relevant data will inevitably get poorer 

prediction accuracy. In addition to sequence signatures, it is also worth considering employing other 

signals to further improve the performance of HoPhage in future researches, such as the presence of 

CRISPR spacers or the abundance profiles. Moreover, HoPhage is designed primarily for the 

prokaryotic virus (i.e. phages), which is dominant in the microbial community, but the real virome 

data may contain a small number of eukaryotic viruses. Recently, the host prediction tool for several 

specific eukaryotic viruses has been designed (Mock et al., 2020). In order to let HoPhage more 
versatile, it is also worth considering the host prediction for eukaryotic virus fragments. But while 

most of the eukaryotic viruses are RNA viruses, which will not appear in large amounts in DNA 
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sequencing data, this problem has little impact on the application of HoPhage. Another problem is 

that even in the virome data, there will still be some host contamination, hence the de-hosting 

operation before using HoPhage will be more conducive.  

In conclusion, HoPhage demonstrates much better performance on short fragments within a much 

wider candidate host range. We expect HoPhage to play a vital role in identifying hosts of novel 

phages and help researchers to explore the underlying ecological impact of phage in a community. 

 

Availability of supporting data and materials 

The artificial contigs, related scripts, and original results are available 

at http://cqb.pku.edu.cn/ZhuLab/HoPhage/data/. All the other data are available at corresponding 

references mentioned in the main text. 

HoPhage is user-friendly and does not have high hardware requirements. We have released the 

program as a Docker image (https://hub.docker.com/repository/docker/jietan95/hophage) so that 

non-computer professionals can use HoPhage without installing any dependency package. Besides, 

the physical host version of HoPhage can speed up with GPU and is more suitable to handle large-

scale data. The program is freely available at http://cqb.pku.edu.cn/ZhuLab/HoPhage/ or 

https://github.com/jie-tan/HoPhage/. 
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