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ABSTRACT

Automatic characterization of fluorescent labeling in intact mammalian tissues remains a chal-

lenge due to the lack of quantifying techniques capable of segregating densely packed nuclei and

intricate tissue patterns. Here, we describe a powerful deep learning-based approach that couples

remarkably precise nuclear segmentation with quantitation of fluorescent labeling intensity within

segmented nuclei, and then apply it to the analysis of cell cycle dependent protein concentration in

mouse tissues using 2D fluorescent still images. First, several existing deep learning-based meth-

ods were evaluated to accurately segment nuclei using different imaging modalities with a small

training dataset. Next, we developed a deep learning-based approach to identify and measure fluo-

rescent labels within segmented nuclei, and created an ImageJ plugin to allow for efficient manual

correction of nuclear segmentation and label identification. Lastly, using fluorescence intensity

as a readout for protein concentration, a three-step global estimation method was applied to the

characterization of the cell cycle dependent expression of E2F proteins in the developing mouse

intestine.

INTRODUCTION

Automatic image analysis is at the core of human and animal tissue-based research. However,

quantitation of morphological features or fluorescent labeling in intact mammalian tissues still re-

mains a challenge. The densely packed nuclear aggregates that characterize many of these tissues,

the extensive variability across different tissue types, and the continuously increasing number of
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imaging modalities are some of the many variables that make tissue biological quantification an

extremely difficult task. Over the last decade 1–4, deep learning has brought artificial intelligence

to the forefront of image-based decision making. In particular, deep convolutional neural net-

works have demonstrated their superiority for image segmentation 1, 2. These approaches have also

outperformed the traditional approaches used in microscopy, such as watershed for nuclei or cell

segmentation 5–9. However, this machine learning-based approach requires large amounts of an-

notated data and new strategies have to be developed to process highly complex biological objects

acquired with different modalities by considering small training datasets. In this paper, we propose

a series of deep learning-based approaches to precisely segment nuclei and to identify fluorescently

labelled cells in order to analyze the evolution of cell cycle dependent E2F protein concentration

in mouse tissues.

E2Fs are major regulators of the cell cycle. The members of this family of transcription fac-

tors are categorized into three subclasses in mammals: canonical activators (E2F1-3A/B), canoni-

cal repressors (E2F4-6), and atypical repressors (E2F7-8) 10–13. Adding to the body of literature on

E2F-dependent transcriptional activity in vivo, our lab previously provided quantitative evidence

on the temporal expression of representative activator (E2F3A), canonical repressor (E2F4) and

atypical repressor (E2F8) family members during embryonic development 14, all of which have

been shown to be of major importance 15–18. To establish the temporal expression profiles of the

three sentinel E2Fs, we used an E2F3A specific antibody and generated MYC-tagged E2F4/E2F8

knock-in mice. In addition to fluorescence labeling of E2F3A, E2F4 and E2F8, 5-ethynyl-2’-

deoxyuridine (EdU) and Histone H3 S10 phosphorylation (pH3) were used to identify S, G2 and
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M phases. Images of eight different combinations of markers were acquired from sections of the

developing mouse intestine using confocal and widefield microscopy (see S1 Fig). The data anal-

ysis pipeline consisted of i) nuclear segmentation with a deep learning approach 19, ii) nuclear

marker identification by thresholding, and iii) estimation of E2F concentrations over the cell cycle

from 2D intensity histograms.

In this manuscript, we propose and evaluate alternative methods to quantify nuclear protein

levels which result in an improved automated pipeline with greatly reduced requirement for inter-

active manual corrections. Using a small training dataset composed of 2D still images (with and

without various forms of data augmentation), we first evaluate five different deep learning strate-

gies to segment nuclei in microscopic images of embryonic mouse intestinal epithelium. We also

design post-processing methods to improve nuclear segmentation. We then propose another deep

learning-based approach for identifying nuclear markers in the epithelial cells and demonstrate the

superiority of this method to the usual threshold based method 20, 21. Additionally, we create an Im-

ageJ plugin 22, 23 named Annotater to specifically and efficiently correct nuclear segmentation and

marker identification, ensuring that nuclear features are accurately quantified. Next, these image

features extracted from 2D still images are used to perform a temporal analysis of E2F protein con-

centration over the cell cycle. Based on three mathematical assumptions grounded in cell biology,

we initialize the temporal evolution of E2F concentrations using a graph optimization method. Cell

cycle markers are then used to temporally register E2F proteins’ concentration with respect to cell

cycle phase. The global estimation of the protein concentration of E2F3A, E2F4 and E2F8 through

the cell cycle is defined as an assignment problem and solved with the Hungarian algorithm 24, 25.
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This approach is extensively evaluated with simulated data. Finally, we directly estimate the tem-

poral evolution of E2F concentrations without using marker identification. In addition, we evaluate

the impact of using different amount of images in the training datasets for nuclei segmentation on

the estimation of E2F concentrations over the cell cycle.

RESULTS

Mask R-CNN is the optimal deep learning approach for segmenting nuclei in cross-sectional

images of complex tissues

Over the last decade, deep learning has revolutionized computer vision 1–4. Over the years, sev-

eral deep learning approaches have been successfully applied to segment cell nuclei 19, 26, 27. More

recently, the 2018 data science bowl (Caicedo et al. 2019) attempted to definitely solve this prob-

lem in 2D by posing the challenge: Create an algorithm for automated nuclei detection. Although

impressive results were obtained for different light microscopy modalities and a variety of nuclear

stains 7, nuclear segmentation from complex tissues such as intestinal epithelium still represents

an unusually challenging problem. As is the case for most biological imaging studies due to nat-

ural variability in the objects of interest that are captured using dissimilar imaging modalities, no

annotated data is available for this specific application. Consequently, we set out with the goal

of designing a robust approach that would lend itself to routine use in the typical biology labora-

tory. We evaluated five different deep learning approaches for nuclear segmentation: U-Net 27, 28,

Inception-V3 29, Mask R-CNN 30, Stardist 8 and CellPose 9. U-Net, perhaps the most-used deep
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convolutional neural network for biomedical data, is composed of an encoder part, used to capture

image features, and a decoder part to estimate a class at each pixel of the input images. Inception-

V3, which was designed to identify objects in images, is a deep convolutional neural network that

only estimates one class given an input image. When using this architecture for nuclear segmen-

tation, inputs are defined as image patches and the output corresponds to the class at the patch

center. Inception-V3 is much slower than U-Net for both training and processing (S1 Table), as a

decision is only made for the central pixel of the input image patch, in contrast to a decision being

made at each pixel of the input image as it is in U-Net. For both U-Net and Inception-V3, three

classes are defined: inner nuclei, nuclei contours, and background (Caicedo et al. 2019, Van Valen

et al. 2016). Individual nuclei are then obtained by subtracting the nuclei contours from the inner

nuclei (see Methods). To improve performance, we developed a post-processing method that we

call corrected watershed, wherein the results obtained with the U-Net or Inception-V3 network are

combined with those produced by the watershed method 5 (see Methods). Mask R-CNN, Stardist

and Cellpose are instance segmentation approaches, i.e. they directly estimate individual objects.

These three methods first extract image features using a backbone convolutional neural network.

Stardist identifies individual objects by predicting the distances to object boundaries with a fixed

set of rays, ending up with a set of polygons for a given input image, corresponding to nuclei.

Cellpose predicts an alternative representation of the nuclei masks, the equilibrium distribution of

a heat-diffusion simulation with a heat source placed at the center of the mask. Mask R-CNN relies

on a Region Proposal Network (RPN) to submit subregions of the input image. A fully connected

neural network then defines a class and a bounding box for the input subregions, and a convolu-
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tional neural network generates a segmentation mask for the same input subregions. With these

three approaches, the output corresponds directly to individual nuclei. The five approaches and

their use are described in more details in the Methods. Pre-processing, normalization, optimiza-

tion, data augmentation, transfer learning and post-processing are summarized for each method in

S2 Table. The number of images and nuclei used in the training and validation datasets are shown

in S3 Table. Two different modalities, confocal and widefield images are used in this study, which

allows us to test the genericity of the deep learning approaches for nuclei segmentation.

As proposed by Caicedo et al. (2019), we use the F1 score with respect to the Intersection

over Union (IoU) to compare performance of the three deep learning approaches (see Methods).

There are two aspects to performance: 1) the ability to correctly identify all nuclei in an image,

which is the same as detecting the correct number of nuclei, and 2) the accuracy of the nuclear

contours created in the output. This second aspect of performance is quantified by the F1 score over

a range of IoU values. The IoU of two objects is the ratio of the intersection to the union of their

areas. With an IoU of at least 0.5 (within the range 0.5-1.0), only two nuclei, one from the ground

truth as determined by a pathologist and one estimated with a given method, can be paired. The

F1 score for an IoU equal to 0.5 can be used to assess the ability of a method to accurately identify

all nuclei. F1 scores for IoU thresholds in the range 0.5-1.0 reflect the localization precision of the

segmentation, which means the accuracy of the defined nuclear contours.

The three instance segmentation approaches, i.e. Stardist, Cellpose and Mask R-CNN, show

similar performance (see S4 Fig-S5 Fig-S6 Fig and S5 Table-S6 Table), with a lower accuracy
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for Cellpose. This approach has been designed to segment cells with cytoplasmic markers and is

therefore less efficient with nuclear markers. Stardist shows a slightly better F1 score for an IoU

threshold equal to 0.5 for confocal images than Mask R-CNN (0.864 vs 0.858), suggesting that

a few more nuclei are identified with Stardist. However, the F1 scores for higher thresholds of

IoU obtained with Mask R-CNN are clearly higher than those obtained with Stardist (IoU = 0.75,

0.458 vs 0.434 for confocal images and 0.460 vs 0.389 for widefield images). This demonstrates

that Mask R-CNN better localizes the nuclei areas than Stardist. Of note, while pooling together

confocal and widefield images leads to a better accuracy for all three methods, data augmentation

does not improve performance for Stardist and Cellpose while it clearly ameliorates Mask R-CNN

precision. This could suggest that Stardist and Cellpose are more sensitive to noise when the

training dataset is small and the nuclei are densely packed.

In the following, only Mask R-CNN is compared to U-Net and Inception-V3. Fig. 1 shows

the superiority of the Mask R-CNN method for both modalities. The results represent the best

performance of each deep learning method from among the algorithmic variants that invoke com-

binations of transfer learning, data augmentation and watershed correction as discussed below in

connection with S2 Fig, S3 Fig and S4 Fig. S5 Table and S6 Table show the F1 score obtained

with IoU=0.5 and IoU=0.75 when considering all algorithmic variants for each method.

As shown in Fig. 1 a-b, and emphasized in the magnified images of Fig. 1 c-d, the U-Net

method produced the worst results. Data augmentation, a process that artificially and massively

increases the size of the training dataset by applying mathematical operations such as adding noise
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and rotating or flipping the images (see Methods), clearly improves the segmentation accuracy (S2

Fig c-d). However, pooling together confocal and widefield images in the training dataset produces

worse segmentation accuracy compared to training on only confocal or only on widefield images.

This demonstrates the inability of the U-Net approach to generalize nuclear segmentation with a

small training dataset.

In contrast, the Inception-V3 approach obtains better results when both modalities are used

in the training dataset (S3 Fig). While for Inception-V3 the training dataset was not increased

when applying data augmentation because the computation time is already long, the high degree

of overlap between input patches to which mathematical operations are applied (see Methods)

produces an effect similar to data augmentation, explaining in part the improved performance of

the Inception-V3 approach relative to U-Net. Because Inception-V3 estimates the class one pixel

at a time, both training and processing are highly compute intensive and not feasible in practice

(S3 Fig d). The proposed corrected watershed post-processing improves the results obtained for

both U-Net and Inception-V3 (S2 Fig-S3 Fig e-f and S5 Table-S6 Table).

The Mask R-CNN method obtains the best nuclear segmentation for both modalities (Fig. 1),

in large part due to the improvement realized through data augmentation and in a lesser extent to

the transfer learning from the coco dataset 31, (S4 Fig a-b). Combining confocal and widefield

images in the training dataset improves the results, especially for confocal images (S4 Fig c-e).

This demonstrates how Mask R-CNN can benefit from an increase in training dataset size (from

4847/1619 nuclei in the training/validation dataset for confocal images alone to 15541/4051 nuclei
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in the training/validation dataset when confocal and widefield images are pooled together) even

if the data are not uniform, coming from different sources. Of note, combined with massive data

augmentation, transfer learning from the coco dataset really improves accuracy when considering

confocal images only (S4 Fig e compared to S4 Fig c) or widefield images only (S4 Fig f compared

to S4 Fig d), while it does not drastically improve the accuracy when confocal and widefield images

are pooled together (S4 Fig c-f). This suggests than considering images from different modalities

has a similar effect for convergence to a plateau with Mask R-CNN than transfer learning with a

pre-trained model. Moreover, training and processing are fast (S4 Fig d), and the results do not

require any post-processing. One limitation of the Mask R-CNN method compared with U-Net and

Inception-V3 is an inferior boundary localization accuracy for confocal images, as demonstrated

by the lower F1 scores for IoU threshold values greater than 0.75 (Fig. 1 a). Due to slightly larger

nuclear masks (cyan boundaries in Fig. 1 c), this limitation is more than compensated for by Mask

R-CNN’s higher true positive nuclei identification rate in most biological applications. While the

performance of Mask R-CNN is impressive, its accuracy is not perfect and may be insufficient for

many applications. Therefore, we designed the ImageJ plugin Annotater (see Methods), a tool that

allows users to efficiently correct the nuclear segmentation.

Deep learning improves identification of fluorescent nuclear markers

After completion of nuclei segmentation with the DAPI channel, it is possible to use the fluores-

cence in the other channels to extract information of interest about the cells. E2Fs positive/negative

status can be evaluated that way, as well as EdU and pH3 patterns. EdU and pH3 are cell cycle

10

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 21, 2022. ; https://doi.org/10.1101/2021.03.01.433386doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.01.433386
http://creativecommons.org/licenses/by-nc-nd/4.0/


markers that show evolving patterns along the cell cycle 14. EdU is diffuse during first half of S

phase and becomes punctate during second half of S phase. pH3 is first punctate during second

half of S phase and G2, and becomes diffuse during mitosis. Typically, a thresholding procedure is

applied to identify nuclear markers 20, 21, but this approach is not always accurate, especially when

different patterns of fluorescence over a wide range of intensities are involved as is the case for EdU

and pH3 (see diffuse and punctate patterns in Fig. 2). To improve accuracy, we tested a deep learn-

ing approach for nuclear marker identification. As the goal is not to identify regions but to make a

decision for each nucleus regarding the presence/absence of an E2F or the diffuse/punctate/absence

of EdU or pH3, the instance segmentation and U-Net approaches are not suitable. In contrast, with

an input defined as an image patch centered on each nucleus, the Inception-V3 architecture is

appropriate to decide about the presence, potentially in diffuse or punctate state, or absence of a

marker. In addition to data augmentation, we also define a so-called pixel-based training dataset

(as opposed to nuclei-based training dataset) that includes the input patches centered at each pixel

belonging to the nuclei (see Methods). This strategy has a similar effect to data augmentation,

as it drastically increases the training dataset. Although DAPI staining is different from the nu-

clear markers used to identify the E2Fs, EdU and pH3, the images are acquired simultaneously, so

the image features captured by the Inception-V3 method for nuclear segmentation are potentially

meaningful to identify nuclear markers. Consequently, we also perform transfer learning from the

nuclear segmentation (see Methods). To easily set the threshold for marker identification, we de-

signed an interface in the Annotater that we used to obtain the results shown in Fig. 2 for manual

thresholding.
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As shown in Fig. 2, compared to manual thresholding, the Inception-V3 approach provides

better performance for each marker in both modalities. Manual thresholding achieves a relatively

good performance for E2F3A and E2F8 identification in both modalities, and for pH3 in confo-

cal images. The latter might appear surprising, but the two different patterns for pH3 in confocal

images are different enough to allow a strategy based on the thresholded area in the nuclei (see

Methods) to lead to satisfying results (Fig. 2 a). However, the results for E2F4, Fig. 2 b, are not

as good: Because E2F4 is also cytoplasmic, the extra-nuclear fluorescence confounds the thresh-

olding decision. Finally, thresholding clearly fails to identify the two different patterns (diffuse,

punctate) of EdU in images from both modalities as well as the patterns of pH3 in widefield im-

ages. In contrast, the Inception-V3 approach yields accuracies greater than 90% for all markers

except E2F4 (89%) (Fig. 2). As shown in S7 Table, the use of the pixel-based training datasets does

not significantly improve marker identification for confocal images, but does improve performance

on E2F3A, E2F4 and pH3 markers in widefield images (see S8 Table). Additionally, the transfer

learning from the nuclear segmentation slightly improves the results for all markers in both modal-

ities. Computation (after training) is fast because only one decision is made per nucleus (S9 Table).

Overall, this study demonstrates the remarkable accuracy of the deep learning-based approach in

identifying cells that are positive for the tested nuclear markers, not only when the marker is both

nuclear and cytoplasmic, but also when it exhibits different labeling patterns, such as diffuse and

punctate. Given such a high level of accuracy, correcting the results with the Annotater plugin

takes only a short time.
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Estimation of E2F accumulation over the cell cycle from 2D still images

Estimating cell cycle progression is an important biological question and can be answered by using

images 32, 33. Unfortunately, these machine learning approaches require annotated data to be pro-

cessed. Without training data, the most straightforward way to assess the evolution of a protein’s

concentration over the cell cycle would be to monitor the expression level in every cell through all

phases of the cycle. However, this is not possible in the proliferative tissue of a living animal. In-

stead of observing one cell, we propose to observe a large population of cells, each corresponding

to a snapshot characterizing the cell state at a particular time during the cell cycle, and to recon-

struct protein concentration as a function of time in the cell cycle by combining all these snapshots.

We assume that fluorescence intensity is proportional to protein concentration 34, 35 and therefore

define quantized levels of intensity for E2Fs (see S7 Fig and Methods). In each individual image,

we measure the average fluorescence intensity for each positive cell. Within each image, the range

of intensity from the lowest average intensity to the highest is divided into bins that define the

levels of intensity. On the other hand, EdU and pH3 markers are defined by their diffuse and punc-

tate states, which change as a function of cell cycle phase. As shown in our previous work 14, EdU

shows a diffuse pattern during the first half of S phase and a punctate pattern during the second half

of S phase. pH3 shows a punctate pattern during the second half of S phase and G2 and a diffuse

pattern during mitosis. These two markers allow us to register E2Fs expression with respect to the

cell cycle. We propose to globally estimate the E2F concentration’s evolution over the cell cycle in

three steps: i) initialization, ii) cell cycle registration and iii) global optimization. In this paper, as

in our previous manuscript 14, the phrase “protein accumulation” is synonymous with “protein con-
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centration” and connotes this balance between production and degradation, regardless of whether

the protein concentration is increasing or decreasing. Also in this paper, the fluctuation over time

of a quantity such as fluorescence intensity or protein accumulation is referred to as “evolution,”

which is therefore synonymous with “time course.”

We use the term “initialize” to mean creation of a first estimate of protein accumulation over

the cell cycle: a graph of fluorescence intensity vs. time. To initialize all combinations of markers

from the images (see S1 Fig), we make three fundamental assumptions:

1 The number of cells in a given phase of the cell cycle is proportional to the duration of that

phase.

2 Temporal evolution of protein accumulation is similar in all observed cells (there are no

subpopulations with different cell cycle evolution).

3 Concentrations of E2Fs evolution can be represented by concave downward parabolas, i.e.

they increase from 0 to their maximum and then decrease from this maximum to 0.

These assumptions are validated by the following biological statements:

1 Proliferation in intestinal epithelium is asynchronous, so each cell cycle phase is observed at

a frequency proportional to its duration.

2 All cells in intestinal epithelium are proliferating and undergo cell cycle at a uniform rate.

14
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3 Cell cycle-regulated proteins first accumulate over time and are then degraded.

We use 2D histograms to initialize protein accumulation (S8 Fig and Methods). In these

histograms, the first axis corresponds to the intensity of an E2F, while the second axis corresponds

to either another E2F intensity or the states of EdU or pH3 staining. From these histograms, we

define graphs with costs associated with edges reflecting the possible intensity/pattern transitions

of the E2Fs, EdU and pH3. The sequence of edges that goes through all vertices with minimum

cost is used to initialize the evolution of protein accumulation over time (S9 Fig and Methods). The

initializations obtained for all eight different combinations of markers are shown in S10 Fig. As

EdU and pH3 labeling patterns with respect to the cell cycle are known, we then register E2Fs with

respect to EdU and pH3 through a circular permutation (see Methods). We use the same approach

to refine EdU labeling during the cell cycle (see Methods). The protein accumulations after reg-

istration are shown in S11 Fig. We finally model the global estimation of E2F accumulation over

the cell cycle as an assignment problem. We use the Hungarian algorithm 24, 25 to successively esti-

mate the individual accumulation of each E2F over the cell cycle given the EdU and pH3 patterns

as constraints (see Methods). We also add a local constraint to only allow growing substitutions for

E2Fs (see Methods). The final result is shown in Fig. 3, depicting the successive waves of E2F3A,

E2F4 and E2F8 over the cell cycle.

We then simulate data to evaluate the validity of our approach (see Methods). In summary,

E2F3A and E2F8 are randomly generated to have a concentration that shows a concave downward

parabola representation while E2F4 is randomly generated to have a concentration that shows two
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successive concave downward parabola representations, with random durations for each intensity

level for all three E2Fs. EdU and pH3 are also randomly generated to show a succession of punc-

tate/diffuse or diffuse/punctate patterns. Noise is randomly added to corrupt from 0% to 50% of

temporal bins. For each set of parameters, 5 different simulations are randomly generated. The

performance is evaluated by measuring the mean squared error (MSE) between the generated and

estimated concentrations of E2Fs, EdU and pH3. A first set of simulations estimates the influence

of the number of samples, corresponding to the number of mice, and shows that the MSE dras-

tically decreases from 1 sample to 2 samples (see S12 Fig), suggesting that 3 mice for E2F3A,

E2F8, EdU and pH3, and 2 mice for E2F4 should lead to a satisfying estimation. A second set

of simulations evaluates the influence of the number of bins used for time. As shown in S13 Fig,

the MSE is low for a range of 20 to 100 bins and drastically increases for 125 bins, validating the

choice of 100 bins for time. A last set of simulations estimates the impact of the number of bins

used for intensity. The MSE is quite stable for a range of 2 to 5 bins but ramps up with 10 bins

(see S14 Fig). This confirms our choice to use 4 bins, which is also widely used in both diagnostic

pathology and biomedical research 36, 37. Fig. 4 summarizes the evaluation with simulations when

considering the same parameters (number of samples, intensity and time bins) than those used for

real data with up to 50% of the simulated data corrupted with noise.

Estimation of E2F accumulation over the cell cycle with respect to nuclei segmentation

In the previous section, we used the marker identification to identify negative cells for E2Fs and

the two patterns for EdU and pH3. We now want to assess if this step is required or not. Fig. 5
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a shows the estimation of E2Fs concentration when considering only positive/negative states for

EdU and pH3. While the estimated concentration slightly changes, especially the second peak of

E2F4, the successive waves of E2Fs are preserved in time. This opens the possibility to a more

direct concentration estimation where a nuclei segmentation is performed first and the intensity is

then binned into four levels for E2Fs channels and two levels for EdU and pH3 (see Methods).

Fig. 5 b depicts the estimated concentrations for E2Fs with a manual segmentation for nuclei. The

estimated concentrations are more degraded than with a better estimation of EdU and pH3 states,

but E2Fs still show 4 successive peaks which are temporally well estimated, with the exception

of the first E2F4 peak which is slightly delayed. This approach allows to evaluate the impact of

nuclei segmentation on the concentration estimation over the cell cycle. We estimate the E2Fs

concentration with the nuclei segmentation obtained for the confocal images with a Mask R-CNN

model trained with the widefield images and a manual segmentation for the widefield images (see

Fig. 5 c), and conversely (see Fig. 5 d). These estimations are actually close to the one obtained

with manual segmentation, i.e. a degraded accuracy as shown in Fig. 5 e, but a well estimated

temporality for the successive waves of E2Fs concentrations. This illustrates the robustness of our

approach with respect to nuclei segmentation to temporally estimate the waves of E2Fs over the

cell cycle.

DISCUSSION

This study demonstrates that the Mask R-CNN approach, coupled with transfer learning and data

augmentation, can produce highly accurate nuclear segmentation of fluorescent images, even in a
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complex tissue such as the intestinal epithelium, by considering a small training dataset. Outstand-

ing segmentation results are achieved for different imaging modalities, notably including widefield

fluorescence microscopy, a ubiquitous imaging mode in cell biology research labs that produces

challenging images of low sharpness and poor boundary definition. This is of major interest, as

segmentation is a key task in image analysis of mammalian tissues where variability across tis-

sue types is high and the number of modalities large and ever increasing. Therefore, the quest

for comprehensive training datasets will be long and biology laboratories need efficient strategies

to process their own images. In this context, the Inception-V3 approach also obtains satisfactory

segmentation accuracy, but the computation time, especially for training, represents a major lim-

itation. Though the U-Net approach has demonstrated its utility in many biomedical studies, it

is unable to generalize the ability to segment nuclei when the images are acquired with different

modalities.

Our results also attest to the superiority and efficiency of the deep learning approach for iden-

tifying the presence and state of nuclear markers. As the goal is to make a decision for each cell,

the Inception-V3 architecture is well adapted to the task, computation time not being the issue that

it is for nuclear segmentation. Considering pixel-based input patches improves performance if the

training dataset is small. Moreover, transfer learning from nuclear segmentation improves marker

identification. This is explained by the fact that image features that are suited for nuclear segmen-

tation are also meaningful for identifying nuclear markers. This is an interesting observation, as

the same strategy could be used in an n-steps pipeline analysis. Indeed, a deep learning classifier

could be trained for the first analysis applied to a particular dataset, the resulting parameters used
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to initialize the classifier for the second analysis, and so on.

While deep learning approaches for both nuclear segmentation and nuclear marker identifica-

tion show high accuracy, some level of discrepancy between desired and actual results is expected.

Thus, it is important to allow the user to correct the results if higher accuracy is required. This need

for interactive post-processing of the results motivated us to design and implement the ImageJ plu-

gin Annotater. This plugin can be used to annotate data from scratch or to perform corrections.

While Annotater could be used to obtain perfect accuracy even without prior automated segmenta-

tion and marker identification, starting from a good estimate markedly speeds up the process. For

instance, delineating the boundaries of all nuclei in an image of the intestinal epithelium may take

a trained user 1-1.5 hours whereas any user can correct the results obtained with the Mask R-CNN

approach in less than five minutes.

We present a novel and powerful method to estimate temporal phenomena using quantitative

analysis of 2D still images. Specifically, we showed how the time-variant concentrations of intra-

nuclear proteins can be qualitatively obtained from snapshot images of cell populations of reason-

able size (for example, FFPE images of hundreds of epithelial cells as we analyzed in this study).

Compared to alternative methods like single-cell analysis of individual living cells, the method

we put forward here potentially allows easier and less expensive experimental designs for many

applications in which dynamic protein expression information is required. In this particular case,

a smart initialization based on biologically relevant assumptions coupled with a global optimiza-

tion approach enabled estimation of E2F accumulation over the cell cycle. We also demonstrate
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that this approach is robust to nuclei segmentation and does not require a marker identification to

provide a good temporal estimation of the successive E2Fs waves of concentration.

MATERIAL AND METHODS

Mouse models and care

The E2f4myc/myc and E2f8myc/myc were generated using standard homologous recombination cloning

techniques as described in 14. E2f4myc/myc, E2F8myc/myc and wild type controls were maintained on

a mixed background (FVB/NT, 129v/Sv, C57BL/6NT). Mouse usage and protocols were approved

by the Institutional Animal Care and Use Committee at the Ohio State University and Medical

University of South Carolina. Mice were housed under normal husbandry conditions (five or less

animals per cage) in a vivarium with a 12-hour light/dark cycle. Tissues were collected from E13.5

intestinal epithelium.

Immunostaining

Immunostaining was performed on a Bond Rx (Leica) or Ventana discovery ultra (Roche) au-

tostainer as per manufacturer’s instructions as previously described 38, 39. Primary antibodies and

dilutions used in this study were as follows: pH3-S10 (Millipore; 06-570, 1:250), E2f3a (Milli-

pore; 05-551, 1:100) and Myc-tag (Cell Signaling Technology; 2278, 1:100). EdU staining was

performed following the manufacturer’s protocol (Life Technologies; C10337).
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Image acquisition

Widefield micrographs were collected using a Nikon Eclipse Ni-U microscope with a DS-Qi2 cam-

era and NIS-Elements Advanced Research software. Confocal micrographs were collected using

the Olympus FV 1000 Filter Confocal system in the Campus Microscopy and Imaging Facility at

the Ohio State University.

Nuclei segmentation

The five deep learning approaches were coded in Python with the Python libraries numpy 40, ten-

sorflow 41, PyTorch 42, keras 43, scipy 44 and scikit-image 45. The code with the parameters used to

train and process all experiments presented in this manuscript is available at https://github.

com/tpecot/NucleiSegmentationAnd-MarkerIDentification/tree/master/.

It was written with jupyter notebooks and widgets in order to be used by biologists. Video tutorials

are also available on the same web page.

Training dataset The training dataset for nuclei segmentation consisted of twelve confocal and

forty-five widefield 512 x 512 images annotated by a moderately-skilled researcher. Four different

training datasets were used to evaluate the deep learning approaches and are summarized in S3 Ta-

ble. For the Inception-V3 approach, training and validation datasets were pulled together to obtain

the input patches. Ninety percent of image patches were used for training and ten percent of image

patches were used for validation.

21

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 21, 2022. ; https://doi.org/10.1101/2021.03.01.433386doi: bioRxiv preprint 

https://github.com/tpecot/NucleiSegmentationAndMarkerIDentification/tree/master/
https://github.com/tpecot/NucleiSegmentationAndMarkerIDentification/tree/master/
https://doi.org/10.1101/2021.03.01.433386
http://creativecommons.org/licenses/by-nc-nd/4.0/


U-Net As the U-Net approach estimates a class at each pixel, three classes were defined to al-

low separating nuclei as proposed in 19: inner nuclei, nuclei contours and background. To facilitate

nuclei separation, the nuclei contours in the training dataset were dilated 19. To reduce memory

usage and limit over-fitting, the imaging field for images in the training dataset was set to 256 x

256 by randomly cropping the 512 x 512 input images. These cropped images were then normal-

ized with a 1-99 quantile. A root mean square prop was used to estimate the parameters of the

deep convolutional neural network by minimizing a weighted cross entropy loss to handle class

imbalance for 100 epochs. The weights associated with each class were defined from the training

dataset as their inverse proportion. A data augmentation to increase the training dataset by a factor

of 100 was processed before normalization with the imgaug python library 46 and included flip-

ping, rotation, shearing, blurring, sharpness and brightness modifications, noise addition, intensity

inversion and contrast modifications.

Inception-V3 The same three classes were defined and the nuclei contours were dilated for the

Inception-V3 approach as for the U-Net approach. The imaging field was set to 65 x 65 pixel im-

age patches, large enough to include at least one nucleus as suggested in 19. For each image patch,

only the class of the central pixel was trained or processed. The training images were normalized

by dividing the intensity at each pixel by the median intensity over the image and by subtracting

at each pixel the average intensity of a 65 x 65 neighborhood around it. To obtain a balanced

training dataset, the same number of input image patches were defined for each class. A stochastic
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gradient descent was used to estimate the parameters of the deep convolutional neural network by

minimizing a categorical cross entropy for 15 epochs. A modification of the input image patches

was processed after normalization with the imgaug python library 46 and included the same image

transformations that were used for the U-Net approach.

U-Net and Inception-V3 post-processing For both U-Net and Inception-V3 approaches, nu-

clei were obtained by subtracting the nuclei contours from the inner nuclei. Let us define Sc =

{Sc(x)}x∈Ω where Sc(x) denotes the nuclei contour score obtained with the U-Net or the Inception-

V3 approach at pixel x, and Ω is the regular grid of pixels in the image. Similarly, we define

Sn = {Sn(x)}x∈Ω the inner nuclei score at each pixel x. The nuclei component N = {N(x)}x∈Ω

is defined as:

N(x) = Sn(x)− Sc(x). (1)

This nuclei component is then thresholded to define a binary image Nb:

Nb(x) =


1 if N(x) > 0,

0 otherwise.
(2)

The individual nuclei are defined as the connected components of the binary image Nb. This

leads to an under segmentation when contours between touching nuclei are not well estimated.

Consequently, we propose to apply the watershed algorithm 5 on the nuclei component N and to

take advantage of the nuclei contour score Sc obtained from the U-Net or Inception-V3 output to

refine the segmentation. Let us define W = {W (x)}i∈Ω the result of the watershed algorithm

applied to the inverse intensity of the nuclei component N prealably convolved with a Gaussian

filter of kernel size 2.5 for U-Net and 3.5 for Inception-V3. From W, a set of K new nuclei
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separations {S(k)}k=1,...,K is obtained. A score Sw = {Sw(k)}k=1,...,K is defined for each new

separation S(k) as follows:

Sw(k) =
∑

x∈S(k)

Sc(x)− Sn(x). (3)

All nuclei separations S(k) such that Sw(k) > 0 are used to separate the nuclei obtained as the

connected components of the binary image Nb.

Mask R-CNN Version 2.1 of Mask R-CNN 30 was used in this study. The backbone network was

defined as the Resnet-101 deep convolutional neural network 47. We used the code in 7 to define

the only class in this study, i.e. the nuclei. A data augmentation to increase the training dataset by

a factor of 100 was processed before normalization with the imgaug python library 46 and included

resizing, cropping, flipping, rotation, shearing, blurring, sharpness and brightness modifications,

noise addition, intensity inversion and contrast modifications. Transfer learning with fine-tuning

from a network trained on the coco dataset 31 was also applied. In the first epoch, only the region

proposal network, the classifier and mask heads were trained. The whole network was then trained

for the next three epochs.

Stardist Version 0.7.1 of Stardist 8 was used in this study. The backbone network was defined

as a U-Net 27. 512 x 512 input images were normalized with a 1-99 quantile. The data augmen-

tation proposed by the authors was used to increase the training dataset. The whole network was

trained for 400 epochs.
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Cellpose Version 0.6.5 of Cellpose 9 was used in this study. The backbone network was defined as

a U-Net 27. 512 x 512 input images were normalized with a 1-99 quantile. A data augmentation to

increase the training dataset was processed before normalization with the imgaug python library 46

and included flipping, rotation, shearing, blurring, sharpness and brightness modifications, noise

addition, intensity inversion and contrast modifications. The whole network was trained for 400

epochs.

A summary of all the different steps used for each deep learning approach is available in S2 Table.

The time computation for training and processing each individual method is shown in S1 Table

and in S4 Table.

Evaluation As proposed by Caicedo et al. (2019), we used the F1 score with respect to the

Intersection over Union (IoU ) to compare the three deep learning approaches. We evaluated three

different images for both confocal and widefield modalities annotated by a pathologist (a high-

skilled researcher). Let OGT = {OGT (e)}e=1,...,n be the set of n ground truth nuclei, as defined by

the pathologist, and OE = {OE(e)}e=1,...,m be the set of m estimated nuclei with a deep learning

approach. The IoU defined between the truth nucleus OGT (e1) and the estimated nucleus OE(e2)

was defined as:

IoU(OGT (e1), OE(e2)) =
OGT (e1) ∩OE(e2)

OGT (e1) ∪OE(e2)
. (4)

An IoU(OGT (e1), OE(e2)) equal to 0 implies that OGT (e1) and OE(e2) do not share any pixel

while an IoU(OGT (e1), OE(e2)) equal to 1 means that OGT (e1) and OE(e2) are identical. An
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IoU(OGT (e1), OE(e2)) equal to 0.5 ensures that IoU(OGT (e1), OE(e3)) < 0.5, ∀e3 ̸= e2 as a

nucleus cannot share half of its area with more than one nucleus. Consequently, the F1 score for a

given IoU threshold t > 0.5 can be defined as:

F1(t) =
2× TP (t)

2× TP (t) + FN(t) + FP (t)
, (5)

where

TP (t) =
∑

e1∈{1,...,n},e2∈{1,...,m}

1 (IoU(OGT (e1), OE(e2)) > t) , (6)

FN(t) =
∑

e1∈{1,...,n}

1 (IoU(OGT (e1), OE(e2)) < t) ,∀e2 ∈ {1, . . . ,m}, (7)

FP (t) =
∑

e2∈{1,...,m}

1 (IoU(OGT (e1), OE(e2)) < t) ,∀e1 ∈ {1, . . . , n}, (8)

and

1 (C) =


1 if C is true,

0 otherwise.
(9)

With a threshold t = 0.5, this metric gives the accuracy of a method to identify the correct number

of nuclei, while with thresholds in the range 0.5 − 1, it evaluates the localization accuracy of the

identified nuclear contours.

Marker identification

Training dataset As Mask R-CNN and U-Net are not suited for the task, the Inception-V3 method

was used for marker identification. The training dataset consisted of eight confocal images for

E2F3A, five confocal images for E2F8, four confocal images for EdU, three confocal images for

pH3, twenty-one widefield images for E2F3A and fifteen widefield images for E2F8, E2F4, EdU
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and pH3, all annotated by a moderately-skilled researcher. Ninety percent of image patches were

used for training and ten percent for validation. Two training strategies were designed to define

the input image patches: The first only considered image patches centered at each nucleus center,

while the second strategy included images patches centered at each pixel in the segmented nuclei,

drastically increasing the amount of training data.

Inception-V3 Two classes (positive and negative) were defined for the E2Fs, while three classes

(diffuse, punctate and negative) were defined for EdU and pH3. As for nuclei segmentation, the

imaging field was set to 65 x 65 pixel image patches to ensure inclusion of at least one entire

nucleus. The training image patches were normalized by subtracting at each pixel the average in-

tensity in a 65 x 65 neighborhood. Intensities were not divided by the median intensity over the

image as they were for nuclei segmentation because the median can be equal to zero for sparse

markers such as pH3. To obtain a balanced training dataset, the same number of input image

patches was defined for each class. A stochastic gradient descent was used to estimate the param-

eters of the deep convolutional neural network by minimizing a categorical cross entropy for 10

epochs. To increase the size of the nuclei-based training dataset 100-fold, a data augmentation

that included flipping, rotation, shearing, blurring, sharpness and brightness modifications, noise

addition, inversion and contrast modifications was performed after normalization with the imgaug

python library 46. A transfer learning with fine-tuning from the Inception-V3 network trained for

nuclei segmentation on confocal and widefield images was performed on the pixel-based training

dataset. In the first epoch, only the last layer of the network was trained. The whole network was
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then trained for the next five epochs.

Thresholding Marker identification was also evaluated when thresholding marker intensity in the

nuclei with the ImageJ plugin Annotater. For E2Fs, nuclei with more than thirty-five percent of

their area above a manually defined threshold were considered positive. For EdU, nuclei with

more that seventy percent of their area above a manually defined threshold were considered dif-

fuse, while nuclei with more than fifteen percent but less than seventy percent of their area above

the same threshold were considered punctate. For pH3, nuclei with more that ninety percent of

their area above a manually defined threshold were considered diffuse, while nuclei with more

than ten percent but less than ninety percent of their area above the same threshold were consid-

ered punctate.

Evaluation Evaluation was performed using three confocal and three widefield images for E2F3A

and E2F8, using three widefield images for E2F4, and using two confocal and three widefield

images for EdU and pH3. All the images used for evaluation were annotated by a moderately-

skilled researcher. The nuclei locations were known and only their class (positive/negative or

diffuse/punctate/negative) was evaluated. Let CGT = {CGT (e)}e=1,...,n be the ground truth class

for the n nuclei and let CE = {CE(e)}e=1,...,n be the estimated class for each nucleus. Class

estimation accuracy is then defined as:

accuracy =
TP

n
, (10)
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where

TP =
n∑

e=1

1 (CGT (e) = CE(e)) . (11)

ImageJ plugin Annotater

We developed the plugin entitled Annotater to draw nuclear contours manually to define train-

ing datasets and to interactively correct deep learning-based nuclei segmentations. This plugin

also provides for manual characterization of markers associated with nuclei and a thresholding

tool for specifying an intensity threshold and the proportion of pixels in a nucleus above that

threshold that defines a positive nucleus. Finally, Annotater can generate images in which seg-

mented nuclei and marker characterization are overlaid on the input image and can extract nuclear

features as defined in the Set Measurements window in ImageJ. The java code of the plugin is

available at https://github.com/tpecot/Annotater/tree/master/src/main/

java/edu/musc/tsl and the plugin is available at https://github.com/tpecot/An-

notater. Video tutorials showing how to use the plugin are available at https://github.

com/tpecot/Annotater.

E2Fs accumulation over the cell cycle from 2D still images

Data Several levels of intensity for E2Fs were required to estimate fluorescence evolution over

the cell cycle. To minimize the effects of noise while still being able to observe fluorescence

fluctuations, we decided to define four levels of intensity, which is widely used in both diagnostic

pathology and biomedical research 36, 37. First, the negative cells were assigned an intensity equal
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to 0. Then, for each individual image, the average fluorescence intensity for each positive cell

was processed and the range of average intensities from the lowest to the highest was binned into

three to define levels 1 to 3. Defining these levels from the range of average intensity observed

in positive nuclei amounts to normalizing intensity over the images. S7 Fig a-b shows the E2F8

channel for a confocal and a widefield image where the positive E2F8 nuclei are overlaid as orange

circles while negative E2F8 nuclei are overlaid as red circles. The corresponding histograms for the

average E2F8 intensity observed in nuclei are shown in S7 Fig c-d. The colors in these histograms

correspond to the E2F8 levels used to estimate the concentration evolution over the cell cycle. The

intensity minimum and maximum for each level are different for the two images as they depend

on the lowest and highest nuclear average intensities, which are different from one image to the

other. However, for a given image, the level width is the same for levels 1 to 3. Additionally, some

E2F8 negative nuclei show an average nuclear intensity similar to the one observed in nuclei with

an intensity level of 1 (bars that are blue and yellow). This happens for nuclei with non-specific

E2F8 intensity. On the other hand, the state of EdU and pH3 markers for each nucleus was already

known from the marker identification as being diffuse, punctate or negative.

More formally, let us define ICh1
e ∈ {0, 1, 2, 3} the average intensity in Ch1 for nucleus

e ∈ {1, . . . , n} in an image with n nuclei, where Ch1 is a channel corresponding to E2F3A, E2F8

or E2F4. Similarly, ICh2
e ∈ {0, 1, 2, 3} is the average intensity in Ch2 for nucleus e if Ch2 is E2F4

or E2F8 and ICh2
e ∈ {0, diffuse, punctate} is the state of nucleus e if Ch2 is EdU or pH3. The es-

timation of fluorescence accumulation over the cell cycle is performed in 3 steps: i) initialization,

ii) registration with respect to cell cycle, iii) global optimization.
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Initialization Let us define h(ICh1 = u1, I
Ch2 = u2) the number of nuclei for which the inten-

sity in Ch1 is equal to u1 and the intensity or state in Ch2 is equal to u2:

h
(
ICh1 = u1, I

Ch2 = u2

)
=

n∑
e=1

1
(
ICh1
e = u1

)
1
(
ICh2
e = u2

)
. (12)

We can now define H = {H(ICh1 = u1, I
Ch2 = u2)}u1={0,1,2,3},u2={0,1,2,3} or u2={0,diffuse, punctate} the

2D intensity histogram as follows:

H
(
ICh1 = u1, I

Ch2 = u2

)
=

h
(
ICh1 = u1, I

Ch2 = u2

)
n

. (13)

An example of a 2D histogram of E2F3A intensity and pH3 patterns is shown in S8 Fig a. Ac-

cording to our first and second assumptions, i.e. time depends on the proportion of cells in the

images and temporal evolution of protein accumulation is similar in all observed cells, 2D in-

tensity histograms provide the proportion of nuclei for combination of E2Fs intensities or E2Fs

intensity and EdU/pH3 patterns. For example, in the image considered to build the histogram

shown in S8 Fig a, thirty-four percent of nuclei have an intensity of 2 for E2F3A and are negative

for pH3. Combining these proportions allows to define the evolution of the intensity/state of the

channels over the cell cycle. We propose to initialize the evolution of fluorescence over the cell

cycle through a graph optimization procedure. Let us define a graph G(E ,V) with |V| vertices

corresponding to the different non-zero proportions of markers from a 2D histogram and |E| edges

between neighbor vertices in the same histogram. For instance, in S8 Fig a, there are nine ver-

tices {VE2F3A=0,pH3=negative,VE2F3A=1,pH3=negative, . . . ,VE2F3A=0,pH3=diffuse} represented as circles

and twenty-two edges {E(VE2F3A=0,pH3=negative → VE2F3A=1,pH3=negative), . . . , E(VE2F3A=0,pH3=diffuse →
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VE2F3A=0,pH3=punctate)} represented as unidirectional arrows. A cost P(E(Vv1 ,Vv2)) is then as-

signed to each edge. From 14, we know that EdU is diffuse during the first half of S phase and then

punctate during the second half of S phase. It implies that:

P(E(VG=u,EdU=negative,VG=u,EdU=diffuse)) = 0,

P(E(VG=u,EdU=diffuse,VG=u,EdU=punctate)) = 0,

P(E(VG=u,EdU=punctate,VG=u,EdU=negative)) = 0, (14)

while

P(E(VG=u,EdU=diffuse,VG=u,EdU=negative)) = ∞,

P(E(VG=u,EdU=punctate,VG=u,EdU=diffuse)) = ∞,

P(E(VG=u,EdU=negative,VG=u,EdU=punctate)) = ∞, (15)

where G ∈ {E2F3A,E2F8, E2F4} and u ∈ {0, 1, 2, 3}. From 14, we also know that pH3 is first

punctate during the second half of S phase and G2 and then diffuse during mitosis, so

P(E(VG=u,pH3=negative,VG=u,pH3=punctate)) = 0,

P(E(VG=u,pH3=punctate,VG=u,pH3=diffuse)) = 0,

P(E(VG=u,pH3=diffuse,VG=u,pH3=negative)) = 0,

P(E(VG=u,pH3=punctate,VG=u,pH3=negative)) = ∞,

P(E(VG=u,pH3=diffuse,VG=u,pH3=punctate)) = ∞,

P(E(VG=u,pH3=negative,VG=u,pH3=diffuse)) = ∞, (16)

where G ∈ {E2F3A,E2F8, E2F4} and u ∈ {0, 1, 2, 3}. Finally, the evolution of E2Fs intensity

needs to verify our third assumption, i.e. concentrations of E2Fs are concave downward parabolas,
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which explains why edges exist only between neighboring vertices in the 2D histograms:

P(E(VG=u1,M=s,VG=u2,M=s)) =


0 if |u1 − u2| = 1,

∞ otherwise,
(17)

where G ∈ {E2F3A,E2F8, E2F4}, u1 ∈ {0, 1, 2, 3}, u2 ∈ {0, 1, 2, 3}, M ∈ {EdU,pH3} and

s ∈ {negative, punctate,diffuse}. The evolution of the fluorescence is initialized as the sequence

of edges that goes through all vertices with a minimum cost. For instance, the only sequence

of edges with a cost equal to 0 in the 2D histogram shown in S8 Fig a is {VE2F3A=0,pH3=negative,

VE2F3A=1,pH3=negative,VE2F3A=2,pH3=negative, VE2F3A=3,pH3=negative,VE2F3A=3,pH3=punctate,VE2F3A=2,pH3=punctate,

VE2F3A=1,pH3=punctate, VE2F3A=0,pH3=punctate,VE2F3A=0,pH3=diffuse}. This sequence corresponds to

the evolution of E2F3A and pH3 shown in S8 Fig b.

We know that E2F4 shows two waves of expression over the cell cycle 14, but a sequence

of edges over a 2D histogram cannot reflect two downward parabolas. Consequently, splitting

vertex(ices) is necessary. A cost of 1 is associated to each vertex splitting and added to the total

cost. The split vertices give rise to multiple vertices containing equal proportion. For combina-

tions of E2Fs with EdU as well as combinations of two different E2Fs, vertex splitting can also

be required and may lead to E2Fs evolutions that do not look exactly like downward parabolas.

This phenomenon arises from slight errors in nuclear intensity measurements, most likely due to

image noise. A 2D histogram for the combination of E2F3A and E2F4 is shown in S9 Fig a, the

sequence of edges over this histogram for which vertices were split is shown in S9 Fig b and the

corresponding evolution of E2F3A and E2F4 is shown in S9 Fig c.
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By applying this cost minimization to all images, initializations for the eight different com-

binations of markers and averaged for each mouse are obtained. These initializations are shown in

S10 Fig. From these initializations, eight couples of marker sequences are defined:

{
Xinit EdU−E2F3A

i (c), Xinit E2F3A−EdU
i (c)

}
c=1,...,B

,
{

Xinit pH3−E2F3A
i (c), Xinit E2F3A−pH3

i (c)
}

c=1,...,B
,{

Xinit EdU−E2F8
i (c), Xinit E2F8−EdU

i (c)
}
c=1,...,B

,
{

Xinit pH3−E2F8
i (c), Xinit E2F8−pH3

i (c)
}

c=1,...,B
,{

Xinit EdU−E2F4
i (c), Xinit E2F4−EdU

i (c)
}
c=1,...,B

,
{

Xinit pH3−E2F4
i (c), Xinit E2F4−pH3

i (c)
}

c=1,...,B
, (18){

Xinit E2F3A−E2F8
i (c), Xinit E2F8−E2F3A

i (c)
}
c=1,...,B

,
{

Xinit E2F3A−E2F4
i (c), Xinit E2F4−E2F3A

i (c)
}
c=1,...,B

,

where Xinit M1−M2
i (c) provides the level of fluorescence or pattern for marker M1 ∈ {E2F3A,E2F8,

E2F4, EdU, pH3} when combined with marker M2 ∈ {E2F3A,E2F8,

E2F4, EdU, pH3} for mouse i at time c, M1 ̸= M2, and B is the number of time bins used to

quantize the cell cycle: 100 bins in practice. The goal is to estimate the sequence for each of these

couples of combinations.

Registration As EdU and pH3 expression patterns with respect to the cell cycle are known, E2Fs

are first registered with respect to these two markers. We know that pH3 is diffuse during mitosis.

Consequently, this pattern is considered as the reference and each initialization of any combination

with pH3 ends with a diffuse pH3 pattern corresponding to the end of the cell cycle. This implies

that the pH3 sequences are known and defined as XG−pH3
i for each mouse i. A circular permutation
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is operated next to estimate the XEdU−G
i where G ∈ {E2F3A,E2F8, E2F4} as follows:

min
{ X0− EdU−G

i , X0− G−EdU
i }

NG∑
j=1

∥∥∥ X0− G−EdU
i −XG−pH3

j

∥∥∥2

2
, (19)

subject to X0− G−EdU
i (c) = Xinit G−EdU

i (c− q), q ∈ {1, . . . , B},

∀i ∈ {1, . . . , NG},∀G ∈ {E2F3A,E2F8, E2F4},

where NG = 3 for E2F3A and E2F8, NG = 2 for E2F4, and X0− G−EdU
i (c−q) = Xinit G−EdU

i (B−

(c−q)) if (c−q) is negative. We solve this optimization problem by computing
∑NG

j=1 ∥ X0− G−EdU
i −

XG−pH3
j ∥22 for all possible shifts c = {1, . . . , B}. The solution corresponds to the shift c that gives

the minimum sum. To better estimate EdU and initialize E2Fs, we now use the E2Fs expression:

min
{ X0 EdU−G1

i , X0 G1−EdU
i }

NG1∑
j=1

∥∥∥ X0 G1−EdU
i −XG1−pH3

j

∥∥∥2

2
+

NG2∑
j=1

∥∥ X0 EdU−G1
i − X0 EdU−G2

j

∥∥2

2
+

NG3∑
j=1

∥∥ X0 EdU−G1
i − X0 EdU−G3

j

∥∥2

2
,

subject to X0 EdU−G1
i (c) = X0− EdU−G1

i (c− q), q ∈ {1, . . . , B},∀i ∈ {1, . . . , NG1}

where {G1, G2, G3} are successively {E2F3A,E2F8, E2F4}, {E2F8, E2F3A,E2F4} and

{E2F4, E2F8, E2F3A}, NGi = 3 if Gi is E2F3A or E2F8 and NGi = 2 if Gi is E2F4.

Again, we solve this optimization problem by computing the distances (20) for all possible shifts

c = {1, . . . , B} and obtain the solution with the minimum value. Now, the temporal evolu-

tions of EdU XEdU−G
i and pH3 XpH3−G

i are known for each mouse i and each genotype G ∈

{E2F3A,E2F8, E2F4}. This implies that EdU and pH3 evolutions will not change but can be

permuted for a given state of EdU or pH3. The E2Fs concentrations and patterns for EdU and pH3
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after registration are shown in S11 Fig.

Assignment problem Now that EdU and pH3 are known, we define the estimation of E2Fs as an

assignment problem where the goal is to find the permutations for each XG−M
i , G ∈ {E2F3A,E2F8, E2F4}

and M ∈ {EdU, pH3} such that E2Fs accumulation over time are the most similar across data

while EdU and pH3 are already known. We model this estimation as an assignment problem and

define the following square cost matrices:

Cost
(

X
(z) G1−M1

i (c1, c2)
)
=

NG1∑
j=1

∥∥∥ X
(z−1) G1−M1

i (c1)− X
(z) G1−M2

j (c2)
∥∥∥2

2
+

NG2∑
j=1

∥∥∥ X
(z−1) G1−M1

i (c1)− X
(z) G1−G2

j (c2)
∥∥∥2

2
+

NG3∑
j=1

∥∥∥ X
(z−1) G1−M1

i (c1)− X
(z) G1−G3

j (c2)
∥∥∥2

2
+∥∥∥ X

(z) M1−G1
i (c1)−XM1−G1

i (c2)
∥∥∥
∞
+√

(c1 − c2)2

z
,∀i ∈ {1, . . . , NG1}, (20)

where the ℓ∞ norm is used to ensure that EdU and pH3 states stay the same over the cell cycle,

{G1, G2, G3} are successively {E2F3A,E2F8, E2F4}, {E2F8, E2F3A,E2F4}

and {E2F4, E2F8, E2F3A}, NGi = 3 if Gi is E2F3A or E2F8 and NGi = 2 if Gi is E2F4,

{M1,M2} are successively {EdU, pH3} and {pH3, EdU}, z corresponds to the iteration of the
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algorithm and:

Cost
(

X
(z) E2F3A−G1

i (c1, c2)
)
=

3∑
j=1

{∥∥∥ X
(z−1) E2F3A−G1

i (c1)− X
(z−1) E2F3A−EdU

j (c2)
∥∥∥2

2
+

∥∥∥ X
(z−1) E2F3A−G1

i (c1)− X
(z−1) E2F3A−pH3

j (c2)
∥∥∥2

2

}
+

NG1∑
j=1

{∥∥∥ X
(z−1) G1−E2F3A

i (c1)− X
(z−1) G1−EdU

j (c2)
∥∥∥2

2
+

∥∥∥ X
(z−1) G1−E2F3A

i (c1)− X
(z−1) G1−pH3

j (c2)
∥∥∥2

2

}
+

NG2∑
j=1

∥∥∥ X
(z−1) E2F3A−G1

i (c1)− X
(z−1) E2F3A−G2

j (c2)
∥∥∥2

2
+√

(c1 − c2)2

z
, ∀i ∈ {1, . . . , NG1}, (21)

where {G1, G2} are successively {E2F8, E2F4} and {E2F4, E2F8}, NGi = 3 if Gi is E2F8

and NGi = 2 if Gi is E2F4. Each one of these five minimizations is processed one after an-

other for iterations z = {1, . . . , B} by using the Hungarian algorithm 24, 25. In equation (20),

the three first lines reflect the goal to have a given E2F accumulation over the cell cycle as sim-

ilar as possible when combined with EdU, pH3 or another E2F; the fourth line corresponds to

the constraint that EdU and pH3 are known and their state over the cell cycle cannot change,

even though there can be permutations for a given state; and the last line defines a local con-

straint that forces permutations to be restricted in time for the first iterations and allows them

to grow when iterations get larger. The latter constraint is used because the data is well initial-

ized so the final estimation should not permute points directly all over the cell cycle. Equation

(21) takes into account the differences between E2F3A accumulation over the cell cycle when

combined with any marker or any other E2F, with the same constraint as in equation (20). Fi-

nally, a spline fitting is applied to each of the E2Fs across all experiments to get a final ac-
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cumulation over the cell cycle, which is shown in Fig. 3. The code with the parameters used

to estimate E2Fs accumulation over the cell cycle after initialization is available at https:

//github.com/tpecot/EstimationOfProteinConcentrationOverTime.

Simulated data We generated simulations to evaluate the accuracy of the temporal estimation

of protein concentration. For each simulation, the following concentrations are generated:

y
E2F3Aj

i ∈ {0, . . . , nbI}, i ∈ {0, . . . , nbT}, j ∈ {0, . . . , nbS},

y
E2F8j
i ∈ {0, . . . , nbI}, i ∈ {0, . . . , nbT}, j ∈ {0, . . . , nbS},

y
E2F4j
i ∈ {0, . . . , nbI}, i ∈ {0, . . . , nbT}, j ∈ {0, . . . , nbS2},

y
EdUj

i ∈ {0, diffuse, punctate}, i ∈ {0, . . . , nbT}, j ∈ {0, . . . , nbS},

y
pH3j
i ∈ {0, punctate, diffuse}, i ∈ {0, . . . , nbT}, j ∈ {0, . . . , nbS}, (22)

where nbI is the number of bins for intensity, nbT is the number of bins for time and nbS is the

number of samples for E2F3A, E2F8, EdU and pH3 while nbS2 is the number of samples for E2F4,

corresponding to mice in our study. YE2F3A and YE2F8 are simulated as concentrations starting at

intensity 0 to nbI, and then back to 0 with a duration for each intensity bin randomly generated

between 1 and 2
3∗nbI

∗ nbT to ensure that the concentration is shorter that the simulation. The start-

ing point for these concentrations is also randomly generated. YE2F4 is simulated as two waves of

concentrations starting at intensity 0 to nbI, and then back to 0 with a duration for each intensity

bin randomly generated between 1 and 1
3∗nbI

∗nbT to ensure that both waves can fit in the simulation

duration. The starting point for both waves are randomly generated, with the constraint that the

second wave starts after the first one ends. YEdU and YpH3 are simulated as successive diffuse and
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punctate patterns for EdU and successive punctate and diffuse patterns for pH3, with a duration for

each pattern randomly generated between 1 and 2
3∗nbI

∗ nbT. The starting point for these markers is

also randomly generated, with the constraint that pH3 starts after EdU. To evaluate the robustness

of our approach, noise was randomly added to affect a range from 0% to 50% of corrupted time

bins. In addition, five different simulations were randomly generated for each set of parameters.

The performance was evaluated by measuring the mean squared error (MSE) between the gener-

ated and estimated concentrations of E2Fs, EdU and pH3.

Three different scenarios were designed to evaluate the performance of our approach. In a

first set of experiments, the number of samples was evaluated and defined as {n1 = 1;n2 = 1},

{n1 = 2;n2 = 2}, {n1 = 3;n2 = 2}, {n1 = 3;n2 = 3} and {n1 = 5;n2 = 5}, with nbI = 4

and nbT = 100. The results are shown in S12 Fig. Then, the influence of the number of time bins

was estimated by considering nbT = {20, 50, 75, 100, 125, 150, 200} with {n1 = 3;n2 = 2} and

nbI = 4. The results are shown in S13 Fig. Finally, the impact of the number of intensity bins was

evaluated by defining nbI = {2, 3, 4, 5, 10, 20} with {n1 = 3;n2 = 2} and nbT = 100. The results

are shown in S14 Fig.

DATA AVAILABILITY

All the images used in this study are available at https://data.mendeley.com/datasets/

5r6kf37zd4/1. The training datasets for nuclei segmentation are available at https://
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github.com/tpecot/NucleiSegmentationAndMarkerIDentification/tree/master/

U-Net/datasets/nucleiSegmentation_E2Fs for the U-Net architecture and at https:

//github.com/tpecot/NucleiSegmentationAndMarkerIDentification/tree/

master/Ma-skRCNN/datasets/nucleiSegmentation_E2Fs for the Mask R-CNN ar-

chitecture. The training datasets for nuclei segmentation and marker identification are available at

https://github.com/tpecot/NucleiSegmentationAndMarkerIDentification/

tree/master/InceptionV3/trainingData for the Inception-V3 architecture. The im-

ages used for the evaluation and the ground truth are available at the same locations than the train-

ing datasets. The intensity 2D histograms used to estimate the E2Fs accumulation over the cell cy-

cle are available at https://github.com/tpecot/EstimationOfProteinConcen-

trationOverTime/tree/master/data.

SOFTWARE AVAILABILITY

The codes used to train and process deep learning approaches for nuclei segmentations and marker

identification are available at https://github.com/tpecot/NucleiSegmentation-

AndMarkerIDentification.

Archived code as time of publication: https://doi.org/10.5281/zenodo.4619243 48

License: GPL3

The Octave code used to estimate the E2Fs accumulation over the cell cycle is available at https:

//github.com/tpecot/EstimationOfProteinConcentrationOverTime.
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Archived code as time of publication: https://doi.org/10.5281/zenodo.4639800 49

License: GPL3

The Java code of the Annotater plugin and the plugin are available at https://github.com/

tpecot/Annotater. Video tutorials to show how to use the Annotater are available at the same

location.

Archived code as time of publication: https://doi.org/10.5281/zenodo.4639802 50

License: GPL3
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33. Eulenberg P, Köhler N, Blasi T, Filby A, Carpenter AE, Rees P, et al. Reconstructing cell cycle

and disease progression using deep learning. Nature communications. 2017;8(1):1–6.

34. Toki MI, Cecchi F, Hembrough T, Syrigos KN, Rimm DL. Proof of the quantitative potential

of immunofluorescence by mass spectrometry. Laboratory Investigation. 2017;97(3):329–334.

35. Lopes N, Bergsland CH, Bjørnslett M, Pellinen T, Svindland A, Nesbakken A, et al. Dig-

ital image analysis of multiplex fluorescence IHC in colorectal cancer recognizes the prog-

nostic value of CDX2 and its negative correlation with SOX2. Laboratory Investigation.

2020;100(1):120–134.

36. Lindeman GJ, Gaubatz S, Livingston DM, Ginsberg D. The subcellular localization of E2F-4

is cell-cycle dependent. Proceedings of the National Academy of Sciences. 1997;94(10):5095–

5100.

37. Maiti B, Li J, De Bruin A, Gordon F, Timmers C, Opavsky R, et al. Cloning and characteri-

zation of mouse E2F8, a novel mammalian E2F family member capable of blocking cellular

proliferation. Journal of Biological Chemistry. 2005;280(18):18211–18220.

38. Campton DE, Ramirez AB, Nordberg JJ, Drovetto N, Clein AC, Varshavskaya P, et al. High-

recovery visual identification and single-cell retrieval of circulating tumor cells for genomic

analysis using a dual-technology platform integrated with automated immunofluorescence

staining. BMC cancer. 2015;15(1):360.

46

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 21, 2022. ; https://doi.org/10.1101/2021.03.01.433386doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.01.433386
http://creativecommons.org/licenses/by-nc-nd/4.0/


39. Pitarresi JR, Liu X, Sharma SM, Cuitiño MC, Kladney RD, Mace TA, et al. Stromal ETS2 reg-

ulates chemokine production and immune cell recruitment during acinar-to-ductal metaplasia.

Neoplasia. 2016;18(9):541–552.

40. Van der Walt S, Colbert SC, Varoquaux G. The NumPy array: a structure for efficient numer-

ical computation. Computing in Science & Engineering. 2011;13(2):22–30.

41. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, et al.. TensorFlow: Large-

Scale Machine Learning on Heterogeneous Systems; 2015. Available from: https://www.

tensorflow.org/.

42. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, et al. PyTorch: An Imperative

Style, High-Performance Deep Learning Library. Advances in Neural Information Processing

Systems 32. 2019; p. 8024–8035.

43. Chollet F. Keras; 2015. Available from: https://github.com/fchollet/keras.

44. Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, et al.

SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods.

2020;doi:https://doi.org/10.1038/s41592-019-0686-2.

45. Van der Walt S, Schönberger JL, Nunez-Iglesias J, Boulogne F, Warner JD, Yager N, et al.

scikit-image: image processing in Python. PeerJ. 2014;2:e453.

46. Jung AB, Wada K, Crall J, Tanaka S, Graving J, Reinders C, et al.. imgaug; 2020. Available

from: https://github.com/aleju/imgaug.

47

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 21, 2022. ; https://doi.org/10.1101/2021.03.01.433386doi: bioRxiv preprint 

https://www.tensorflow.org/
https://www.tensorflow.org/
https://github.com/fchollet/keras
https://github.com/aleju/imgaug
https://doi.org/10.1101/2021.03.01.433386
http://creativecommons.org/licenses/by-nc-nd/4.0/


47. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings

of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778.
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FIGURE LEGENDS

Figure 1: Comparison of U-Net, Inception-V3 and Mask R-CNN for nuclear segmentation.

a-b F1 score for range of IoU thresholds obtained with the U-Net, Inception-V3 and Mask R-

CNN approaches for confocal a and widefield b images. Lines correspond to average F1 score

over the three tested images while the shaded areas represent the standard error. c-d Segmented

nuclei obtained with the U-Net (blue), Inception-V3 (green) and Mask R-CNN (cyan) as well as

the ground truth (red) for confocal c and widefield d images. White inset rectangles in top images

are shown at higher magnification below for the ground truth and each approach. In high-mag

images, correctly identified nuclei are outlined in red, incorrectly in green. Scale bar = 20µm.
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Figure 2: Comparison between Inception-V3 and manual thresholding for marker identifi-

cation. a-b Top rows (images): examples of E2F3A-, E2F8- and E2F4-positive and -negative

nuclei, as well as EdU- and pH3-negative, diffuse and punctate nuclei in a confocal and b wide-

field images. Bottom rows (bar graphs): Accuracy obtained with the Inception-V3 and manual

thresholding approaches for marker identification of E2F3A, E2F8, E2F4, EdU and pH3 in a con-

focal and b widefield images. Bars denote average accuracy; error bars represent the standard

error.

Figure 3: Estimation of E2Fs evolution over the cell cycle. Temporal evolution of E2F3A, E2F8

and E2F4 protein accumulation, as well as EdU and pH3 patterns over the cell cycle in mouse

intestinal epithelium.

Figure 4: Evaluation of the estimation of protein concentration over the cell cycle on simu-

lated data. Mean squared error between the estimated and simulated concentrations of E2F3A a,

E2F8 b, E2F4 c, EdU d and pH3 e when corrupting up to 50% of the simulated data with noise

and considering 3 samples for E2F3A, E2F8, EdU and pH3, 2 samples for E2F4, 100 bins for time

and 4 bins for intensity.
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Figure 5: Estimation of E2Fs accumulation over the cell cycle without marker identification

with respect to nuclei segmentation. Temporal evolution of E2F3A, E2F8 and E2F4 protein

accumulation over the cell cycle in mouse intestinal epithelium, by only using intensity when

considering nuclei segmentation obtained with different training datasets.
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SUPPORTING INFORMATION

S1 Fig. Example images. One example for each combination of markers and modality for flu-

orescence images used in the study. The combination of markers, number of images of each type,

modality, and number of mice used in the study are shown on top of the images. Note the small

size of the training set. Scale bar = 20µm.

S2 Fig. Evaluation of U-Net for nuclei segmentation. F1 score for multiple IoU thresholds ob-

tained with the U-Net approach by trainig on confocal, half or all widefield images, and on confocal

and widefield images without data augmenation or post-processing a-b, with data augmentation c-

d, with data augmenation and corrected watershed postprocessing e-f. The lines correspond to the

average F1 score while the areas represent the standard error.

S3 Fig. Evaluation of Inception-V3 for nuclear segmentation. F1 score for multiple IoU

thresholds obtained with the Inception-V3 approach by trainig on confocal, half or all widefield

images, and on confocal and widefield images without data augmenation or post-processing a-b,

with data augmentation c-d, with data augmenation and corrected watershed postprocessing e-f.

The lines correspond to the average F1 score while the areas represent the standard error.

S4 Fig. Evaluation of Mask R-CNN for nuclear segmentation. F1 score for multiple IoU

thresholds obtained with the Mask R-CNN approach by trainig on confocal, half or all widefield
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images, and on confocal and widefield images without data augmenation but with transfer learning

a-b, without transfer learning but with data augmentation c-d, with data augmenation and transfer

learning e-f. The lines correspond to the average F1 score while the areas represent the standard

error.

S5 Fig. Evaluation of Stardist for nuclear segmentation. F1 score for multiple IoU thresholds

obtained with the Stardist approach by trainig on confocal, half or all widefield images, and on

confocal and widefield images without data augmenation a-b and with data augmentation c-d. The

lines correspond to the average F1 score while the areas represent the standard error.

S6 Fig. Evaluation of Cellpose for nuclear segmentation. F1 score for multiple IoU thresholds

obtained with the Cellpose approach by trainig on confocal, half or all widefield images, and on

confocal and widefield images without data augmenation a-b and with data augmentation c-d. The

lines correspond to the average F1 score while the areas represent the standard error.

S7 Fig. Examples of intensity binning for E2F8. a-b E2F8 channel of a confocal a and a

widefield b image. E2F8 positive nuclei are overlaid as orange circles while E2F8 negative nuclei

are overlaid as red circles. Scale bar = 20µm. c-d Histograms of the E2F8 intensity observed in the

nuclei shown in images a (c) and b (d). The 3 levels of intensity used for concentration estimation

are displayed with different colors.

52

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 21, 2022. ; https://doi.org/10.1101/2021.03.01.433386doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.01.433386
http://creativecommons.org/licenses/by-nc-nd/4.0/


S8 Fig. Initialization of E2F3A and pH3 over time. a 2D histogram of E2F3A intensity and

pH3 patterns. b Initialization of E2F3A and pH3 over time from the 2D histogram shown in a.

S9 Fig. Initialization of E2F3A and E2F4 over time. a 2D histogram of E2F3A and E2F4

intensity. b Modified 2D histogram of E2F3A and E2F4 intensity with vertex splitting and set of

edges giving the minimum cost. c Initialization of E2F3A and E2F4 over time from the set of

edges shown in b.

S10 Fig. Initialization of E2Fs with respect to EdU and pH3. a-b Initialization of E2F3A with

respect to a EdU (n=3) and b pH3 (n=3). c-d Initialization of E2F8 concentration with respect to c

EdU (n=3) and d pH3 (n=3). e-f Initialization of E2F4 concentration with respect to e EdU (n=2)

and f pH3 (n=2). g-h Initialization of E2F3A concentration with respect to g E2F8 (n=3) and h

E2F4 (n=2). For all curves, the E2Fs intensity for the different mice are represented as curves

with different line styles while EdU and pH3 are shown above the E2Fs curves, with solid lines

corresponding to diffuse states and dashed lines corresponding to punctate states.

S11 Fig. Initialization of E2Fs evolution over the cell cycle. a Temporal evolution of E2F3A

over the cell cycle after registration between EdU and pH3 (n=6). b Temporal evolution of E2F8

over the cell cycle after registration between EdU and pH3 (n=6). c Temporal evolution of E2F4

over the cell cycle after registration between EdU and pH3 (n=4). For all curves, the E2Fs intensity

for the different mice are represented as curves with different line styles while EdU and pH3 are
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shown above the E2Fs curves, with solid lines corresponding to diffuse states and dashed lines

corresponding to punctate states.

S12 Fig. Evaluation of the influence of the number of samples over the estimation of protein

concentration over the cell cycle on simulated data. Mean squared error between the estimated

and simulated concentrations of E2F3A a, E2F8 b, E2F4 c, EdU d and pH3 e by considering

different numbers of samples when corrupting up to 50% of the simulated data with noise. n1

corresponds to the number of samples for E2F3A, E2F8, EdU and pH3 while n2 is the number of

samples for E2F4.

S13 Fig. Evaluation of the influence of the number of time bins over the estimation of pro-

tein concentration over the cell cycle on simulated data. Mean squared error between the esti-

mated and simulated concentrations of E2F3A a, E2F8 b, E2F4 c, EdU d and pH3 e by considering

different numbers of time bins when corrupting up to 50% of the simulated data with noise.

S14 Fig. Evaluation of the influence of the number of intensity bins over the estimation

of protein concentration over the cell cycle on simulated data. Mean squared error between

the estimated and simulated concentrations of E2F3A a, E2F8 b, E2F4 c, EdU d and pH3 e by

considering different numbers of intensity bins when corrupting up to 50% of the simulated data

with noise.
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S1 Table Time computation for training nuclei segmentation models. Computation time

needed to train the five different deep learning approaches on the four training datasets with a

GeForce RTX 2080 with Max-Q design. CF stands for confocal images, WF half stands for half

the widefield images, WF stand for widefield images and CFWF stands for confocal and widefield

images.

S2 Table Training strategies for nuclei segmentation. Number of images and nuclei in the

four different training and validation datasets.

S3 Table Training data summary. Number of images and nuclei in the four different training

and validation datasets. CF stands for confocal images, WF half stands for half the widefield

images, WF stand for widefield images and CFWF stands for confocal and widefield images.

S4 Table Time computation for processing nuclei segmentation. Computation time needed

to process the five different deep learning approaches on the four training datasets with a GeForce

RTX 2080 with Max-Q design.

S5 Table Evaluation of deep learning approaches for nuclei segmentation in confocal im-

ages. F1 score obtained for IoU=0.5 and IoU=0.75 when segmenting nuclei in confocal images

with U-Net, Inception-V3, Mask R-CNN, Stardist and Cellpose. DA stands for data augmentation,

PP stands for post-processing, TL stands for transfer learning and IoU stands for intersection over

55

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 21, 2022. ; https://doi.org/10.1101/2021.03.01.433386doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.01.433386
http://creativecommons.org/licenses/by-nc-nd/4.0/


union.

S6 Table Evaluation of deep learning approaches for nuclei segmentation in widefield im-

ages. F1 score obtained for IoU=0.5 and IoU=0.75 when segmenting nuclei in widefield images

with U-Net, Inception-V3, Mask R-CNN, Stardist and Cellpose. DA stands for data augmentation,

PP stands for post-processing, TL stands for transfer learning and IoU stands for intersection over

union.

S7 Table Performance of Inception-V3 for marker identification with confocal images. Inception-

V3 accuracy and standard error with and without transfer learning for marker identification of

E2F3A, E2F8, EdU and pH3 in confocal images. DA stands for data augmentation.

S8 Table Performance of Inception-V3 for marker identification with widefield images.

Inception-V3 accuracy and standard error with and without transfer learning for marker identifica-

tion of E2F3A, E2F8, E2F4, EdU and pH3 in widefield images. DA stands for data augmentation.

S9 Table Time computation for training and processing marker identification. Computation

time needed to train and process Inception-V3 for marker identification with a GeForce RTX 2080

with Max-Q design. DA stands for data augmentation.
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Figure 1. Comparison of U-Net, Inception-V3 and Mask R-CNN for nuclei segmentation.
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a
Confocal images

E2F3A E2F8 EdU pH3
- + - + - Diffuse Punctate - Punctate Diffuse

b
E2F3A E2F8 EdU pH3

Inception-V3 0.93 ± 0.01 0.95 ± 0.02 0.92 ± 0.02 0.92 ± 0.01
Manual thresholding 0.87 ± 0.01 0.86 ± 0.04 0.67 ± 0.07 0.90 ± 0.01

c

Widefield images
E2F3A E2F8 E2F4 EdU pH3
- + - + - + - Diffuse Punctate - Punctate Diffuse

d
E2F3A E2F8 E2F4 EdU pH3

Inception-V3 0.92 ± 0.01 0.93 ± 0.03 0.89 ± 0.01 0.93 ± 0.01 0.90 ± 0.03
Manual thresholding 0.82 ± 0.01 0.84 ± 0.01 0.74 ± 0.05 0.31 ± 0.10 0.74 ± 0.03

Figure 2. Comparison between Inception-V3 and manual thresholding for marker identification.
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Figure 3. Estimation of E2Fs evolution over the cell cycle.
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Figure 4. Evaluation of the estimation of protein concentration over the cell cycle on simulated data.
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Figure 5. Estimation of E2Fs evolution over the cell cycle without marker identification with respect to
nuclei segmentation.
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Figure S1. Example images.
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Figure S2. Evaluation of U-Net for nuclei segmentation.
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Figure S3. Evaluation of Inception-V3 for nuclei segmentation.
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Figure S4. Evaluation of Mask R-CNN for nuclei segmentation.
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Figure S5. Evaluation of Stardist for nuclei segmentation.
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Figure S6. Evaluation of Cellpose for nuclei segmentation.
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Figure S7. Examples of intensity binning for E2F8.
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Figure S8. Initialization of E2F3A and pH3 over time.
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Figure S9. Initialization of E2F3A and E2F4 over time.
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Figure S10. Initialization of E2Fs with respect to EdU and pH3.
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Figure S11. Initialization of E2Fs concentration over the cell cycle.
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Figure S12. Evaluation of the influence of the number of samples over the estimation of protein
concentration over the cell cycle on simulated data.
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Figure S13. Evaluation of the influence of the number of time bins over the estimation of protein
concentration over the cell cycle on simulated data.
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Figure S14. Evaluation of the influence of the number of intensity bins over the estimation of protein
concentration over the cell cycle on simulated data.
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CF WF half WF CF + WF CF WF half WF CF + WF

without DA without DA without DA without DA with DA with DA with DA with DA

U-Net 1 min 2 min 7 min 9 min 25 min 1 h 1 h 50 min 2 h 20 min

Inception-V3 9 h 15 h 27 h 40 h 9 h 15 h 27 h 40 h

Mask R-CNN 1 h 40 min 2 h 30 min 4 h 30 min 7 h 1 h 40 min 2 h 10 min 4 h 6 h

Cellpose 5 min 30 s 10 min 21 min 26 min 5 min 40 s 10 min 22 min 26 min

Stardist 8 min 20 s 16 min 40 s 31 min 38 min 7 min 22 min 31 min 40 min

Table S1. Time computation for training nuclei segmentation models.

Pre-processing Normalization Optimization Data Transfer Post-processing

method augmentation learning

U-Net Contour dilation for Percentile Root mean Yes No Corrected

touching nuclei normalization square prop watershed

Inception-V3 Contour dilation for Local average Stochastic Yes No Corrected

touching nuclei intensity normalization gradient descent watershed

Mask R-CNN None Percentile Stochastic Yes Coco None

normalization gradient descent dataset

Cellpose None Percentile Stochastic No No None

normalization gradient descent

Stardist None Percentile Stochastic No No None

normalization gradient descent

Table S2. Training strategies for nuclei segmentation.

CF WF half WF CF + WF

Training Validation Training Validation Training Validation Training Validation

#images 9 3 19 3 37 8 46 11

#nuclei 4847 1619 5652 989 10694 2432 15541 4051

Table S3. Training data summary.

512x512 image 800x800 image

Inception-V3 5 min 13 min 30 s

U-Net 1 s 2 s

Mask R-CNN 10 s 12 s

Cellpose 3 s 4 s

Stardist 4 s 5 s

Table S4. Time computation for processing nuclei segmentation.
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F1 score obtained when segmenting nuclei in confocal images

Trained on Trained on Trained on Trained on

confocal images half the widefield images all widefield images confocal and widefield images

U-Net IoU=0.5 0.675 0.334 0.185 0.588

without DA or PP IoU=0.75 0.419 0.0587 0.086 0.248

U-Net IoU=0.5 0.715 0.518 0.466 0.712

with DA IoU=0.75 0.405 0.063 0.086 0.340

U-Net IoU=0.5 0.791 0.376 0.443 0.720

with DA and PP IoU=0.75 0.479 0.063 0.092 0.307

Inception-V3 IoU=0.5 0.586 0.058 0 0

without DA or PP IoU=0.75 0.055 0.002 0 0

Inception-V3 IoU=0.5 0.654 0.042 0.033 0.763

with DA IoU=0.75 0.025 0 0 0.472

Inception-V3 IoU=0.5 0.691 0.004 0.011 0.799

with DA and PP IoU=0.75 0.110 0 0 0.485

Mask R-CNN IoU=0.5 0.088 0.279 0.468 0.790

without TL but with DA IoU=0.75 0.008 0.0450 0.102 0.365

Mask R-CNN IoU=0.5 0.533 0.724 0.783 0.847

without DA but with TL IoU=0.75 0.145 0.344 0.355 0.447

Mask R-CNN IoU=0.5 0.793 0.738 0.842 0.858

with DA and TL IoU=0.75 0.434 0.365 0.431 0.458

Stardist IoU=0.5 0.793 0.648 0.747 0.864

without DA IoU=0.75 0.184 0.228 0.257 0.434

Stardist IoU=0.5 0.785 0.582 0.680 0.805

with DA IoU=0.75 0.144 0.030 0.134 0.186

Cellpose IoU=0.5 0.580 0.259 0.635 0.806

without DA IoU=0.75 0.071 0.056 0.304 0.279

Cellpose IoU=0.5 0.705 0.370 0.714 0.795

with DA IoU=0.75 0.281 0.114 0.343 0.363

Table S5. Evaluation of deep learning approaches for nuclei segmentation in confocal images.
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F1 score obtained when segmenting nuclei in widefield images

Trained on Trained on Trained on Trained on

confocal images half the widefield images all widefield images confocal and widefield images

U-Net IoU=0.5 0.104 0.377 0.513 0.450

without DA or PP IoU=0.75 0.0174 0.099 0.164 0.137

U-Net IoU=0.5 0.093 0.526 0.623 0.592

with DA IoU=0.75 0.023 0.158 0.255 0.204

U-Net IoU=0.5 0.116 0.551 0.689 0.497

with DA and PP IoU=0.75 0.014 0.203 0.377 0.215

Inception-V3 IoU=0.5 0.292 0.136 0.420 0.615

without DA or PP IoU=0.75 0.035 0.0204 0.113 0.148

Inception-V3 IoU=0.5 0.079 0.542 0.566 0.696

with DA IoU=0.75 0 0.091 0.294 0.397

Inception-V3 IoU=0.5 0.026 0.569 0.608 0.720

with DA and PP IoU=0.75 0 0.228 0.229 0.361

Mask R-CNN IoU=0.5 0.0121 0.181 0.135 0.604

without TL but with DA IoU=0.75 0 0.029 0.007 0.248

Mask R-CNN IoU=0.5 0.121 0.441 0.479 0.794

without DA but with TL IoU=0.75 0.015 0.180 0.220 0.439

Mask R-CNN IoU=0.5 0.334 0.654 0.790 0.801

with DA and TL IoU=0.75 0.166 0.352 0.442 0.460

Stardist IoU=0.5 0.310 0.773 0.785 0.791

without DA IoU=0.75 0.036 0.292 0.332 0.389

Stardist IoU=0.5 0.043 0.721 0.762 0.741

with DA IoU=0.75 0.002 0.213 0.275 0.282

Cellpose IoU=0.5 0.287 0.783 0.772 0.788

without DA IoU=0.75 0.065 0.407 0.428 0.431

Cellpose IoU=0.5 0.210 0.683 0.775 0.754

with DA IoU=0.75 0.0309 0.371 0.411 0.405

Table S6. Evaluation of deep learning approaches for nuclei segmentation in widefield images.

E2F3A E2F8 EdU pH3

Inception-V3 0.94 ± 0.01 0.95 ± 0.03 0.88 ± 0.01 0.82 ± 0.06

nuclei-based

Inception-V3 0.94 ± 0.01 0.94 ± 0.01 0.90 ± 0.02 0.91 ± 0.01

nuclei-based + DA

Inception-V3 0.90 ± 0.02 0.94 ± 0.01 0.91 ± 0.01 0.91 ± 0.01

pixel-based

Inception-V3 0.93 ± 0.01 0.95 ± 0.02 0.92 ± 0.02 0.92 ± 0.01

pixel-based + DA

Table S7. Performance of Inception-V3 for marker identification with confocal images.
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E2F3A E2F8 E2F4 EdU pH3

Inception-V3 0.85 ± 0.03 0.90 ± 0.04 0.77 ± 0.03 0.90 ± 0.01 0.77 ± 0.04

nuclei-based

Inception-V3 0.83 ± 0.03 0.93 ± 0.01 0.77 ± 0.03 0.92 ± 0.01 0.72 ± 0.14

nuclei-based + DA

Inception-V3 0.90 ± 0.02 0.92 ± 0.02 0.86 ± 0.02 0.92 ± 0.01 0.87 ± 0.03

pixel-based

Inception-V3 0.92 ± 0.01 0.93 ± 0.03 0.89 ± 0.01 0.93 ± 0.01 0.90 ± 0.03

pixel-based + DA

Table S8. Performance of Inception-V3 for marker identification with widefield images.

Computation time

Nuclei-based training (12 images) 1 h 7 min

Nuclei-based training + DA (12 images) 4 h

Pixel-based training (12 images) 11 h 50 min

Pixel-based training + DA (12 images) 13 h

Running (512x512 image) 5 s

Table S9. Time computation for training and processing marker identification.
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E2F3A E2F8 E2F4 EdU pH3

Inception-V3 0.85 ± 0.03 0.90 ± 0.04 0.77 ± 0.03 0.90 ± 0.01 0.77 ± 0.04

nuclei-based

Inception-V3 0.83 ± 0.03 0.93 ± 0.01 0.77 ± 0.03 0.92 ± 0.01 0.72 ± 0.14

nuclei-based + DA

Inception-V3 0.90 ± 0.02 0.92 ± 0.02 0.86 ± 0.02 0.92 ± 0.01 0.87 ± 0.03

pixel-based

Inception-V3 0.92 ± 0.01 0.93 ± 0.03 0.89 ± 0.01 0.93 ± 0.01 0.90 ± 0.03

pixel-based + DA

Table S8. Performance of Inception-V3 for marker identification with widefield images.

Computation time

Nuclei-based training (12 images) 1 h 7 min

Nuclei-based training + DA (12 images) 4 h

Pixel-based training (12 images) 11 h 50 min

Pixel-based training + DA (12 images) 13 h

Running (512x512 image) 5 s

Table S9. Time computation for training and processing marker identification.
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