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Abstract 

Diffusion MRI (dMRI) has become an invaluable tool to assess the microstructural organization of brain 
tissue. Depending on the specific acquisition settings, the dMRI signal encodes specific properties of 
the underlying diffusion process. In the last two decades, several signal representations have been 
proposed to fit the dMRI signal and decode such properties. Most methods, however, are tested and 
developed on a limited amount of data, and their applicability to other acquisition schemes remains 
unknown. With this work, we aimed to shed light on the generalizability of existing dMRI signal 
representations to different diffusion encoding parameters and brain tissue types. To this end, we 
organized a community challenge - named MEMENTO, making available the same datasets for fair 
comparisons across algorithms and techniques. We considered two state-of-the-art diffusion datasets, 
including single-diffusion-encoding (SDE) spin-echo data from a human brain with over 3820 unique 
diffusion weightings (the MASSIVE dataset), and double (oscillating) diffusion encoding data 
(DDE/DODE) of a mouse brain including over 2520 unique data points. A subset of the data sampled 
in 5 different voxels was openly distributed, and the challenge participants were asked to predict the 
remaining part of the data. After one year, eight participant teams submitted a total of 80 signal fits. 
For each submission, we evaluated the mean squared error, the variance of the prediction error and 
the Bayesian information criteria. Most predictions predicted either multi-shell SDE data (37%) or 
DODE data (22%), followed by cartesian SDE data (19%) and DDE (18%). Most submissions predicted 
the signals measured with SDE remarkably well, with the exception of low and very strong diffusion 
weightings. The prediction of DDE and DODE data seemed more challenging, likely because none of 
the submissions explicitly accounted for diffusion time and frequency. Next to the choice of the model, 
decisions on fit procedure and hyperparameters play a major role in the prediction performance, 
highlighting the importance of optimizing and reporting such choices. This work is a community effort 
to highlight strength and limitations of the field at representing dMRI acquired with trending encoding 
schemes, gaining insights into how different models generalize to different tissue types and fiber 
configurations over a large range of diffusion encodings. 
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Introduction 
Diffusion Magnetic Resonance Imaging (dMRI) is a powerful tool to investigate 
microstructural properties of biologic tissues in-vivo (A. L. Alexander et al. 2007; J. D. Tournier, 
Mori, and Leemans 2011) with applications in neuroimaging studying brain development 
(Ouyang et al. 2019), plasticity (Blumenfeld-Katzir et al. 2011), aging (Baker et al. 2014), as 
well as changes upon disease for diagnostic and monitoring purposes in various conditions 
such as Alzheimer’s disease (Doan et al. 2017; Weston et al. 2015), multiple sclerosis (Inglese 
and Bester 2010; De Santis et al. 2019), Parkinson’s disease (Atkinson-Clement et al. 2017), 
brain tumours (Costabile et al. 2019), etc. The signal measured in dMRI is sensitized to the 
microscopic motion of water molecules, which is hindered and restricted by the presence of 
biologic membranes, thus carrying information about the cellular organization. Over the last 
decade, an increasing number of techniques have been proposed in the literature to describe 
the dMRI signal and provide biomarkers of tissue microstructure and have been recently 
complemented with various machine learning approaches.(D. C. Alexander et al. 2017; Ghosh, 
Ianus, and Alexander 2018; D. S. Novikov et al. 2019; Poulin et al. 2019; Ravi et al. 2019) 
 
The standard acquisition strategy for dMRI data is single diffusion encoding (SDE), which 
employs a pair of diffusion weighting gradients with identical areas, usually embedded before 
and after the refocusing pulse in a spin echo preparation, a sequence widely known also as 
pulsed gradient spin-echo (Stejskal and Tanner 1965). The SDE sequences are characterized 
by the gradient strength (G), duration (δ), time interval between the onset of the two 
gradients (Δ) and gradient orientation (𝑔"). The scalar parameters (G, δ, Δ) are usually 
combined to describe the diffusion weighting of the sequence, also referred to as the b-value. 
For SDE sequences, b = γ2G2δ2(Δ- δ/3), where γ is the gyromagnetic ratio. In the majority of 
SDE acquisitions δ and Δ are fixed and G is varied to change the b-value, although varying the 
gradient duration and diffusion time can provide additional orthogonal measurements (D. S. 
Novikov et al. 2019). Over the last decade, diffusion sequences which further vary the 
gradient waveform within one measurement, such as double diffusion encoding (DDE) (Mitra 
1995; Henriques et al. 2020) or b-tensor encoding approaches (Lasic et al. 2014; C. F. Westin 
et al. 2016), have been gaining interest as they can further improve the specificity of the 
measurements towards the underlying tissue microstructure. Other approaches replace the 
pulsed gradients with oscillating gradient waveforms to probe diffusion on a range of 
(shorter) time scales (Does, Parsons, and Gore 2003; Burcaw, Fieremans, and Novikov 2015), 
measurements which can also be performed with different gradient orientations in a double 
oscillating diffusion encoding (DODE) fashion (Ianus et al. 2017, 2018). While the majority of 
recent dMRI studies employ SDE sequences, such advanced acquisitions are steadily gaining 
popularity. 
 
The most widely used dMRI technique for brain imaging in the clinic is diffusion tensor 
imaging (DTI)(Basser, Mattiello, and LeBihan 1994), which assumes that water diffusion in the 
underlying tissue can be described by a Gaussian anisotropic process. As minimum 
requirements, the tensor parameters can be estimated from SDE sequences with a single b-
value (usually about 1000 s/mm2) and at least 6 non-collinear directions in addition to non-
diffusion weighted data (b=0 s/mm2). Although simple and robust, DTI cannot describe the 
signal decay in correspondence of higher b-values (e.g., above about 1500 s/mm2 in the living 
brain) and cannot distinguish between multiple fibre populations, for instance in areas of 
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crossing fibres (B. Jeurissen et al. 2013). Thus, a plethora of techniques have been introduced 
to capture the dMRI signal decay over a wider range of parameter values (D. C. Alexander et 
al. 2017; D. S. Novikov et al. 2019).  
 
dMRI models can generally be regarded as biophysical models, signal representations or 
somewhere in between (Ghosh, Ianus, and Alexander 2018; Ileana O. Jelescu and Budde 
2017). Biophysical models usually employ multiple water compartments to describe the dMRI 
signal in the tissue in order to capture microscopic metrics such as intracellular signal fraction, 
cell size, shape etc (Stanisz et al. 1997; Jespersen et al. 2007; Y. Assaf et al. 2008; Daniel C. 
Alexander 2008; E. Fieremans et al. 2013; Palombo et al. 2020; Panagiotaki et al. 2012; Fan et 
al. 2020; Zhang et al. 2012). Several biophysical models have been proposed in the literature 
and vary in terms of the number of compartments, diffusion model (hindered/restricted), 
number of fibre populations, fibre orientation distributions, etc. Signal representations on the 
other hand, usually provide a statistical description to capture the signal decay without 
explicitly modelling the underlying tissue composition (Yablonskiy, Bretthorst, and Ackerman 
2003; J. H. Jensen et al. 2005; Ozarslan et al. 2009; Els Fieremans, Jensen, and Helpern 2011; 
Steven, Zhuo, and Melhem 2014; Ozarslan et al. 2013). Next to these two main families, there 
are also hybrid approaches that, for instance, aim to characterize the fibre orientation 
distribution without explicitly modelling the fibre composition (J. D. Tournier et al. 2008; Ben 
Jeurissen et al. 2014), or use a statistical model for different compartments (Scherrer et al. 
2016; Pasternak et al. 2009; De Luca, Bertoldo, and Froeling 2017), which can be defined a-
priori or driven from the data (Keil et al. 2017; De Luca et al. 2018). Besides these “classical” 
approaches to model dMRI, the last couple of years have witnessed a vast increase in the 
number of machine learning techniques applied to dMRI to predict signal decay (Golkov et al. 
2016; Grussu et al. 2020), fibre orientations (Poulin et al. 2019; Nath, Schilling, et al. 2019) or 
the underlying tissue parameters (Nedjati-Gilani et al. 2017).   
 
The choice of dMRI technique depends on many factors, such as the purpose of the 
experiment, the amount and quality of the data, the number and strength of b-values, angular 
resolution, etc, and generally no consensus has been reached on what a state-of-the-art 
diffusion experiment should include. Nevertheless, for a given acquisition, comparing 
diffusion models can provide valuable information about which approaches best describe the 
signal and can be generalized to predict measurements outside the initial range. In the 
literature, there have been various studies which aimed to compare brain tissue models in 
terms of goodness of fit and signal prediction, with an emphasis on white matter (WM) 
(Panagiotaki et al. 2012; U. Ferizi et al. 2015; I. O. Jelescu et al. 2014; Rokem et al. 2015) and 
less on gray matter (GM)(Yaniv Assaf 2019). Nevertheless, such studies usually focused on a 
certain group of models, for instance multi-compartment biophysical models were 
investigated in (Panagiotaki et al. 2012; U. Ferizi et al. 2015), while (Wang et al. 2017) looked 
in more detail at signal representations.  
 
Open challenges play an important role to gain a better understanding of how various models 
capture the dMRI signal decay, as they put forward rich datasets and well-defined tasks and 
usually receive submissions from across the modelling landscapes (Uran Ferizi et al. 2017; 
Schilling et al. 2019; Pizzolato et al. 2020). The last diffusion microstructure challenge which 
included a comprehensive dMRI acquisition (Uran Ferizi et al. 2017) was organized in 2015 
and focused on modelling the dMRI signal acquired on the Connectome scanner for two ROIs 
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in white matter: genu of the Corpus Callosum with mostly aligned fibres and fornix with a 
more complex fibre configuration. The challenge included a rich dataset acquired with many 
combinations of gradient strengths, durations and diffusion times and the goal was to predict 
unseen shells with parameter values within the range used for the provided data. Since the 
end of this challenge, many novel approaches have been proposed, including a booming 
application of machine learning techniques for data fitting and prediction (Golkov et al. 2016; 
Nedjati-Gilani et al. 2017; Nath, Schilling, et al. 2019; Ravi et al. 2019; Poulin et al. 2019). 
Moreover, previous challenges (Uran Ferizi et al. 2017; Schilling et al. 2019; Pizzolato et al. 
2020) included only diffusion data acquired with standard SDE sequences, and do not provide 
any insight into the different approaches available to analyse advanced sequences such as 
DDE. 
 
In this challenge we set to evaluate the ability of different dMRI modeling approaches to 
capture the dMRI signal contrast from state-of-the-art acquisitions performed with (Uran 
Ferizi et al. 2017; Schilling et al. 2019; Pizzolato et al. 2020) SDE, but also DDE and DODE. 
Further, we aim to investigate the relationship between the goodness of fit and tissue type, 
acquisition parameters, and diffusion sensitization. Finally, this challenge acts as a benchmark 
database for the evaluation of future models as the full datasets are made available 
(https://github.com/PROVIDI-Lab/MEMENTO.git). 
     

Methods 
Section 2.1 presents an overview of the data that was used in the MEMENTO challenge and 
of the reasoning behind the selection of specific brain locations. A description of the methods 
used in the received submissions is reported in section 2.2, whereas section 2.3 illustrates the 
analyses we performed on the collected signal predictions.  

Challenge data 
MRI acquisition 

The main aim of the MEMENTO challenge was to investigate how well existing models can 
represent the dMRI signal collected with i) different gradient encoding schemes, and ii) from 
different tissue types. 

To investigate how the existing models can predict data sampled with different diffusion 
sensitization, we selected two datasets containing extensively sampled dMRI brain data with 
4 encoding schemes: multi-shell SDE (SDE-MS), SDE with gradients sampled in a cartesian grid 
(SDE-GRID), DDE and DODE. The SDE acquisitions were performed in a healthy volunteer with 
a 3T scanner as part of the MASSIVE datasets (Froeling et al. 2017a), a collection of 18 MRI 
sessions containing unique dMRI data performed with a 3T scanner (Philips Healthcare, The 
Netherlands) with voxel-size 2.5mm3 isotropic, echo time TE=100ms and repetition time TR 
between 7 and 7.5s. The DDE and DODE data were sampled from an ex-vivo mouse brain 
imaged with a 16.4T scanner (Bruker) with imaging resolution 0.12x0.12x0.7mm3, TE=52ms, 
TR=3s (Ianus et al. 2018). The diffusion parameters of the acquired data are reported in Table 
1 and Table 2. To establish the signal to noise ratio (SNR) of the data, we considered the 
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datapoints collected at b = 0 s/mm2, removed eventual outliers and defined the average SNR 
as the ratio between the average non-weighted value and its standard deviation. A point was 
defined as an outlier when its value was outside the confidence interval defined by the 
median value ± 2 times the robust standard deviation of the data (see (Chang, Jones, and 
Pierpaoli 2005)). The SNR of the 5 selected signals at b = 0 s/mm2 was 15 ± 3 for SDE-MS, 16 
± 3 for SDE-GRID, 76 ± 37 for DDE and 66 ± 28 for DODE. 

Table 1 - A description of the SDE encoding acquired as part of the MASSIVE data, and their subdivision in 
training and evaluation data. No data points of SDE-MS at b = 4000 s/mm2 and SDE-GRID at b > 7600 s/mm2 
were provided for training. The ratio between training and evaluation data was about 1:3 for SDE-MS and 3:5 
for SDE-GRID. 

Diffusion Encoding Number of directions Training  Evaluation 

SDE-MS data of a healthy volunteer acquired at 3T in 18 sessions (13 shells) 

b = 0 s/mm2 430 20 410 

b = 5 s/mm2 30  8 22 

b = 10 s/mm2 30  7 23 

b = 25 s/mm2 40  10 30 

b = 40 s/mm2 40  10 30 

b = 60 s/mm2 20 5 15 

b = 80 s/mm2 20 5 15 

b = 140 s/mm2 20 5 15 

b = 250 s/mm2 30 8 22 

b = 500 s/mm2 250 62 188 

b = 1000 s/mm2 500 125 375 

b = 2000 s/mm2 500 125 375 

b = 3000 s/mm2 500 125 375 

b = 4000 s/mm2 600 0 600 

Total 3010 515 2495 

SDE-GRID data of a healthy volunteer acquired at 3T in 18 sessions  

b = 0 s/mm2 430 20 410 

b = 141-563 s/mm2 58 22 36 

b = 750-938 s/mm2 54 22 32 

b = 1125-1875 s/mm2 170 72 98 

b = 2016-2766 s/mm2 248 102 146 

b = 3000-3938 s/mm2 314 129 185 

b = 4125-4875 s/mm2 168 68 100 
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b = 5016-6891 s/mm2 196 65 131 

b = 7687-9000 s/mm2 32 0 32 

Total 1670 500 1170 

 

Table 2 - The table describes the subdivision in training and evaluation data of the unique combinations of 
diffusion weighting b and diffusion time (Δ) / oscillation frequency (f) for the DDE and DODE data, respectively. 
In the DDE training set, the data acquired with Δ = 5ms was provided with the exception of the largest diffusion 
weighting (b = 4000 s/mm2), and no data acquired with Δ = 10ms was provided for training. For DODE, the 
data points acquired with the three lower oscillation frequencies (66, 100, 133 Hz) were provided with the 
exception of b = 4000 s/mm2, and no data acquired with f = 166 and 200 Hz was provided for training. 

Diffusion Encoding Number of 
directions 

Training  Evaluation 

DDE data from a mouse brain ex-vivo acquired at 16.4T  

Δ=5ms, b = 0 s/mm2 40 32 8 

Δ=5ms, b = 1000 s/mm2 72 72 0 

Δ=5ms, b = 1750 s/mm2 72 72 0 

Δ=5ms, b = 2500 s/mm2 72 72 0 

Δ=5ms, b = 3250 s/mm2 72 72 0 

Δ=5ms, b = 4000 s/mm2 72 0 72 

Δ=10ms, b = 0 s/mm2 40 0 40 

Δ=10ms, b = 1000 s/mm2 72 0 72 

Δ=10ms, b = 1750 s/mm2 72 0 72 

Δ=10ms, b = 2500 s/mm2 72 0 72 

Δ=10ms, b = 3250 s/mm2 72 0 72 

Δ=10ms, b = 4000 s/mm2 72 0 72 

Total 800 320 480 

DODE data from a mouse brain ex-vivo acquired at 16.4T 

f = 66, 100, 133Hz 
b = 0 s/mm2 

3x40 3x32 3x8 

f = 66, 100, 133Hz 
b = 1000 s/mm2 

3x72 3x72 0 

f = 66, 100, 133Hz 
b = 1750 s/mm2 

3x72 3x72 0 

f = 66, 100, 133Hz 
b = 2500 s/mm2 

3x72 3x72 0 

f = 66, 100, 133Hz 
b = 3250 s/mm2 

3x72 3x72 0 
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f = 66, 100, 133Hz 
b = 4000 s/mm2 

3x72 0 3x72 

f = 166, 200Hz 
b = 0 s/mm2 

2x40 0 2x40 

f = 166, 200Hz 
b = 1000 s/mm2 

2x72 0 2x72 

f = 166, 200Hz 
b = 1750 s/mm2 

2x72 0 2x72 

f = 166, 200Hz 
b = 2500 s/mm2 

2x72 0 2x72 

f = 166, 200Hz 
b = 3250 s/mm2 

2x72 0 2x72 

f = 166, 200Hz 
b = 4000 s/mm2 

2x72 0 2x72 

Total 2000 960 1040 

 

Signals selection 

Five signals were selected for each dataset from brain voxels exhibiting different 
microstructural organization. For the human MASSIVE dataset, the voxels aimed to include 
WM signals with an increasing number of crossing fiber configurations from 1 to 3, deep gray 
matter (DGM) and cortical gray matter (CGM) and the selection was based on visual 
inspection of the fiber orientation distribution (FOD). The FOD was derived with constrained 
spherical deconvolution (J.-D. Tournier, Calamante, and Connelly 2007) of data at b = 0, 3000 
s/mm2 (500 directions) using a recursively calibrated response function(Tax et al. 2014)  
approach implemented in ExploreDTI. For the mouse brain, the five voxels were placed in 
white matter tracts with different microstructures and was performed based on visual 
comparison with an anatomical atlas, as the number of collected gradient orientations per 
diffusion weighting was insufficient to reliably estimate the FOD. Specifically, the five voxels 
were placed in medial corpus callosum, lateral corpus callosum, internal capsule, a fanning 
region of the internal capsule and the fimbria, respectively. An illustration of the locations 
and tissue types of the selected voxels is shown in Figure 1. 
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Figure 1: The locations of the 5 voxels selected for the SDE (top) and DDE/DODE data (bottom).  The SDE data 
are sampled from a human brain scanned at 3T with imaging resolution 2.5mm3 isotropic, and is part of the 
MASSIVE dataset. The 5 locations were chosen in 5 different tissue types, such as white matter (WM) with 
increasing fiber complexity (signals 1-3, as exemplified by the shown fiber orientation distribution), deep gray 
matter (DGM) and cortical gray matter (CGM).  DDE and DODE were sampled in a mouse brain at 16.4T with 
imaging resolution 0.12x0.12x0.7mm3. The selected signals are all taken from WM locations with well-
established differences in fiber organization. 

 

Training and evaluation data 

The 20 selected measurement sets (5 signal locations x 4 diffusion encodings) were 
subdivided in training and evaluation data. The challenge participants were provided with the 
training data and the corresponding diffusion encoding information, and asked to predict the 
evaluation data. The subdivision of the training and evaluation data was not constant among 
data encodings, and varied from roughly 20/80% for the SDE-MS data to 40/60% for the DDE 
/ DODE data. To evaluate the ability of the tested models to predict unseen data points, all 
the data corresponding to specific diffusion weightings was removed from the training data, 
as reported in Table 2. 

Signal predictions 
We received initial submissions from 9 teams, but 2 of the 9 teams did not provide valid 
submissions and were not included in this analysis. The remaining 7 teams submitted a total 
of 80 valid signal predictions that were considered in the subsequent analyses. Of these, 31 
submissions predicted the SDE-MS signals (37%), 16 the SDE-GRID signals (19%), 15 the DDE 
signals (18%) and 18 the DODE signals (22%). When a model was applied more than once to 
predict a given set of signals, only the submissions corresponding to the best and worst 
prediction were analyzed, to simplify the presentation and interpretation of the results. The 
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final selection of predictions included in this analysis is reported in Table 3. When multiple 
predictions with a given model were submitted, the best and worst predictions were 
identified by adding the labels “_best” and “_worst” to the model name. 

To follow, we present an overview of the submissions we received grouped in four different 
categories. 

 

Table 3: The valid signal predictions submitted to the MEMENTO challenge. For each method, we report the 
acronym and the main reference, the “category”, special notes on the fit procedure, and the data it has been 
applied to. The following predictions were subdivided in the following categories: tensor-based (TENS), multi-
compartment model (MCM), parametric representation (PAR), deep learning-based (DL). 

Model 
name 

Category Notes SDE-MS SDE-GRID DDE DODE 

DTI (Basser, 
Mattiello, and 
LeBihan 1994) 

TENS Linear-Least 
Squares 

X X X X 

DKI (J. H. 
Jensen et al. 

2005) 

TENS Weighted-
Least Squares 

X X X X 

DKI+Offset 
(Morez et al. 

2020) 

TENS Constrained 
Non-Linear fit 

X X X   

DTD-cov (C. F. 
Westin et al. 

2016) 

TENS Constrained 
Non-Linear fit 

    X X 

DTD-cov (C. F. 
Westin et al. 

2016) + Offset 

TENS Constrained 
Non-Linear fit 

    X X 

Ball&Stick 
(Behrens et al. 

2003) 

MCM  Implemented 
in Dmipy (Fick, 
Wassermann, 
and Deriche 

2019) 

X       

Ball&Racket 
(Sotiropoulos, 
Behrens, and 
Jbabdi 2012)  

MCM Implemented 
in Dmipy  

(Fick, 
Wassermann, 
and Deriche 

2019) 

X       

NODDI-
Watson 

(Zhang et al. 
2012) 

MCM Implemented 
in Dmipy  

(Fick, 
Wassermann, 
and Deriche 

2019) 

X       

NODDI -
Bingham 

(Tariq et al. 
2016) 

MCM Implemented 
in Dmipy  

(Fick, 
Wassermann, 
and Deriche 

2019) 

X       

SMT (Kaden et 
al. 2016) 

MCM Implemented 
in Dmipy   

(Fick, 
Wassermann, 

X       
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and Deriche 
2019) 

NODDI-SMT MCM Implemented 
in Dmipy   

(Fick, 
Wassermann, 
and Deriche 

2019) 

X       

MCMDI 
(Kaden et al. 

2016) 

MCM Implemented 
in Dmipy   

(Fick, 
Wassermann, 
and Deriche 

2019) 

X       

ActiveAx (D. C. 
Alexander et 

al. 2010) 

MCM Implemented 
in Dmipy   

(Fick, 
Wassermann, 
and Deriche 

2019) 

X       

SHORE 
(Ozarslan et 

al. 2009) 

PAR From 
DeepSHORE 

(Nath, Lyu, et 
al. 2019) 

X X X X 

MAP-MRI 
(Ozarslan et 

al. 2013) 

PAR Implemented 
in Dmipy   

(Fick, 
Wassermann, 
and Deriche 

2019) 

X       

MAP-MRI+Reg 
(Fick et al. 

2016) 

PAR Implemented 
in Dipy 

(Garyfallidis et 
al. 2014) 

X X     

NeuralNet DL Perceptron 1 
Layer 50 

nodes 

X X X X 

NeuralNet+Re
inf (Williams 

1992) 

DL Perceptron 7 
Layers 

optimized 
with NAS 

(Zoph and Le 
2016) 

X X X X 

 

Tensor and beyond  

Diffusion tensor imaging (DTI, Basser et al. 1994) is one of the most common quantification 
methods for dMRI data acquired with at least one diffusion-weighting and 6+ gradient 
directions. DTI is based on the three-dimensional generalization of the seminal works of 
Stejskal and Tanner (Stejskal and Tanner 1965), and assumes the diffusion process to be 
Gaussian (i.e., not restricted). In the living brain, such assumption is typically satisfied when 
collecting dMRI data with diffusion weightings in the range b = 800-1200 s/mm2. While DTI 
typically does not accurately characterize complex diffusion environments where, for 
example, multiple diffusion mode (e.g., tissue diffusion vs blood pseudo-diffusion (Le Bihan 
et al. 1988)) or “crossing-fibers” co-exist (Wedeen et al. 2005), it is one of the most common 
dMRI signal representations in clinical application, especially thanks to its sensitivity to 
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microstructural changes in health and pathology. Keeping in mind all of the above, the DTI 
method was applied in this work to SDE-MS, DDE and DODE data to serve as baseline 
reference using a weighted-least-squares fit.  

In 2005, Jensen and colleagues introduced the diffusion kurtosis imaging (DKI) method (J. H. 
Jensen et al. 2005), an extension of DTI that allows to account for and quantify the amount of 
non-Gaussian diffusion that is observed at stronger diffusion weightings (e.g., b > 1400 s/mm2 
in the living brain). The DKI model requires the collection of at least 21 unique measurements, 
including 2 non-zero diffusion-weightings and 15+ unique gradient directions, and allows to 
quantify the amount of excess kurtosis of the diffusion process. While DKI is suitable for dMRI 
data acquired with a stronger diffusion weighting than DTI, nevertheless, there is a theoretical 
maximum to the diffusion weighting that can be fit (J. H. Jensen et al. 2005; Jens H. Jensen 
and Helpern 2010). DKI was fit to all data included in this work using a constrained non-linear 
least-squares fit enforcing positivity in diffusion and kurtosis metrics and a monotonic decay 
of the signal. When fitting data acquired with strong diffusion weighting, it might be beneficial 
to take into account the presence of a minimum signal offset due to Rician noise in the 
measurements (Gudbjartsson and Patz 1995; Basu, Fletcher, and Whitaker 2006). One of the 
submissions considered in this work extended the DKI method with an offset term to account 
for such effect (DKI+Offset)(Morez et al. 2020). This method was fit to SDE data by extending 
the classic DKI model with an additional degrees of freedom (22 + 1 = 23 free parameters), 
and to DDE and DODE data by extending a fourth order covariance tensor  (28 + 1 = 29 free 
parameters) (C.-F. Westin et al. 2016).  

Multicompartment models 

Multi-compartment models are a family of methods that allow to model the dMRI signal by 
means of biophysical features (Panagiotaki et al. 2012; Ileana O. Jelescu and Budde 2017). 
The assumption behind these models is that the dMRI signal acquired in a voxel can be 
described as the linear combination of the signal profiles of each component that is present 
in a specific voxel. 

All the submissions we received based on multicompartment models were computed with 
custom implementations of previously introduced methods with the “Diffusion 
Microstructure Imaging in Python” toolbox (dmipy). The submissions considered only SDE 
data, and were based on three basic components: the intra-axonal compartment was 
modelled as a stick or a cylinder, whereas the extra-axonal anisotropic compartment was 
modelled as a zeppelin (axially symmetric tensor) and the cerebrospinal fluid contribution 
modelled as isotropic diffusion (sphere). Depending on the specific implemented model, the 
anisotropic compartments were optionally convolved with a Watson or a Bingham 
distribution to account for fiber orientation dispersion. A summary of the multicompartment 
models that were submitted and the components they are based on is shown in Table 4. 
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Table 4: An overview of the diffusion models used to represent the individual components of the considered 
multicompartment models. 

Model name Intra-axonal 
component 

Extra-Axonal 
component 

Isotropic 
component 

Orientation 
dispersion 

ActiveAx Cylinder Zeppelin Sphere NA 

Ball&Stick Stick NA Sphere NA 

Ball&Racket Stick NA Sphere Bingham 

MCMDI Stick Zeppelin NA NA 

NODDI-Watson Stick Zeppelin Sphere Watson 

NODDI-Bingham Stick Zeppelin Sphere Bingham 

SMT Zeppelin NA NA NA 

SMT-NODDI Stick Zeppelin Sphere Watson 

 

For all the above mentioned models, the parallel diffusivity of the anisotropic compartments 
was set to 1.7x10-3mm2/s, whereas the diffusivity of the isotropic compartment was set to 
3x10-3mm2/s. The perpendicular diffusivity of the anisotropic compartments was linked to the 
parallel diffusivity via the tortuosity constraint (Szafer, Zhong, and Gore 1995; Zhang et al. 
2012). 

 

Parametric representations 

This family of methods focuses on expressing the dMRI signal as a function of mathematical 
signal basis without biophysical hypotheses. A popular signal representation is the simple 
harmonic oscillator reconstruction (SHORE)(Ozarslan et al. 2009). The SHORE basis has some 
degrees of freedom such as the order and a scaling factor. The SHORE method was applied to 
predict all the 4 provided data types (SDE-MS, SDE-GRID, DDE, DODE) in combination with a 
BFGS fit(Nath, Lyu, et al. 2019) that can be utilized to achieve the best fit of the scaling 
parameter. The same method was used for all 4 types of data with harmonics of orders 6, 8 
and 12.  
 
MAP-MRI is a signal representation-based technique that expresses the diffusion signal in q-
space and parametrizes its Fourier transform –the mean apparent propagator (MAP)– in 
terms of a series involving products of three Hermite functions, thus generalizing the 1D-
SHORE technique to three dimensions. Unlike in 3D-SHORE, an anisotropic scaling parameter 
is employed in MAP-MRI, making it an extension of DTI for representing the signal at large q-
values. In this challenge, we received submissions from two different teams based on a 
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Laplacian regularized version of MAP-MRI. Both submissions (MAP-MRI+Reg) predicted the 
unseen data points using penalized least squares and SHORE basis of order 8.  
 
Neural networks 

Convolutional neural networks (NeuralNet) are increasingly being used for tasks such as 
quantification and signal representation. In this case, the output of the networks 
corresponded to the dMRI signal.  

A first family of submissions that we received is based on feed-forward networks with a single 
hidden layer of 50 neurons and sigmoid activation functions.  These networks were trained 
on 80% of the measurements and validated on 20% by minimizing the mean squared error of 
the predictions with the AdamW algorithm. For the learning phase, a learning rate of 0.005 
and 20000 epochs were used. To predict the SDE signals, the normalized components of the 
gradient (3 values) and the b-value were provided as inputs. For the DDE and DODE 
acquisitions, the gradient strength, the normalized components of the two gradients (6 
values), the b-value, and the components of the b-matrix (6 values) were concatenated into 
one input vector of length 14. The training and prediction phase were repeated independently 
for each of the individual signal and data type.  

The second family of submissions we received was based on neural networks with 
reinforcement learning (NN+Reinf) (Zoph and Le 2016; Williams 1992). A neural architecture 
search (NAS) was implemented to search the optimal 7-layer feed-forward model with ReLU 
activations for dMRI signal prediction given the acquisition parameters. The search space of 
NAS is the number of nodes in each of the seven layers in the set [8, 16, 32, 64, and 128].  and 
fit the training data better. And the number of neurons in each of the seven layers belongs to 
[8, 16, 32, 64, and 128]. For training, the initial learning rate was set to 0.01, and the adam 
optimizer was used.  

Data analysis 
The data analyses were performed separately for SDE-MS, SDE-GRID, DDE and DODE. For each 
encoding type and signal, we evaluated the min-max interval of all predictions, and their 25th 
to 75th percentile confidence interval. For each signal, we determined the best prediction as 
the one achieving the lowest mean squared residuals (MSE), and visually investigated the 
residuals. As the MSE only represents one of the possible metrics that can capture the 
goodness of the signal prediction, we also determined the variance of the residuals and the 
bayesian information criteria (BIC) associated with the prediction of each individual signal. 
These results can be found in the supplementary material Table S2 and S3. 

Subsequently, the distribution of the residuals of each model were investigated by means of 
boxplots. At this stage, the residuals from all the 5 voxels were considered together. A ranking 
of all considered models was derived according to increasing MSE, then the best prediction 
model was established per encoding type. The residuals of the best prediction model were 
investigated as a function of the b-value, diffusion time (DDE only) and encoding frequency 
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(DODE only), to understand whether all diffusion encodings were predicted with comparable 
accuracy and precision. In the subsequent analysis, the 5 voxels were studied separately. 
Specifically for the SDE-MS data, an additional analysis was performed to evaluate how the 
best model predicted the directional dependent information of the shell acquired at b = 
4000s/mm2. To this end, the measured data and the best signal prediction were projected on 
the unit sphere using spherical harmonics of order 12, then the prediction error was 
evaluated. The diffusion tensor imaging model was included in this step for reference. 

Results 
Signal representation of SDE-MS data 

The geometric average of the SDE-MS signals and an overview of the predictions is shown in 
Figure 2. In general, both the average and the best fitting method predicted the average signal 
decay without apparent biases, with the exception of the average fit of the low diffusion 
weightings of signals 3 and 5. On average, the confidence interval of the submissions (blue 
error bar) is centered on the geometric average of the data for diffusion-weightings 400 < b 
< 4000 s/mm2 for all 5 signals. The prediction of data at b = 4000 s/mm2 (which was not 
provided in the training data) was overall accurate in WM (signals 1-3), but showed a small 
and consistent over-estimation in DGM and GM. The signal measured at low diffusion 
weightings (i.e. b < 200 s/mm2) was on average accurately predicted in the WM voxel 
containing up to 2 crossing fibers and in deep gray matter, but not in the complex WM-
configuration (Signal 3) and in cortical GM (Signal 5). The min-max range of the predictions 
highlights that data at b = 2000 s/mm2 is predicted on average with the lowest uncertainty, 
whereas the largest spread is observed at b < 200 s/mm2 and b = 4000 s/mm2. The best 
predicting models for signals 1-5 are SHORE, MAP-MRI+Reg, MAP-MRI+Reg, Ball&Racket and 
NeuralNet, respectively.  
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Figure 2 Signal decay as a function of the b-value of the averaged SDE-MS data over different directions, for 
the unprovided measurements. The black dots represent the unprovided data, the red shaded area represents 
the min-max of the submissions, the blue error bar represent the 25-75 percentile, the solid red curve 
represents the best fit and the red circles represent the residuals of the best fitting model. The 5 different plots 
illustrate the predictions of the different signals.    

 

Figure 3 shows the average residuals of all tested signal predictions when considering the 5 
provided signals together. The predictions of the first 7 methods were remarkably accurate, 
as shown by the tight confidence interval of the residuals of about 0.03 of the measured data, 
which occasionally reached values up to 0.1. MAP-MRI provided the best overall signal 
prediction with average MSE 0.00236 ± 0.00035 (Supplementary Material Table S1) . When 
comparing the residuals of this prediction to those from the remaining models, we found that 
only NeuralNet provided equally distributed residuals (sign test, p<0.05). When looking at the 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 2, 2021. ; https://doi.org/10.1101/2021.03.02.433228doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.02.433228
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

average residuals of each signal individually (colored dots in the boxplots of Figure 3), a 
tendency towards a better prediction of WM signals as compared to CGM and DGM was 
observed.  
 
To understand how the fit of the best prediction method (MAP-MRI) varied as a function of 
the diffusion-weighting, we evaluated the value of its average residuals for all 5 signals 
together for each shell independently. In general, the average residuals of most shells were 
close to zero, but a significant overestimation for b-shells 60 <= b <= 250 s/mm2 was observed 
(one sample t-test, p < 0.05). The average prediction error was on average less than 0.05 for 
all shells, but errors up to about 0.2 can be observed for the non-weighted data and the 
unprovided shell at b = 4000 s/mm2. 
 

 
Figure 3: Left) Boxplots of the normalized residuals (gray dots) of each prediction of SDE-MS data, when 
pooling together all 5 signals. Right) The normalized residuals of the best prediction (MAP-MRI) over individual 
diffusion weightings. The red asterisks on the left panel indicate predictions significantly different from the 
best prediction, whereas those on the right indicate that residuals at a specific diffusion weighting show a 
significantly non-zero mean. 

  

Having established that model MAP-MRI provided the best average fit, we set to investigate 
how this method could predict the angular information of the unprovided shell at b = 4000 
s/mm2, and included a prediction with DTI and the average prediction of all methods for 
reference. This angular resolution analysis is shown in Figure 4. All methods could well-predict 
on average the donut-shaped 3D representation of WM-1, and the average residuals of this 
signal are smaller than those of the best fitting method. The DTI prediction of WM-1 well 
captured the overall shape of the signal, but also showed large errors in specific directions, 
likely due to unaccounted signal restrictions at this diffusion weighting. The best prediction 
performed remarkably better than the average prediction and of DTI in the more complex 
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configurations WM-2 and WM-3. In the WM-signals, the largest angular errors were observed 
in directions parallel and perpendicular to the main diffusion directions derived with CSD, as 
expected. In DGM and CGM, all methods performed overall equally well and the residuals had 
an almost isotropic distribution.  

 
 
Figure 4: 3D visualisation of the fiber orientation distribution (FOD), a projection on the unit sphere of the 
measured signal, of the signal predictions with DTI and with the best prediction model as well as of the 
residuals determined with DTI, average of all models and with the overall best predicting model for the 
unprovided SDE-MS data at b = 4000 s/mm2 

 

Signal representation of SDE-GRID data 

Figure 5 reports the average signal predictions for SDE-GRID after binning closely spaced 
diffusion-weightings to enhance clarity. In general, the SDE-GRID was well predicted by most 
submissions, as highlighted by the tight min-max and confidence intervals. Larger prediction 
variance can be observed at low (b < 1000 s/mm2) and large diffusion weightings (b > 6000 
s/mm2) than in the intermediate range. The best predictions of signals 1 and 2 were achieved 
with DKI+Offset, whereas MAP-MRI+Reg provided the best prediction of signals 3-5 and the 
best overall prediction with MSE 0.00260 ± 0.00043 (Supplementary Table S1).  
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Figure 5. Signal decay as a function of b-value of the averaged SDE-GRID data over different directions, for the 
unprovided measurements. The diffusion weightings were rounded to the closest multiple of 100 before 
averaging to enhance clarity. The black dots represent the unprovided data, the red shaded area represents 
the min-max of the submissions, the blue error bar represent the 25-75 percentile, the solid red curve 
represents the best fit and the red circles represent the residuals of the best fitting model. The 5 different plots 
illustrate the fits of the different signals.    

 

The boxplots of residuals of the SDE-GRID predictions ranked by MSE are reported in Figure 
6. The first 7 submissions predicted the signals accurately, without visible biases both at 
average level as well as in specific tissue-types, and most prediction errors were in the range 
of ±0.03 with values occasionally up to 0.1, similar to what was previously observed for SDE-
MS. When considering all predictions together, MAP-MRI+Reg provided the best overall 
prediction, but predictions with DKI+Offset and NeuralNet can be considered comparable 
according to a signed rank test. When analyzing the average prediction residuals of MAP-
MRI+Reg for the binned diffusion weightings, it is appreciable that most data was well 
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predicted without biases and errors below 0.05, with the exception of b <= 800 s/mm2, b 
around 3000 s/mm2 and b > 6000 s/mm2. 

 

 
 

Figure 6: Left) boxplots of the normalized residuals (gray dots) of each prediction of SDE-MS data, when pooling 
together all 5 signals. Right) The normalized residuals of the best prediction (MAP-MRI+Reg) over individual 
diffusion weightings. The red asterisks on the left panel indicate predictions significantly different from the 
best prediction, whereas those on the right indicate that residuals at a specific diffusion weighting show a 
significantly non-zero mean. 

 

Signal representation of DDE and DODE data 

Figure 7 shows the best and average signal predictions of the unseen DDE and DODE data for 
the 5 different voxels. Figure 8 presents the normalized residuals for the different 
submissions, averaged over voxels, b-values and diffusion times/frequencies while Figure 9 
shows the normalized residuals for the best fitting model as a function of the b-value.  

For DDE we see that the prediction of the directionally averaged signal is well aligned with 
the measured data with the DTD-cov+Offset providing the best prediction with MSE 0.00072 
± 0.00023 (Supplementary Table S1). Nevertheless, other methods such as DKI, SHORE and 
neural networks also performed reasonably well in providing unbiased predictions, but with 
visibly larger errors. In general, we see that the prediction of the higher b-values (> 2500 
s/mm2) is better than the prediction of the lower b-values (< 2500 s/mm2).  For DODE data, 
the best prediction comes from NeuralNet-best with MSE 0.00070 ± 0.00036, whereas the 
majority of the submissions overestimate the signal, especially for b-values larger than 1750 
s/mm2.  For both DDE and DODE, the predictions show similar trends in the 5 different white 
matter voxels. For the DODE data, both frequencies also show similar trends of the predicted 
signal. 
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Figure 7 The first three columns show the signal decay as a function of b-value of the geometrically averaged 
DDE and DODE data over different directions, for the unprovided measurements. The fourth column shows the 
geometric average of the signal measured at b = 4000 s/mm2 for different diffusion times Δ (DDE) and 
oscillation frequencies f (DODE). The black dots represent the unprovided data, the red shaded area represents 
the min-max of the submissions, the blue error bar represent the 25-75 percentile, the solid red curve 
represents the best fit and the red circles represent the residuals of the best fitting model. The 5 different plots 
illustrate the fits of the different signals.    
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Figure 8: The boxplots of the normalized residuals (gray dots) of the DDE (left) and DODE (right) predictions. 
The red asterisks on the panels indicate predictions significantly different from the best prediction. The first 
5 DDE predictions perform reasonably well as shown by the value of most residuals being well-below 0.1, 
although a trend towards the overestimation of the signal could generally be observed. 

 

 
Figure 9 - Right) The normalized residuals of the best prediction of DDE (DTD-cov+Offset) and DODE 
(NeuralNet-best) over individual diffusion weightings. The red asterisks indicate that residuals at a specific 
diffusion weighting show a significantly non-zero mean. With DDE data, this was observed only for b-values 
between 1800 and 3300 s/mm2, whereas no biases were observed for DODE. 
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Discussion 
We have evaluated the generalizability of existing dMRI methods at predicting diffusion-
weighted data measured with SDE-MS, SDE-GRID, DDE and DODE by analyzing 80 submissions 
to the MEMENTO challenge from 7 different teams. In general, our analysis suggests that 
models predicting SDE-MS and SDE-GRID data generalized the easiest to unseen diffusion 
encodings, whereas the prediction of DDE and DODE seems more challenging. Within the 
domain of SDE, the worst prediction was observed in correspondence of low and very strong 
diffusion weightings. 

The large majority of the analyzed submissions predicted SDE data, with a considerable 
preference for SDE-MS over SDE-GRID, which also reflects the overall larger number of studies 
which employ shell data. When looking at SDE-MS, we can observe that the majority of 
submissions could well predict the global signal decay, and 14 out of 18 predictions had a 
median error smaller than 0.04. Of these, however, only 7 had a quartile-quartile range (25th-
75th percentile) of the residuals smaller than 0.05 in absolute value, which suggests how the 
prediction of the isotropic component of the signal decay (which captures the average decay 
of a given diffusion weighting) is an easier task than the prediction of the anisotropic 
component. Interestingly, the 7 predictions with the lowest MSE can account for complex 
fiber configurations such as 2+ crossing fibers, whereas predictions with single-fiber based 
methods result in higher MSE. Looking at the angular analysis reported in Figure 4, it becomes 
clear that MAP-MRI provides the best prediction of both SDE-MS and SDE-GRID by well 
representing the signal in voxels with complex fiber configurations (WM-2, WM-3) as well as 
in DGM, whereas the prediction error in voxels with a single fiber population (WM-1) or 
almost isotropic diffusion (CGM) is worse than the average submission.  

A second aspect regarding the analysis of SDE data is the dependence of the prediction 
accuracy and precision on the diffusion weighting and on the specific tissue type. Our results 
suggest that current dMRI methods can well represent and predict dMRI data with commonly 
used diffusion weightings. Indeed, we observed that most submissions could predict SDE data 
remarkably well within the range of commonly employed diffusion weightings (e.g., 1000 <= 
b <= 4000 s/mm2), whereas the prediction of low (b < 800 s/mm2) and strong (b > 6000 
s/mm2) diffusion weightings was generally less accurate. While the latter might originate 
from Rician-related biases, it might also highlight the limited specificity of existing models to 
genuine components such as perfusion contributions at low diffusion weightings (Le Bihan et 
al. 1988; Pasternak et al. 2009) and WM-restriction at strong diffusion weightings (Cohen and 
Assaf 2002). In this context, a trend towards a worse prediction of the DGM and CGM signals 
as compared to WM signals emerges with SDE-MS and, to a lesser extent, with SDE-GRID. This 
seems to be mostly driven by the inaccurate prediction of the signal measured at low diffusion 
weightings where the sensitivity to blood pseudo-diffusion is maximal, which once again 
suggests a lack specificity at taking into account specific properties of the GM like its higher 
perfusion as compared to WM (Ahlgren et al. 2016). This holds also for the best prediction 
(MAP-MRI) as shown by the significant overestimation of the signal at b < 250s/mm2, where 
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the contribution of pseudo-diffusion effects becomes non-negligible. A bias in the prediction 
of SDE-GRID with MAP-MRI is also revealed for b > 6000 s/mm2. While this effect might be 
partially explained by Rician noise, the observation that its effect is larger in WM than GM, 
and that it grows in magnitude with fiber complexity being the largest for WM-3, suggests the 
presence of a genuine unaccounted trend in the signal. Interestingly, smaller errors are 
observed for the prediction of SDE-GRID than of SDE-MS on average, and even methods 
providing visibly biased SDE-MS predictions such as SHORE-worst, performed well at 
predicting SDE-GRID. This might be explained by the larger range of unique diffusion 
weightings included in SDE-GRID providing less redundant information than many 
measurements in few shells, or to the larger minimum diffusion weighting included in SDE-
GRID (b = 141 s/mm2) as compared to SDE-MS (b = 10 s/mm2).  

The prediction of DDE and DODE data seems more challenging than that of SDE. Indeed, the 
signal measured with DDE and DODE is encoded with additional dimensions as compared to 
SDE, namely parallel and orthogonal gradient orientations within one measurement, leading 
to linear and planar b-tensors, respectively, as well as different diffusion times and oscillation 
frequencies. In the challenge design, this aspect was stressed by requiring the prediction of 
unseen diffusion-weightings and gradient directions for 1 completely unseen diffusion time 
(DDE) and 2 unseen oscillation frequencies (DODE) provided a training set encoded with a 
different diffusion time and 3 different oscillation frequencies, which is arguably a harder task 
than the prediction of SDE data. The first take home message from the analysis of the DDE 
and DODE predictions is the need to take into account the additional encoding dimension. 
Indeed, the best predictions, especially for DODE data were achieved with methods able to 
account for the frequency implicitly, such as in the case of neural networks. For the DDE data 
with a longer diffusion time than in the training data, we see that the prediction errors of the 
directionally averaged signal provided by the best model, DTD-cov+Offset, are larger for 
intermediate b-values (e.g., b = 1800 – 3300 s/mm2) than for the highest b-value of 4000 
s/mm2. This might be the case because the effect of diffusion time on the signal becomes 
smaller at higher b-value, or due to unaccounted water exchanges whose contribution 
vanishes at such stronger diffusion weighting. Most DODE predictions overestimated the 
measured signal. Interestingly, the error increases on average with the oscillation frequency, 
and even the best prediction, NeuralNet-best, could not well predict the data at b = 4000 
s/mm2 for f=200Hz. All submissions but one achieved a 25th to 75th percentile error below 
0.1, but 8 out of 10 submissions exhibited a consistent median error of about 0.04. Altogether, 
this suggests in our opinion that we currently do not fully understand how to properly model 
the effect of frequency, and highlights the need for further research in the optimal modelling 
of DODE data. 

The application of machine learning and deep learning is currently booming across all science 
fields dealing with large data. MRI and dMRI are no exception, and in this very own challenge 
we have received 32 submissions based on deep learning methods next to established signal 
representations and biophysical models, which represents 40% of the total submissions. 
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Interestingly, neural network-based methods provided accurate predictions for different 
diffusion encodings, achieving the 2nd best prediction for SDE-MS, the 3rd best prediction for 
SDE-GRID and DDE, and the best prediction of DODE data. The latter performance is 
remarkable, because NeuralNet-best and NeuralNet-worst provided the only two unbiased 
DODE predictions, showing ability to learn the relation between the diffusion signal and its 
encoding parameters, including the oscillation frequency, without the need for explicit 
modelling. These results certainly showcase the potential of these methods, and support their 
applicability as excellent interpolators, able to learn data features from a rich dataset and to 
provide good predictions of unseen data - within the boundaries of their training set. Most 
deep-learning based methods do not quantify metrics that can be used to extract properties 
of in-vivo tissues, and are thus unlikely to spread into clinical use at the current moment. 
Nevertheless, their good prediction performance make them favorable for tasks where a 
direct manipulation of the signal is required, such as denoising, artefact removal or even data 
augmentation, and their application in combination with classic methods might provide 
advantageous to enhance the quality of the results or to shorten acquisition time.  

An important contribution of our analysis is that it highlights how user choices and 
hyperparameters can remarkably affect the prediction accuracy. The SHORE method, for 
example, achieved both one of the best predictions of SDE-MS data as well as the worst, with 
an average error difference between the two of about 8%. Similarly, the addition of a degree 
of freedom to DKI or DTD-cov (i.e., +Offset) appreciably improved its accuracy. DKI+Offset, for 
example, predicted the SDE-MS and DDE data with an average prediction error 10% and 92% 
smaller than DKI, respectively. Large variability in the prediction performance was also 
observed for neural networks methods, which flexibility in design allows the implementation 
of very diverse architectures with performance strongly influenced by the optimization of 
hyperparameters. Altogether, we believe that this highlights the importance of not only 
reporting the specific method used for data analysis, but also to explain the choice of its 
hyperparameters and, where possible, to share its implementation to maximize the 
comparability of results obtained in different studies. 

Some limitations of this study should be acknowledged for a more comprehensive 
interpretation of the presented results. Firstly, the SDE-MS/SDE-GRID and DDE/DODE data 
have been acquired in very different settings. The SDE data were acquired as part of the 
MASSIVE data (Froeling et al. 2017b) and represent an unique collection of thousands of 
unique diffusion measurements in an in-vivo human brain at 3T, but were spreaded in 18 
acquisition sessions - which might introduce additional variability in the data - and are 
characterized by an overall modest SNR at b = 0s/mm2 (~15). Conversely, the DDE/DODE data 
were acquired in an ex-vivo mouse brain with a state-of-the-art 16.4T scanner, and 
characterized by very high SNR. The generalizability of our results to DDE/DODE data acquired 
in in-vivo humans at 3T requires thus further research. A further element of variability in the 
comparison of the two datasets is introduced by the different criteria used for the selection 
of the signals: on the SDE data, we sampled signals from WM voxels with different 
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configurations (1 to 3 fibers), but also included GM voxels, which allowed us to investigate 
tissue-specific performance. As a consequence of this choice, any submissions regarding SDE-
MS and SDE-GRID needed to perform well in both WM and GM to achieve a good score. 
Differently, all signals sampled from the DDE/DODE datasets were located in WM and offer a 
more thorough overview of the prediction performances across different fiber configurations 
- including regions with known fiber fanning - but no insights into their applicability to GM. 
For all of the above, the prediction performance obtained by the submissions on SDE and 
DDE/DODE should not be directly compared. 

As a community challenge, we chose to calculate a single metric (the mean squared error) in 
order to determine a “winning” algorithm. Other choices of the score criteria were possible, 
and would likely result in a different ranking. For example, according to modelling theory it 
would seem more appropriate to investigate a goodness of fit criteria as the Bayesian 
information criteria rather than considering the signal residuals alone, to penalize signal 
overfitting (Supplementary Material Table S2 and S3). However, it is arguable that these kinds 
of metrics are not suitable to characterize methods based on machine learning / deep learning 
where thousands to millions of parameters are fitted, and that the mean squared error 
captures, in its simplicity and limitation, the basic ability to predict an unseen signal. 
Nevertheless, doing well in the current challenge does not automatically guarantee that these 
algorithms are the most appropriate models in all cases. Here, we have focused on the ability 
to explain (i.e. predict) the signal over a wide range of diffusion weightings, diffusion times, 
and frequencies. As described in past challenges (Panagiotaki et al. 2012; U. Ferizi et al. 2015; 
Ileana O. Jelescu et al. 2020) and in reviews (Ileana O. Jelescu et al. 2020; Dmitry S. Novikov, 
Kiselev, and Jespersen 2018), a good model or signal representation must well-capture trends 
in the signal (explain seen signal and predict unseen signal), and also have stability and 
robustness of fit (Ileana O. Jelescu et al. 2016), for the appropriate signal regime. Thus, some 
modelling approaches in this study may not be suitable for the wide range of acquisitions in 
this database but only for a subset of it, and may be more/less sensitive at different areas of 
the diffusion sensitization space. Finally, it is critical that the model composition is 
appropriate for the expected features of the tissue, and, in the case of biophysical 
multicompartment models, also specific to those features. The appropriateness and 
specificity cannot be adequately captured by signal fitting alone, and requires external 
validation.  

In conclusion, we have reported the results of a community effort to investigate the 
generalizability of existing methods at predicting unseen diffusion MRI signals collected over 
a large range of diffusion encodings. Our results highlight the good generalizability of existing 
models to SDE data over a large range of diffusion encodings in white matter and, to a lesser 
extent, in grey matter. Conversely, future work is needed to better understand and model the 
information content of DDE and DODE data. Next to the method choice, hyperparameters 
play a key role in the generalizability of fit methods, highlighting the importance of their 
optimization, and of reporting their values to support studies reproducibility. These challenge 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 2, 2021. ; https://doi.org/10.1101/2021.03.02.433228doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.02.433228
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

results serve not only as a snapshot of the current status quo in the field, but also as an openly 
available benchmark to support the development of novel methods. 
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