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Abstract

Combining multiple types of genomic, transcriptional, proteomic, and epigenetic
datasets has the potential to reveal biological mechanisms across multiple scales, and
may lead to more accurate models for clinical decision support. Developing efficient
models that can derive clinical outcomes from high-dimensional data remains
problematical; challenges include the integration of multiple types of omics data,
inclusion of biological background knowledge, and developing machine learning models
that are able to deal with this high dimensionality while having only few samples from
which to derive a model. We developed DeepMOCCA, a framework for multi-omics
cancer analysis. We combine different types of omics data using biological relations
between genes, transcripts, and proteins, combine the multi-omics data with
background knowledge in the form of protein–protein interaction networks, and use
graph convolution neural networks to exploit this combination of multi-omics data and
background knowledge. DeepMOCCA predicts survival time for individual patient
samples for 33 cancer types and outperforms most existing survival prediction methods.
Moreover, DeepMOCCA includes a graph attention mechanism which prioritizes driver
genes and prognostic markers in a patient-specific manner; the attention mechanism can
be used to identify drivers and prognostic markers within cohorts and individual
patients.

Author summary

Linking the features of tumors to a prognosis for the patient is a critical part of
managing cancer. Many methods have been applied to this problem but we still lack
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accurate prognostic markers for many cancers. We now have more information than
ever before on the state of the cancer genome, the epigenetic changes in tumors, and
gene expression at both RNA and protein levels. Here, we address the question of how
this data can be used to predict cancer survival and discover which tumor genes make
the greatest contribution to the prognosis in individual tumor samples. We have
developed a computational model, DeepMOCCA, that uses artificial neural networks
underpinned by a large graph constructed from background knowledge concerning the
functional interactions between genes and their products. We show that with our
method, DeepMOCCA can predict cancer survival time based entirely on features of the
tumor at a cellular and molecular level. The method confirms many existing genes that
affect survival but for some cancers suggests new genes, either not implicated in survival
before or not known to be important in that particular cancer. The ability to predict
the important features in individual tumors provided by our method raises the
possibility of personalized therapy based on the gene or network dominating the
prognosis for that patient.

Introduction

Genetic or genomic approaches to understanding disease typically use single or at most
a handful of variants within a patient population to identify risk and molecular etiology.
However, the phenotypic manifestation of a disease is dependent on the genetic
background, which makes elucidation of the causative gene or dysregulated process
challenging in complex diseases such as cancer. Even for cancers where there are
inherited, penetrant, predisposing germline genetic variants, the outcomes, treatment
response characteristics, and prognosis based on single gene or gene panel sequencing
can be extremely variable on a patient-to-patient basis [1, 2]. For those cancers where
there is no known predisposing variant (arguably the majority), genomic approaches to
the discovery of prognostic, predictive or diagnostic markers are often insufficient in
themselves to usefully stratify populations and, importantly, to drive personalized
approaches to therapy [3, 4]. Consequently, and despite the discovery of cancer driver
genes for many cancers and successful implementation of the knowledge that these
bring, there is limited success in their translation into clinical useful biomarkers with
few cancer prognostic biomarkers currently being approved by regulatory agencies [5–7].

With the advent of high-throughput technologies that capture the physiological
landscape of the metabolism, epigenome, RNA and protein expression, and other
datatypes, the amount of information available for the identification of new biomarkers
and new insights into pathophysiology is increasing almost exponentially [8]. In many
ways, the capture of omics knowledge about a single tumor integrates the state of gene
expression across the whole genome with that induced by the environment, and
increasingly offers a rich and deep picture of the particular state of the cancer cell on a
patient-to-patient and population-to-population basis. The addition of fundamental
background knowledge, such as cell-type-of-origin [9] and clinical information, to the
description of tumor or patient can further enrich the data available for prediction of
drug resistance and patient survival. Yet, the challenges of integrating such knowledge,
which is often categorical, with quantitative omics data have meant that there are few
examples of successful implementation. The combination of multiple types of omics
together with other types of data might therefore be expected to facilitate methods that
can predict patient-specific outcomes and guide clinical decision-making [10–12].

Several large projects, such as the Cancer Genome Atlas (TCGA) [13], Molecular
Taxonomy of Breast Cancer International Consortium (METABRIC) [14], and
TARGET [15], have characterized different types of cancer on multiple levels and
generated different types of omics datasets for these cancers. We exploit this rich data
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and integrate it with background knowledge to develop a model for cancer survival, and
to highlight genes that make the most significant contribution to the model on a
patient-by-patient basis.

There are several different methods available for integration and analysis of
multi-omics data [16,17]. One of the key challenges is the high dimensionality of data
which can be addressed through unsupervised machine learning to generate latent,
lower-dimensional representations that are subsequently used for prediction
tasks [18,19]. These methods may also allow incorporation of background knowledge
such as pathways or biological interaction networks which are crucial for understanding
and representing cancer pathophysiology [20,21]. There are now a large number of
methods for machine learning with multi-omics data [12,22–24] using a wide range of
different approaches; a common approach is the prediction of survival time for which
benchmark datasets have been developed [25].

To model cancer progression, quantitative relationships and dependencies between
functional elements within a cell need to be captured. While these dependencies are
traditionally characterized using systems biology models based on ordinary or partial
differential equations [26], these quantitative relations are not immediately accessible in
many machine learning models. Furthermore, while there has been significant progress
in interpretability of machine learning methods [27], they are not yet regularly applied
to high-dimensional biological data.

We developed DeepMOCCA, a computational model using graph convolutional
neural networks that incorporates background knowledge in the form of interaction
networks. DeepMOCCA is an end-to-end deep learning model that predicts survival
from cancer multi-omics data and generates a representation of nodes and cancer
samples; using an attention mechanism, DeepMOCCA can identify cancer drivers and
prognostic markers in individual samples and stratify cohorts based on molecular
characteristics. To ensure that DeepMOCCA focuses primarily on the dynamic
interactions that occur within a cell, it relies only on information about the sample, i.e.,
omics data and the tumor type and anatomical location, but does not incorporate
clinical information (e.g., age or sex) which may correlate with cancer progression and
survival but does not provide information on molecular or cellular patho-etiology. We
illustrate that DeepMOCCA predicts survival time accurately and similarly to
competing methods (including those that incorporate clinical information) and reliably
identifies cancer drivers and prognostic markers. We also make DeepMOCCA freely
available as a software tool, including all the necessary steps to train the model, so that
it can be adapted easily to related applications.

Results

Integration and analysis of multi-omics data in graph neural
networks

We developed a machine learning approach to learn representations of the multi-scale
activities and interactions within a tumor from multi-omics data associated with
individual cancer samples by predicting an easily obtainable measure, the survival time.
Our model takes as input data derived from individual samples, in particular the set of
germline and somatic variants, absolute methylation in normal and tumor tissue,
absolute gene expression in normal and tumor tissue, copy number variants detected in
tumor tissue, and the cancer type and anatomical location. We use this information to
calculate differential expression and differential methylation and determine the cell type
of origin.

Our approach leverages background knowledge to address three key challenges:
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integration of different types of omics data; modeling the dynamics and interactions
within a cell; and interpretation and explanation of the analysis results. We integrate
the different types of data using biological background knowledge in the form of a graph
in which nodes represent genes, transcripts, and proteins, and edges between nodes
represent (genetic or physical) interactions between them. For this purpose, we design a
set of mapping functions that map the information from the multi-omics data to nodes
in this graph. Using genetic variants in germline and somatic genomes, we assign a
value to gene nodes that represents the pathogenicity prediction score for the most
pathogenic variant within that gene; if a variant is intergenic, we assign its
pathogenicity score to the nearest gene. For absolute gene expression in the tumor, we
assign the absolute expression value of a transcript to the node representing that
transcript. Differential gene expression and differential methylation are each used to
assign a single value to each node based on the fold change between normal and tumor
tissue for differential expression and the p-value of the differential methylation. Copy
numbers are assigned qualitatively to gene nodes depending on whether a gene is
affected by a deletion or duplication.

As a result, we obtain a graph in which nodes are assigned a list of values for each
sample. Some samples lack a particular datatype in which case we treat the values as
missing. The edges between nodes in the graph represent functional interactions. We
hypothesize that some of the omics features we include (or the combination of features)
localize on this graph, i.e., that the attributes of nodes in small connected subgraphs are
significantly related to observable phenotypes. Graph convolutional neural networks can
exploit this locality using methods such as message passing between adjacent nodes [28],
whereas message passing in our labeled graph corresponds to modeling the affect that
features (e.g., gene expression, methylation, or variants) associated with one node have
on related nodes. Being able to quantitatively represent and compute these
dependencies will capture some aspects of dynamic interactions that occur within a cell.

We use the graph labeled with values derived from an individual samples’ omics data
to predict patient survival time using a graph convolutional neural network combined
with Cox regression. Cox regression is a means to account for censored data in
regression analysis; integrating Cox regression with a graph convolutional neural
network allows us to train the model in an end-to-end fashion to predict survival time in
individuals from the samples’ omics data. As our graph is based on functional
interactions between genes or proteins and uses message passing to generate node
representations, back-propagation used during training will generate the quantitative
dependencies between nodes. Figure 1 shows the model we use.

Initially, we apply our model to breast cancer, lung cancer, and glioblastoma cohorts
so we can evaluate the impact of different types of omics data on survival time
prediction on a small set of different cancer types. We evaluate model performance
using the Concordance index (C-index) to measure the difference between predicted and
assigned survival time. Results are summarized in Supplementary Table 1. We find
that, individually, differential methylation, absolute methylation, and differential gene
expression are most predictive of survival time. Combining different omics features
provides significant improvements in predicting survival time, with the highest
performance achieved when all types of omics data are combined.

Our model also allows us to test different ways of representing omics data. We
tested different ways to normalize values assigned to genes as these normalizations
convey different biological information; in the matrix of values assigned to genes from
cancer samples, we can normalize values across the entire matrix, across each row
(cancer sample), or across each column (gene). While a global normalization is more
common, row-based normalization allows us to highlight values that are significantly
higher or lower within one sample (e.g., which genes are expressed at high or low levels
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Fig 1. Graph convolutional neural network model for survival time prediction across
different cancer types.

within a single sample), and column-based normalization allows us to highlight values
assigned to a particular gene that are significantly higher or lower within one sample
(e.g., whether a gene is expressed at higher or lower levels within one sample compared
to all others). We find that column-based normalization performs better than row-based
normalization, while the global normalization approach performs close to random. The
best results are achieved when combining both row- and column-based normalization
(Supplementary Table 2).

After optimizing our model on these three cancer types we developed a joint model
that can predict survival time for 33 types of cancer. While a main motivation of having
a joint model for multiple types of cancer is simplicity, we also tested whether
information can be transferred between different cancer types and therefore improve
overall predictive performance (Supplementary Table 4). To allow our model to
distinguish between multiple types of cancer, we add the clinical cancer type as well as
the anatomical site of the cancer as additional inputs; furthermore, based on the cancer
type we assign the cancer’s morphological classification and use it as another input. All
this additional information is routinely obtained through clinical investigations and
available for any tumor sample. Performance results for evaluating the model are shown
in Supplementary Table 3. We find that the joint model can further improve over
models trained on only single cancer types, showing that at least some transfer of
information occurs when combining information from different cancer types. We also
use this model to compare our performance to other efforts to predict survival from
cancer multi-omics data. Other models generally predict survival time only for single
types of cancer and use additional features beyond omics data, including images. We
individually compare our model to other models predicting survival time on 23 different
cancer types, and find that our joint model improves over predictive performance
observed in other models on the same datasets (see Table 1). In addition to our deep
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Cancer
type

Deep
MOCCA
(indi-
vidual
model)

Deep
MOCCA
(joint
model)

Pancancer
model
(single
can-
cer) [29]

Pancancer
model
(pan-
cancer)
[29]

Surv-
GCNN
[30]

Survival-
Net
[31]

Cox-
PASNet
[32]

Cox-
nnet
[33]

BRCA 0.86 0.86 0.62 0.79 0.76 0.68 - 0.67

GBM 0.79 0.84 - - - 0.84 0.65 0.62

KIRC 0.85 0.87 0.78 0.73 0.78 0.79 - 0.74

LIHC 0.77 0.79 0.78 0.77 0.71 - - 0.73

BLCA 0.61 0.77 0.60 0.73 0.70 - - -

CESC 0.59 0.84 0.52 0.76 - - - -

COAD 0.68 0.87 0.58 0.74 0.79 - - -

READ 0.62 0.74 0.58 0.74 - - - -

HNSC 0.66 0.87 0.64 0.67 0.61 - - -

KICH 0.73 0.77 0.69 0.93 - - - -

KIRP 0.54 0.80 0.51 0.79 - - - -

LAML 0.68 0.70 0.65 0.67 - - - -

LGG 0.77 0.77 0.73 0.85 0.81 - - -

LUAD 0.78 0.88 0.72 0.73 0.67 - - -

LUSC 0.66 0.86 0.63 0.66 0.59 - - -

OV 0.58 0.85 0.54 0.67 0.64 - - -

PAAD 0.61 0.72 0.57 0.74 - - - -

PRAD 0.79 0.72 0.76 0.81 - - - -

SARC 0.81 0.87 - - 0.73 - - -

SKCM 0.60 0.73 0.54 0.72 - - - -

STAD 0.67 0.85 0.60 0.78 0.66 - - -

THCA 0.57 0.85 0.53 0.90 - - - -

UCEC 0.69 0.79 0.67 0.85 0.77 - - -

Table 1. Performance comparison based on the C-index. For the glioblastoma dataset,
SurvivalNet combines the GBM and LGG datasets while we treat them separately. For
COAD and READ datasets, [29] combines both and we report their performance
measure twice in both datasets. Bold numbers indicate the best performance obtained
across the set of algorithms.

learning model architecture, the main difference between related methods and
DeepMOCCA is the use of an interaction network, indicating that use of protein
interactions as background knowledge can improve cancer survival analysis.

Exploring graph attention

We include an attention mechanism in our model which allows us to identify the graph
nodes that are important for predicting survival. In contrast to methods such as feature
selection or ranking, graph attention provides a mechanisms that identifies feature
importance in a sample-specific manner. This mechanism therefore allows us to rank
the importance of graph nodes (genes or their products) for each sample.

For each sample in our evaluation set, we rank the graph nodes using the attention
mechanism. We hypothesize that the highest-ranked nodes represent prognostic markers
and cancer drivers. As shown in Table 2, we find that between 96.9% (in uveal
melanoma) and 54.1% (in kidney chromophobe renal cell carcinoma) samples have a
cancer driver gene listed in COSMIC at the highest-rank for that specific cancer type.
Nodes ranked by the attention mechanism within the top ten also represent cancer
drivers (between 72.5% for kidney renal clear cell carcinoma and 28.5% for
pheochromocytoma and paraganglioma). Furthermore, we find that the attention
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Cancer type Number of samples Actual total number of driver genes ROCAUC Precision@1 Precision@5 Precision@10
TCGA-ACC 80 15 0.7836 0.7595 0.3472 0.2947

TCGA-BLCA 407 78 0.8462 0.8747 0.6532 0.5327
TCGA-BRCA 1044 99 0.8608 0.8916 0.7261 0.6049
TCGA-CESC 294 45 0.7643 0.7285 0.5423 0.4726
TCGA-CHOL 36 45 0.8726 0.6648 0.4075 0.3673
TCGA-COAD 433 45 0.8264 0.9053 0.8159 0.6512
TCGA-DLBC 37 85 0.7921 0.7356 0.5093 0.4302
TCGA-ESCA 184 71 0.8165 0.7790 0.4487 0.3836
TCGA-GBM 166 35 0.8644 0.6362 0.5170 0.3528
TCGA-HNSC 510 62 0.7637 0.5735 0.4774 0.3647
TCGA-KICH 66 7 0.6574 0.5406 0.4187 0.3911
TCGA-KIRC 339 22 0.8820 0.9175 0.8673 0.7247
TCGA-KIRP 288 24 0.8017 0.7549 0.6529 0.5563
TCGA-LAML 140 61 0.8537 0.6842 0.4914 0.3159
TCGA-LGG 511 38 0.7758 0.8754 0.6850 0.4630
TCGA-LIHC 371 31 0.7681 0.7961 0.5368 0.3546
TCGA-LUAD 509 42 0.9039 0.8623 0.6846 0.5295
TCGA-LUSC 496 60 0.8378 0.8024 0.4774 0.3305
TCGA-MESO 83 17 0.6346 0.6735 0.4672 0.2964

TCGA-OV 443 37 0.7963 0.6382 0.4290 0.3151
TCGA-PAAD 178 52 0.7952 0.7382 0.4955 0.3080
TCGA-PCPG 179 9 0.6119 0.5569 0.3148 0.2846
TCGA-PRAD 498 82 0.8474 0.8642 0.6093 0.4523
TCGA-READ 158 72 0.9106 0.9085 0.7536 0.4239
TCGA-SARC 255 8 0.6846 0.7530 0.5492 0.3751
TCGA-SKCM 456 39 0.7551 0.7734 0.5854 0.3482
TCGA-STAD 414 35 0.7323 0.7915 0.6242 0.4678
TCGA-TGCT 134 9 0.6670 0.7891 0.5726 0.3586
TCGA-THCA 496 40 0.8367 0.8143 0.6480 0.5732
TCGA-THYM 123 11 0.6994 0.9472 0.8128 0.4307
TCGA-UCEC 542 66 0.7580 0.8538 0.6349 0.4287
TCGA-UCS 55 21 0.7215 0.7154 0.5640 0.3889
TCGA-UVM 80 11 0.6862 0.9688 0.8525 0.5763

Table 2. Evaluation results for rank-based attention mechanism based on the joint
model with respect to the precision at different ranks in identifying known cancer
drivers.

mechanism also ranks prognostic markers in the highest ranks; average ranks for known
prognostic markers in each cancer type are shown in Supplementary Table 5. These
results also allow us to identify candidate genes not known to be cancer drivers or
prognostic markers but ranking highly across multiple samples (Supplementary File 1).

Genes that are ranked significantly higher by our model’s graph attention
mechanism across all samples within a cohort are in Supplementary File 2 (t-test,
α = 0.05, Benjamini-Hochberg correction). We identify the known driver genes as being
ranked significantly higher within their cohorts.

The inputs of our model are omics data derived from individual samples; before our
model performs regression for survival time, it generates a “representation” of the input
features. These representations may be useful for patient cohort stratification. We
illustrate the distribution of the features representation for each cancer patient with a
t-SNE visualization in Figure 2.

To estimate global similarity between the 33 cancer types included in our study, we
identify the pairwise similarity between the average of the generated representations for
the 33 cancer types (Figure 3). We find that some cancer types are very similar to other
types, such as colon adenocarcinoma (COAD) and rectum adenocarcinoma (READ), or
low grade glioma (LGG) and glioblastoma (GBM). The renal tumors kidney renal clear
cell carcinoma and kidney renal papillary cell carcinoma (KIRC and KIRP) are similar
to each other, but both are also related to prostate adenocarcinoma (PRAD). While
this is somewhat unexpected, it is noteworthy that very rare cases of primary renal-type
clear cell carcinoma have been described in the prostate [34] and the ontogenic relations
of prostate and metanephros are very close. The similarities between ovarian carcinoma
and thyroid carcinoma may be unintuitive; however, both cancer types fall into the
same subclass (C7) of cancers characterized using multiple omics parameters in a
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Fig 2. Visualization of features representation using the t-SNE method over the 33
cancer types.

previous study [35] and are cancers with an intermediate prognosis. The representations
we use for clustering are based on the prediction of survival and not necessarily linked
to tissue-specific oncogenic processes; consequently, we may identify relations between
tumors that extend beyond tissue of origin or histological type.

Discussion

Deep learning on multi-omics data

DeepMOCCA is a method for integrating and analyzing omics data with respect to
background knowledge in the form of a graph. While we applied DeepMOCCA to
cancer survival prediction, our method can be applied to other phenotypes in which
single or multiple types of omics data are available, phenotypes are likely associated
with modules of interacting genes or proteins, and for which training data such as
survival time is available. Predicting survival time, while useful, is not the main
outcome of our work; instead, following a deep learning approach [36], our model
generates representations of samples derived from a combination of molecular features
and molecular interactions; these representations can be used – in a patient-specific
manner – to reveal pathophysiology, cancer drivers, and prognostic markers.

While DeepMOCCA uses interaction networks, other types of background knowledge
can be used in a similar manner. The main conditions are that the background
knowledge used can be represented as a graph, that the relations convey biologically
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Fig 3. Visualization of the correlation matrix for the 33 cancer types.

meaningful information, and that the phenotype correlates with modules (i.e., sets of
related nodes) in the graph. Representing knowledge in a graph-based form is
increasingly common and forms the foundation of a growing number of bioinformatics
resources [37], thereby allowing our method to be used for other types of data and
conditions; in the future, we expect similar methods to be adopted using either different
types of features or different labels, including quantitative and binary traits.

DeepMOCCA is able to outperform other survival models on most cancer types
(Table 1). Similarly to DeepMOCCA, other models have previously explored survival
models based on Cox regression and trained using TCGA data [31,38–41], integrated
and utilized multi-omics data for predicting survival or driver genes [32,42–44], applied
transfer learning to develop pancancer models [29], and utilized graph convolutional
neural networks to include background knowledge in these models [45]. The majority of
prognostic machine learning models include different types of clinical information as
part of predicting survival; in particular, using age and sex as covariates can
significantly improve predictive performance. DeepMOCCA is different from prior work
in several aspects; first, instead of focusing on prognosis as a main goal, DeepMOCCA
includes a graph attention mechanism to identify graph nodes (corresponding to genes
or proteins) that contribute to the prognosis; DeepMOCCA uses only information
derived directly from the tumor (multi-omics data, tumor type, and anatomical
location) and specifically highlights the pathobiological mechanisms underlying a
prognostic prediction; DeepMOCCA also includes as background knowledge functional

March 1, 2021 9/25

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 2, 2021. ; https://doi.org/10.1101/2021.03.02.433454doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.02.433454
http://creativecommons.org/licenses/by/4.0/


interactions between proteins [46] but does not include graphs in which edges have no
functional biological interpretation (such as similarity networks). Furthermore, as
DeepMOCCA relies primarily on multi-omics data, we spent significant effort to explore
different ways to represent and normalize these data types so that the data can
meaningfully be used as part of the model optimization process; this likely explains why
our model can provide predictions as accurate as other deep learning models that use
the same dataset and (transfer) learning approach as DeepMOCCA but also include
clinical data (whereas DeepMOCCA does not).

One key limitation of the DeepMOCCA model is the lack of model interpretability
with respect to the multi-omics features relevant for a prediction. The attention
mechanism in DeepMOCCA outputs graph nodes that are relevant for predicting
survival but not the node feature that contributed to the prediction. In the future, an
additional mechanism could be added to also highlight the feature of a graph node that
contributes to a prediction.

Identifying prognostic markers and cancer drivers through
graph attention

DeepMOCCA can identify prognostic markers and cancer drivers through graph
attention (Table 2). In our analysis, most of the markers and drivers we identify in the
highest ranks are already well-known.

We used two strategies for further identifying candidate genes from our attention
mechanism. The first is at the level of the complete cohort by determining whether a
gene is ranked significantly higher than expected through the attention mechanism, and
determining the effect size. The second is to examine the frequency with which the gene
is implicated at an individual level, i.e., in how many tumors the gene is highly-ranked
by attention. The former assumes that the cohort of patients is coherent and
unstratified, whereas the latter assigns individual patients to categories. Larger patient
groups would improve the detection of subgroups within the overall cohort but we
believe that the size of the cohort makes the cohort-wide approach unlikely to support
the discovery of novel candidate genes that characterize small cancer subgroups. The
identification of candidate genes through graph attention, however, is applicable to
single patient samples, and can identify the nodes that are most active in computing
survival time for this sample. In both the individual and cohort approaches,
DeepMOCCA relies not only on information from mutations alone but also on gene
expression and methylation.

We focus here on two cancers with complementary patterns of identified prognostic
genes in more detail, breast adenocarcinoma (BRCA) and prostate adenocarcinoma
(PRAD). In PRAD, we find that most genes we identify through graph attention have
already been identified as driver genes (74 out of 82 genes in the IntOGen database) but
we fail to find some well-established prognostic genes (such as AR, TP53, and SPOP) as
being ranked significantly higher across the whole cohort. In some cases, there are
possible explanations for this. For example, lack of significance for AR in our list likely
reflects that the tumors were all primary pre-treatment cases and androgen receptor
amplifications and mutations are much more common in treated metastatic tumors than
primary tumors [47]. However, these genes are ranked top in several samples (six times
for AR, seven times for TP53, and four times for SPOP). For example, somatic
mutations in SPOP account for 13.7% of tested tumors as estimated by TCGA (data
from Genomic Data Commons Data Portal [48]) and 11.0% as estimated by
IntOGen [49]. Comparing these frequencies to those we find indicated by graph
attention suggests that SPOP mutations are not primarily driving survival prognosis in
our model. Other previously established markers may also be missed because attention
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ranks genes specifically based on on their impact on survival time, which in many cases
may show a different dependency than tumor initiation, and relates in a complex way to
tumor propagation [50]. This hypothesis is supported by direct epidemiological evidence
where SPOP mutations have been reported not to be associated with cancer-specific
survival in the absence of other clinical data [47] (which DeepMOCCA also does not use).
Interestingly, also using the TCGA dataset, not even the relationship between favorable
histology and SPOP mutations in tumors reached significance in another study [51]. It
is also interesting that we find TP53 to be significantly associated with only 13 out of
33 cancer types when testing significance within a cohort; similarly, for most cancer
types examined in Donehower et al. [52], no statistically significant differences in overall
survival were observed for mutant versus wild-type TP53 cancers, leading to the
conclusion that TP53 is only useful as a prognostic marker in some contexts.

Our frequency analysis suggests several genes not included in COSMIC or IntOGen
that might be candidates for further study. ZP4, a component of the oocyte zona
pellucida, has not been implicated as a driver gene or in the prognosis of any cancer but
ranks first in four samples. ZP4 has recently been detected in a prostate cell line and
prostatic adenocarcinoma with the suggestion that it might be useful as a prognostic
marker or be part of tumor immunosurveillance processes [53]. CRX ranks first in four
samples; CRX is a cone-rod homoeobox transcription factor which plays a role in the
differentiation program of photoreceptor cells and has been strongly implicated in the
growth and differentiation of an aggressive sub-class of medulloblastoma [54]. While
still not formally assigned as a cancer driver or prognostic marker, prior work and our
findings suggest that CRX may predict outcomes in prostate cancer as well as
medulloblastoma. The gene is normally expressed at low levels in the prostate, mainly
in epithelial cells, where its function is unknown [55]. We also identify TUBB3 as
highest-ranked gene in three samples. TUBB3 is a beta tubulin gene. So far, it has not
been associated as a cancer driver but there is evidence that it is not only a prognostic
marker for prostate adenocarcinoma but also indicates responsiveness to docetaxel and
is a candidate theranostic marker [56,57]. Our evidence from graph attention supports
this line of investigation and illustrates the utility of our prognostic model.

The BRCA cohort has 1,044 samples and we identify all of the BRCA-associated
genes in IntOGen as ranking first in some samples (the 99 driver genes for BRCA listed
in IntOGen rank first in between three and 21 samples). However, the statistical power
of the cohort-wide analysis only allows us to identify 7 genes as significant. We identify
several candidate genes ranked first by attention in multiple patients, such as TMEM88
and SDR42E2. TMEM88 is a small transmembrane protein that inhibits Wnt signaling
and has been implicated in several cancers, of which breast adenocarcinoma is
one [58, 59], but it has not been formally identified as a driver gene (although COSMIC
records an effect on chemotherapy drug sensitivity). However, cytosolic TMEM88 has
been correlated with advanced stage and metastasis, and has been proposed as a
biomarker in BRCA, ovarian cancer, and non-small-cell lung cancer [59]. Because of the
effect of TMEM88 on the Wnt signalling pathway, identification of TMEM88 by graph
attention in these two samples might indicate that Wnt pathway-modifying treatments
might be an effective personalized therapeutic strategy; the low frequency of
TMEM88-associated samples shows how DeepMOCCA may improve the precision of
deciding on personalized treatments.

SDR42E1 is a short chain dehydrogenase/reductase family member and metabolizes
steroid hormones [60]. It is not listed as a driver or prognostic gene in COSMIC or
IntOGen. Very little is known about the function of this gene in cancer, but its
epigenetic control in colorectal cancer has come under scrutiny [61]. In colorectal cancer,
it shows aberrant methylation marks as well as an unusual response to 5-aza-dC in cell
lines [62]. DeepMOCCA uses DNA methylation as a feature in modeling survival and it
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is possible that the epigenetic behavior of SDR42E1 explains its graph attention score
in these samples. While these may be possible explanations, the absence of
interpretability on the level of omics features (in contrast to genes) emphasises the need
to further develop the DeepMOCCA model and add additional mechanisms that can
also identify the specific node features contributing to a prediction.

Conclusions

DeepMOCCA is a computational model based on machine learning that addresses three
challenges in understanding molecular cancer pathobiology: DeepMOCCA integrates
multiple type of omics data and background knowledge using a graph-based approach; it
predicts survival time in a patient-specific manner using a graph neural network; and it
can be interpreted through the use of graph attention. In particular the interpretability
of the model, and its application to individual samples (in contrast to cohorts) allows it
to be applied as a tool for precision medicine. DeepMOCCA is available as Free
Software [63] at https://github.com/bio-ontology-research-group/DeepMOCCA.

Methods

Multi-omics dataset

We utilized multiple types of omics data downloaded on 18 May 2020 from The Cancer
Genome Atlas (TCGA, http://cancergenome.nih.gov; dbGaP phs000178) [13]. For
each type of cancer, we use the data related to gene expression, DNA methylation, copy
number variation (CNV), single nucleotide variation (SNV), and associated clinical data.
In total, we obtain and use information for 10,005 samples from 33 cancer types; gene
expression data is available for 10,558 samples, DNA methylation for 10,943 samples,
CNVs for 11,126 samples, SNVs for 10,418 samples, and clinical data (including survival
data) for all 10,005 samples. Supplementary Table 6 summarizes the data obtained from
TCGA.

Cancer morphological type and anatomical location

The cell type of origin and the anatomical site of cancer occurrence can reflect in
similarities in tumor incidence and behaviour. In the past decade it has been shown for
many different cancers that such similarities correlate with similar patterns of gene
expression, epigenetics and characteristic chromosome abnormalities that link the cell of
origin with the tumor [9]. We used information on the cell type of origin and anatomical
site of tumor occurrence in building our model for predicting survival, integrating
annotations for each tumor into the GCN as described below.

While it is difficult to unambiguously assign a cell of origin to all cancers, we can
make use of the morphological characterization of tumors available in the NCI
Thesaurus terminology which carries within it an implied association with cell type or
tissue of origin [64]. For example, carcinoma (C2916) has as parent in the NCI
Thesaurus “epithelial neoplasm” (C3709) which captures information on the cell type of
origin. For each tumor, the most primitive parent below the superclass of “Neoplasm by
morphology” or “Neoplasm by site” was used to describe the tumor sample. Tumors
were annotated to 33 NCIT classes in the data provided by TGCA. The only exception
was for tumors of neural crest origin where this was considered to be a more meaningful
classification of these tumors given the close similarity between the ontogeny, behaviour
and characteristics of these tumor types [65]. This concept is not available in either
NCIT or in ICD-O3 but allowed us to express the similarity between for example
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melanoma whose parent class in the morphological axis is only “melanocytic neoplasm”
and adrenal pheochromocytoma, classified only as an “epithelial neoplasm”.

Tumor topography presents a different set of problems in that it may be variously
characterized as the site of origin of a specific instance of the tumor or the site of the
originating cell. For example, using ICD-O3 [66], osteosarcoma of the kidney can be
described as either located in the kidney or in bone [67]. The TGCA data was coded to
ICD-O3 in the sense of the location of the tumor or site of biopsy. For the most part,
these are primary tumors found in the tissue location of the presumed cell of origin.
However, with lymphoid neoplasms arising in lymphoid tissues around the body, these
are not annotated to the reticuloendothelial system or the blood, but the organ in which
they were found. We have consequently used most of the 51 TGCA anatomical
annotations as given, as they capture information from an orthogonal axis to the
morphological characteristics, and it is known that site of occurrence often has a
characteristic effect on tumor behavior. In only a few cases did we make changes:
annotations to “Uterus NOS” and “Corpus Uteri” were merged, as were annotations of
cholangiocarcinoma to “Liver and intrahepatic bile ducts” and “Other and unspecified
parts of biliary tract”. Rectal adenocarcinoma tumors annotated to “connective,
subcutaneous and other soft tissues” were reassigned to “Rectum”. Supplementary
Tables 7 and 8 show the assignment of cancers to morphological type and anatomical
parts.

Protein–Protein interaction data

We use a protein interaction network for human proteins downloaded on 29 April 2020
from the STRING database version 11.0 [46]. STRING 11.0 contains 19,257 proteins
and 11,780,842 edges between them incorporating both direct physical interactions and
other functional interactions. STRING provides a confidence score for each interaction.
We remove interactions with confidence score of less than 700. The remaining
interaction network consists of 17,186 proteins with 736,125 interactions. We map the
protein identifiers in the STRING interaction network to Ensembl gene identifiers [68]
resulting in one gene for each protein. Nodes in our graph aim to represent a
combination of genes, transcripts, and proteins.

Cancer drivers and prognostic markers

We retrieved the driver genes for each cancer type from COSMIC database [69] on 13
June 2020. COSMIC contains a total of 723 driver genes within 327 cancer types. We
mapped 359 driver genes to the 33 cancer types in TCGA.

We further used the Personal Cancer Genome Reporter (PCGR) [70] version 0.9.0 on
4 October 2020, which is a functional annotation tool to interpret somatic SNVs and
CNVs. The PCGR tool combines several knowledge resources of tools and databases
such as Variant Effect Predictor (VEP) [71], CHASMplus [72], Cancer Genome
Interpreter database (CGI) [73] and TCGA which produce an individual specific report
for all the 33 cancer types. We obtained a total of 135 prognostic markers including 69
driver genes and then derived their averaged rank using the attention mechanism as
shown in Supplementary Table 5.

Processing of multi-omics data

Absolute Gene Expression Data

TCGA provides gene expression data for cancer samples as read counts normalized by
different approaches: Fragments per Kilobase of transcript per Million mapped reads
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(FPKM), and the upper quartile of Fragments per Kilobase of transcript per Million
mapped reads (FPKM-UQ). FPKM normalizes read count by dividing it by the gene
length and the total number of reads mapped to protein-coding genes. The FPKM-UQ
is a modified FPKM calculation in which the total protein-coding read count is replaced
by the 75th percentile read count value for the sample. We assigned the provided gene
expression values for each sample to the gene entities by direct match (i.e., a 1-1
mapping) of Ensembl gene identifiers as provided in TCGA dataset and gene nodes in
the patient graph. In total, we assigned all graph nodes (i.e., the 17,186 genes) to their
expression values.

Differential Gene Expression Data

We applied differential expression analysis to identify differentially expressed genes
using the TCGAbiolinks library [74], which calculates the difference of expression level
of a gene between the mutant and normal sample multiplied by the log2 Fold Change
(log2FC) between normal A and tumor B tissues for each sample:

log2FC(A,B) = log2(
B

A
)

Delta(δ) = log2FC × (B −A)
(1)

We assign the calculated δ values for all the 17,186 gene nodes.

Absolute DNA Methylation Data

Methylation is a biological process in which methyl groups are added to the DNA
molecules by enzymes that affect (i.e., methylate) specific DNA regions (called CpG
sites) which in turn change how genes being expressed and regulated [75]. TCGA
provides a measurement for the level of methylation at known CpG sites as beta values,
i.e., the ratio between the methylated probe intensity and the overall intensity (i.e., sum
of methylated and unmethylated probe intensities) [76]. It falls between 0 (lower levels
of methylation) and 1 (higher levels of methylation). We mapped the provided level of
methylation values for transcript entities ti in the TCGA dataset to their corresponding
gene nodes in the patient graph by averaging the methylation values for these
transcripts and assigned the resulted value to their corresponding gene as follow:

Methylated value(gene) =

N∑
i=1

ti
N

(2)

In total, 863,904 CpG loci have been sequenced and we assign all graph nodes (i.e.,
17,186 genes) to their averaged transcripts methylated values.

Differential DNA Methylation Data

We identified differentially methylated regions (DMR) by measuring the significant
difference between the methylated value in tumor and normal tissue. We consider
regions as differentially methylated based on the Wilcoxon rank-sum test adjusted by
Benjamini-Hochberg method with p < 0.05, and then we assign the calculated p-value
for each gene nodes (i.e., 17,186 genes).

Copy Number Variation Data

The TCGA dataset provides categorical data for each gene whether the gene is in a
copy number gain (value of 1), loss (value of −1), or not (value of 0). We mapped the
provided CNV category for each gene in the TCGA dataset to the gene nodes in the
patient graph (i.e., 17,186 genes).
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Single Nucleotide Variation Data

TCGA provides single nucleotide variants (SNVs) for germline and somatic variants.
We annotated each variant with its pathogenicity score derived from the FATHMM
tool [77] using Annovar [78]. We then assigned each gene node with the maximum
pathogenicity score among all its variants, separately for germline and somatic variants;
if a variant is intergenic, we assign its pathogenicity score to the nearest gene. The
pathogenicity values range from 0 to 1.

Clinical Data

Clinical data provided by TCGA includes several types of data such as patient
diagnosis, demographics, exposures, laboratory tests, and family relationships, age,
survival time, and the number of days to last followup. We use the days to last followup
and days to death as patients survival time values assigned to each patient graph
whether this patient alive or dead.

Mapping sample features to node features

We assign values derived from different omics data types to the STRING graph. Each
TCGA sample is used to assign a set of attributes to nodes in the graph. We define a
set of mappings functions fi : S 7→ G that map information derived from an individual
sample S to attributes of nodes in G. We implement mapping functions for gene
expression, methylation, somatic mutations, and copy number variants.

We normalize the data when mapping them to our graph; here, normalization means
to transform the values so they lie in a range between 0 and 1. There are different ways
in which we can perform this normalization: globally, by gene or node, and by sample.
A global normalization identifies the minimum and maximum values νmin and νmax of
gene expression across all samples and all genes and normalizes all values based on νmin
and νmax. Normalization by gene identifies the minimum and maximum expression
values νgmin and νgmax for a gene g across all samples, and normalizes the expression
values for each gene g based on νgmin and νgmax. Normalization by sample identifies the
minimum and maximum values νmin and νmax of gene expression across all genes for
that sample and normalizes all values based on νmin and νmax.

Gene-based normalization captures the range of gene expression (or methylation)
across multiple samples and can be used to determine whether a gene is expressed
relatively high or low in a single sample compared to other samples. Sample-based
normalization, on the other hand, identifies the minimum and maximum gene
expression within each sample and normalizes each expression within a sample by these
values; sample-based normalization can be used to determine genes expressed relatively
high or low within a sample compared to other genes in the same sample. Each of these
normalization techniques alone is subject to several biases, and we can combine the
different normalization methods and assign multiple attributes to each node in G.

The model architecture

Our model combines a Cox proportional hazards regression with a graph convolutional
network that incorporates prior knowledge as shown in Figure 1. The model takes as
input omics data derived from individual cancer samples (gene expression, DNA
methylation, CNVs, SNVs), the general type of cancer taken (one of the 33 types in
TCGA), the anatomical location of the cancer sample, the cancer subtype (i.e., the
cancer subgroup based on certain characteristics of the cancer cells), and the cell type of
origin (describe from which cell this cancer originate). For using the model, only the
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omics data, cancer type, and anatomical location must be provided whereas the
morphological classification is derived automatically according to Supplementary Table
7. As an output, our model produces a prediction of survival time for a patient based on
the chosen different cancer types and subtypes.

Graph Convolutional Network

We use a Graph Convolutional Network (GCN) [79] to process the omics data. A GCN
is a neural network that operates on graphs. A GCN uses as inputs a graph G = (V,E)
and a feature matrix X of dimension |V | × |F | (where |V | is the number of nodes in G
and |F | is the number of features per node). The matrix A of dimension |V | × |V | is the
adjacency matrix of G.

In our model, patient-derived omics data is represented as a feature matrix X of the
form 17186× ζ where 17186 is the number of nodes in our graph and ζ the number of
features we assign for each node; depending on the model and availability of data for
one sample, we assign between 1 and 8 features to each node. An adjacency matrix of
the form 17186× 17186 is used to represent the graph.

The adjacency and feature matrices are used as input to a GCN layer, H1 = f(X,A)

with f being a propagation rule; we use f as f(X,A) = ReLU(D−
1
2 ÂD−

1
2XW 0),

where RelU(x) = max(0, x) is the activation, Â = A+ I is the adjacency matrix with
inserted self-loops, Dii =

∑
j=0 Âij is the degree matrix, and W 0 is the weight matrix

for the first layer.
Following the first graph convolutional layer, we apply a pooling operation based on

self attention [80]. The self attention score Z is calculated as

Z = tanh(D−
1
2 ÂD−

1
2H1Θatt), idx = topRank(Z; dk · V e);Zmask = Zidx with

tanh(x) = exp(x)−exp(−x)
exp(x)+exp(−x) is the activation function, 0 < k ≤ 1, k being the pooling ratio

that determines the number of nodes to maintain, top dk · V e nodes are selected based
on the value of Z, topRank is a function that return the indices of the top dk · V e
nodes, Zmask is the mask for feature attention, and idx is an indexing operation. The
resulted attention score matrix is of dimension V × 1.

We apply second graph convolutional layer on the pooled graph. The input for the
second GCN are the adjacency and feature matrices for the pooled graph,
H2 = f(Xp, Ap); using the propagation rule f here as

f(Xp, Ap) = ReLU(D−
1
2 ÂpD

− 1
2XpW

1).
Then, we add a fully connected layer that applies a linear transformation on the

matrix X after the convolution as Y = W lX + b, where W l is the weight for the fully
connected layer, and b is the learnable bias. Subsequently, we apply a sigmoid function
that transforms Y to be between 0 and 1.

Cox regression

Survival prediction involves censored data where either an event is observed in a
particular time or no event is observed. The Cox regression model is semi-parametric as
there is no assumption about the distribution of the outcome. For a given patient i at
time of an event t (either death or censored), the hazard function h(t,Xi) in the Cox
model is build upon the proportional hazards assumption expressed as:

h (t,Xi) = h0(t) exp (Xiβ) (3)

where i = 1, 2, . . . , N , h0(t) is the baseline hazard function, Xi = (xi1, xi2, · · · , xiN ) are
corresponding to the covariates for an individual sample and β = (β1, β2, · · · , βN ) are
the model coefficients.
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Tuning the model

We utilized the RayTune tool [81] for choosing optimal sets of hyperparameters of the
graph convolutional network, we tuned the number of layers (1-5 layers), the respective
kernel sizes K ∈ {4, 8, 16, 32, 64} and the number of self-attention pooling layers
P ∈ {1, 2, 3, 4}. The optimal parameters were: 2-convolutional layers, kernel of size 32
for the first layer and 16 for the second layer, and one self-attention pooling layer.

Furthermore, we investigate different graph-based architectures such as
GENConv [82], GraphSAGE [83], GraphConv [84] and APPNP [85]. In GENConv, a
deeper GCN architecture is used with the help of residual connections. Furthermore,
GENConv propose a generalized message aggregation function which relied on
permutation invariant functions. For this architecture, we tuned the number of layers
(1− 5 layers) and the respective kernel sizes KN ∈ {4, 8, 16, 32, 64} and the aggregation
schema AG ∈ {softmax, softmaxsg, power, add,mean,max}. The optimal set of
parameters were: 2-convolutional layers with size of kernel equal 64 in the first layer
and 32 in the second layer and using mean as an aggregation operation. In GraphSAGE,
they introduced an inductive classification task where the goal is to generalize the graph
information to unseen nodes interactions during training. For this architecture, we
tuned the number of layers (1-5 layers) and the respective kernel sizes
KN ∈ {4, 8, 16, 32, 64}. The optimal set of parameters were: 2-convolutional layers with
size of kernel equal 16 in the first layer and 8 in the second layer. In GraphConv, they
introduced a hierarchical way (i.e., Weisfeiler-Lehman (WL) graph isomorphism test) to
generalize message passing process to higher orders of learn features for sub-graphs than
vertices. For this architecture, we tuned the number of layers (1-5 layers), the respective
kernel sizes KN ∈ {4, 8, 16, 32, 64} and the aggregation schema
AG ∈ {add,mean,max}. The optimal set of parameters were: 1-layer of kernel size 16
and using max as an aggregation operation. In APPNP, the graph convolutions are
defined with a teleport probability α inspired by the original PageRank algorithm [86].
For this architecture, we tuned the number of layers (1-5 layers), the respective kernel
sizes KN ∈ {4, 8, 16, 32, 64}, the propagation steps K ∈ {1, 2, ......, 10} and the teleport
probability α ∈ (0, 1] as used to perform tuning in APPNP paper. The optimal set of
parameters were: 1-layer, kernel size of 32, propagation steps of 3 and teleport
probability of 0.2. Supplementary Table 9 summarized the evaluation results between
different graph-based architectures.

Training, validation and testing

We investigated the performance of our deep learning-based regression algorithm in
predicting survival probability for a patient being survived. In our experiments, we used
samples omics data within 33 different cancer types with their known survival time
which defined as either the days until the patient’s death or until their last follow-up.
Both input data (i.e., 4 types of omics data) and output (i.e., the probability of whether
a patient survived or not) were standardized to mean of zero and standard deviation of
one. We randomly split our datasets into 85% and 15%, respectively, and we used 15%
of the training set as a validation set. The training and validation sets are used to train
and tune model parameters and select the best models, while the test set has been used
for reporting the evaluation results. We implemented our model using PyTorch
Geometric (PyG) [87] and Pycox [88] and performed training on Nvidia Tesla V100
GPUs which takes 1.5 hours. We utilized RayTune for tuning models parameters (see
Tuning the model subsection). We used Adam to optimize the graph convolutional
network parameters in training, and to predict the survival probability for a patient, we
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train the graph network as a regression task using partial negative likelihood:

L(β,X) = −
N∑
j=1

Xjβ − log

∑
i∈Rj

exp (Xiβ)

 (4)

where i = 1, 2, . . . , N,Xi are corresponding to the covariates for an individual sample, β
are the Cox model parameters, U is the set of uncensored samples, and Ri is the set of
patients with survival times Yj > Yi.

For the evaluation of our model and other different tested models, we use the
Concordance index (C-index) [89] as shown in Equation 5 which measures the
concordance between actual survival time and predicted hazard scores of all pairs of
individuals. C-index is an appropriate measurement in capturing the discriminating
ability of a predictive covariate to separate individuals with longer survival from those
with shorter survival when predicting their survival time [90]. In addition, we use the
Root Mean Square Error (RMSE) which measures the square root of the average
difference between the predicted hazard scores values and the actual survival time
values. The C-index is computed as

C-index =
1

num

∑
i:δi=1

∑
j:yi<yj

I[Xiβ̂ > Xj β̂] (5)

where i, j ∈ 1, . . . , N , num denotes the number of all comparable pairs, I[·] is the

indicator function and β̂ is the estimated parameters from the Cox based models.
Furthermore, we perform a random assignment for the omics features (i.e., assign

randomly the features to different samples than the original one). The aim of doing this
experiment is to test how our model will perform compared to the correct assignment,
and whether it predicts based on spurious correlations introduced through the graph.

We find (Supplementary Table 1) that the prediction performance by applying
random assignment is significantly different (lower) both for the C-index and RMSE
results than the original assignment in the three tested cancer types (Breast data,
RMSE: p = 0.0408 C-index: p = 0.0441, Lung data, RMSE: p = 0.0438 C-index:
p = 0.0426, Glioblastoma data, RMSE: p = 0.0401 C-index: p = 0.0421, two-tailed
t-test).

Analysis of similarities and attention ranking

To estimate the similarity between representations generated for different cancer types,
we compute Pearson correlation among the element-wise arithmetic mean of the
representations generated from each sample.

Availability of data and software

All data and software used to develop, apply and evaluate the models, except data
obtained from TCGA, are freely available at
https://github.com/bio-ontology-research-group/DeepMOCCA. Omics data used
to generate and apply the models is available from The Cancer Genome Atlas data
portal for researchers which have approved access by the NCI Data Access Committee.
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