| 1  | Title: The complete mitochondrial genome of a parthenogenetic ant, Monomorium triviale                                                 |
|----|----------------------------------------------------------------------------------------------------------------------------------------|
| 2  | (Hymenoptera: Formicidae)                                                                                                              |
| 3  |                                                                                                                                        |
| 4  | Authors: Naoto Idogawa <sup>1*</sup> , Chih-Chi Lee <sup>2</sup> , Chin-Cheng Scotty Yang <sup>3</sup> and Shigeto Dobata <sup>4</sup> |
| 5  |                                                                                                                                        |
| 6  | Affiliation:                                                                                                                           |
| 7  | <sup>1</sup> Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kyoto                                     |
| 8  | 606-8502, Japan.                                                                                                                       |
| 9  | <sup>2</sup> Institute of Evolution, Department of Evolutionary and Environmental Biology, University                                  |
| 10 | of Haifa, Haifa, 31905, Israel.                                                                                                        |
| 11 | <sup>3</sup> Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg,                                |
| 12 | VA, 24061-0131, USA.                                                                                                                   |
| 13 | <sup>4</sup> Department of General Systems Studies, Graduate School of Arts and Sciences, The                                          |
| 14 | University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan.                                                                            |
| 15 | *Corresponding author                                                                                                                  |
| 16 | E-mail: idogawa.naoto.na@alumni.tsukuba.ac.jp                                                                                          |
| 17 |                                                                                                                                        |
| 18 | ORCID digit of the author                                                                                                              |
| 19 | Naoto Idogawa: 0000-0003-4055-8204                                                                                                     |
| 20 | Chih-Chi Lee: 0000-0002-8778-1449                                                                                                      |
| 21 | Chin-Cheng Scotty Yang: 0000-0003-0967-5170                                                                                            |
| 22 | Shigeto Dobata: 0000-0003-1586-6758                                                                                                    |

## 23 ABSTRACT

| 24 | Monomoriur | <i>n</i> is one | e of the m | ost species | -rich yet | taxonomicall | y proble | matic ant g | genera. |
|----|------------|-----------------|------------|-------------|-----------|--------------|----------|-------------|---------|
|    |            |                 |            |             |           |              |          |             |         |

- 25 An East Asian species, *M. triviale* Wheeler, W.M., 1906, reproduces by obligate thelytokous
- 26 parthenogenesis and performs strict reproductive division of labor. We sequenced the *M*.
- 27 *triviale* mitogenome using next-generation sequencing methods. The circular mitogenome of
- 28 *M. triviale* was 16,290 bp in length, consisting of 13 protein-coding genes, two ribosomal
- 29 RNA genes, 22 transfer RNAs, and a single non-coding region of 568 bp. The base
- 30 composition was AT-biased (82%). Gene order rearrangements were detected and likely to be
- 31 unique to genus *Monomorium*. We announce the *M. triviale* mitogenome as additional
- 32 genomic resources for phylogenetic characterization of *Monomorium* and comparative
- 33 genomics of parthenogenetic ant species.
- 34
- 35 **KEYWORDS**: clonal ant, Hymenoptera, Formicidae, thelytoky
- 36

| 37 | In the hyperdiverse ant subfamily Myrmicinae, Monomorium Mayr, 1855 is among one of              |
|----|--------------------------------------------------------------------------------------------------|
| 38 | the most species-rich genera with over 300 described species including several successful        |
| 39 | tramp species such as the flower ant, M. floricola, M. salomonis, and the pharaoh ant, M.        |
| 40 | pharaonis (Pontieri & Linksvayer, 2019). However, recent studies (Ward 2015, Sparks 2019)        |
| 41 | suggest polyphyly of this genus, and genomic resources are therefore essential for resolving     |
| 42 | such a taxonomic issue.                                                                          |
| 43 | An East Asian species, M. triviale Wheeler, W.M., 1906 is particularly of our interest as it     |
| 44 | reproduces by thelytokous parthenogenesis where virgin queens produce both workers and           |
| 45 | next-generation queens (Gotoh at al., 2012; Idogawa et al., bioRxiv). To date, only partial      |
| 46 | mitochondrial DNA sequences have been reported, with all of which being identical among          |
| 47 | populations in Japan (Idogawa et al., bioRxiv). Hence, a complete mitochondrial genome of        |
| 48 | this species can provide additional information for further analysis. Here, we present the first |
| 49 | complete mitogenome for <i>M. triviale</i> .                                                     |
| 50 | A colony of <i>M. triviale</i> headed by a single queen was collected in Takaragaike Park,       |
| 51 | Kyoto, Japan (35.060087 N, 135.788488 E) on Sept. 9, 2017. The queen and her                     |
| 52 | parthenogenetic offspring produced later in the laboratory (larvae and pupae, approx. 100        |
| 53 | individuals) were fixed in 99.5% EtOH. We extracted genomic DNA from the pooled                  |
| 54 | individuals with DNeasy Blood and Tissue kit (Qiagen, Hilden, Germany). We sequenced the         |
| 55 | pooled DNA on the HiSeq X sequencer (Illumina, San Diego, CA) at Macrogen Japan Corp.,           |
| 56 | Tokyo. After removing adapters with Trimmomatic v0.39 (Bolger et al. 2014), we conducted         |
| 57 | de novo mitogenome assembly based on 4,327,159 paired-end sequence reads using                   |
| 58 | NOVOPlasty v3.6 (Dierckxsens et al. 2017), with Solenopsis invicta mitogenome (NCBI              |
| 59 | accession: NC_014672) as a seed. Average read coverage of the mitogenome assembly was            |
| 60 | 37,840, providing ample depth for correctness. We annotated protein coding genes (PCGs),         |

| 61 | rRNAs and tRNAs using GeSeq (Tillich et al. 2017), MITOS (Bernt et al. 2013), NCBI                         |
|----|------------------------------------------------------------------------------------------------------------|
|    |                                                                                                            |
| 62 | ORF-finder (Rombel et al. 2002), and ARWEN (Laslett and Canbäck 2008). The sequence                        |
| 63 | information was deposited in the DNA Data Bank of Japan under accession number:                            |
| 64 | LC605004. A specimen was deposited at the Laboratory of Insect Ecology, Graduate School                    |
| 65 | of Agriculture, Kyoto University (http://www.insecteco.kais.kyoto-u.ac.jp; N. Idogawa; under               |
| 66 | the voucher number Mtri_20170909_4).                                                                       |
| 67 | The complete mitogenome of <i>M. triviale</i> was 16,920 bp, which is comparable to other ant              |
| 68 | species. The nucleotide composition was AT-biased (82%). The mitogenome contained 13                       |
| 69 | PCGs, two rRNAs, and 22 tRNAs, and were typical for most animals. All PCGs used ATG or                     |
| 70 | ATT as the start codon and TAA or TAG as the stop codon. The tRNAs, ranging in size from                   |
| 71 | 59 to 74 bp, were similar to other ants (54–90 bp). The control region presumably                          |
| 72 | corresponded to the single largest non-coding AT-rich region (569 bp, A+T 94%). Gene order                 |
| 73 | of <i>M. triviale</i> was identical to that of a congener, <i>M. pharaonis</i> (NC_051486.1). Notably, the |
| 74 | gene order of the two Monomorium species had two rearrangements: an inversion between                      |
| 75 | trnP and ND1 (Myrmicinae, ND6-CYTB-trnS; Monomorium, trnS-CYTB-ND6; underlines                             |
| 76 | indicate inverted genes) and translocations between ND3 and trnF (Myrmicinae common,                       |
| 77 | trnA-trnR-trnN-trnS-trnE; Monomorium, trnR-trnE-trnA-trnN-trnS). This feature was                          |
| 78 | different from the common gene order of the subfamily Myrmicinae and likely unique to                      |
| 79 | Monomorium ants (Babbucci et al. 2014; Park 2020). This may help identify genus                            |
| 80 | Monomorium sensu stricto, in addition to nucleotide substitutions.                                         |
| 81 | We inferred the phylogenetic relationship of 25 ant species using the concatenated                         |
| 82 | nucleotide sequences of all 13 PCGs, with the honeybee Apis mellifera as an outgroup.                      |
| 83 | Alignment was performed using ClustalW (Thompson et al. 2003) implemented in MEGA-X                        |
| 84 | (Kumar et al. 2018). The GTR + I + G model was determined by ModelTest-NG v0.1.6                           |
|    |                                                                                                            |

| 85 (Darriba et al. 2020). Both maximum likelihood (with RAxML-NG v1.0.0 (Kozlov e |
|-----------------------------------------------------------------------------------|
|-----------------------------------------------------------------------------------|

- 86 2019)) and Bayesian (with MrBayes v3.2.7 (Ronquist et al. 2012)) inferences were consistent
- 87 in supporting the current phylogenetic placement of *Monomorium* in the subfamily
- 88 Myrmicinae (Figure 1).
- 89 In conclusion, the newly sequenced complete mitochondrial genome of *M. triviale*
- 90 provides additional resources for further phylogenetic characterization of the taxonomically
- 91 problematic genus *Monomorium* and comparative genomics of parthenogenetic ant species.
- 92

# 93 **Figure 1.**

| 94 Maximum likelihood (1,000 bootstrap repeats) and Bayesian inference (100,00 | 94 | Maximum likelihood | (1,000 bootstra | p repeats | ) and Ba | vesian inference | (100,000) |
|--------------------------------------------------------------------------------|----|--------------------|-----------------|-----------|----------|------------------|-----------|
|--------------------------------------------------------------------------------|----|--------------------|-----------------|-----------|----------|------------------|-----------|

- generations) phylogenetic trees of 25 ant species: *Monomorium triviale* (LC605004: this
- 96 study), Anoplolepis gracilipes (NC\_039576), Aphaenogaster famelica (NC\_049859), Atta
- 97 laevigata (KC346251), Atta texana (MF417380), Camponotus atrox (NC\_029357),
- 98 Cardiocondyla obscurior (KX951753), Crematogaster teranishii (MK940828), Cryptopone
- 99 sauteri (NC\_041202), Dolichoderus sibiricus (NC\_041075), Ectomomyrmex javanus
- 100 (NC\_042678), Linepithema humile (NC\_045057), Monomorium pharaonis (NC\_051486),
- 101 Myrmica scabrinodis (NC\_026133), Nylanderia flavipes (NC\_049861), Ooceraea biroi
- 102 (CM010870), Polyrhachis dives (NC\_030790), Pristomyrmex punctatus (NC\_015075),
- 103 Pseudomyrmex gracilis (BK010472), Solenopsis geminata (NC\_014669), Solenopsis invicta
- 104 (NC\_014672), Solenopsis richteri (NC\_014677), Tetraponera rufonigra (BK010387),
- 105 Vollenhovia emeryi (NC\_030176), Wasmannia auropunctata (NC\_030541) and honeybee,
- 106 Apis mellifera (NC\_001566, as an outgroup). The numbers above branches indicate bootstrap
- 107 support values for maximum likelihood tree and posterior probability for Bayesian inference

108 tree, respectively.

#### 110 **REFERENCES**

| 111 | 1. | Babbucci M, | Basso A, Scu | pola A, et al ( | 2014) I | Is it an ant | or a butterfly | /? Co | onvergent |
|-----|----|-------------|--------------|-----------------|---------|--------------|----------------|-------|-----------|
|     |    |             |              |                 |         |              |                |       |           |

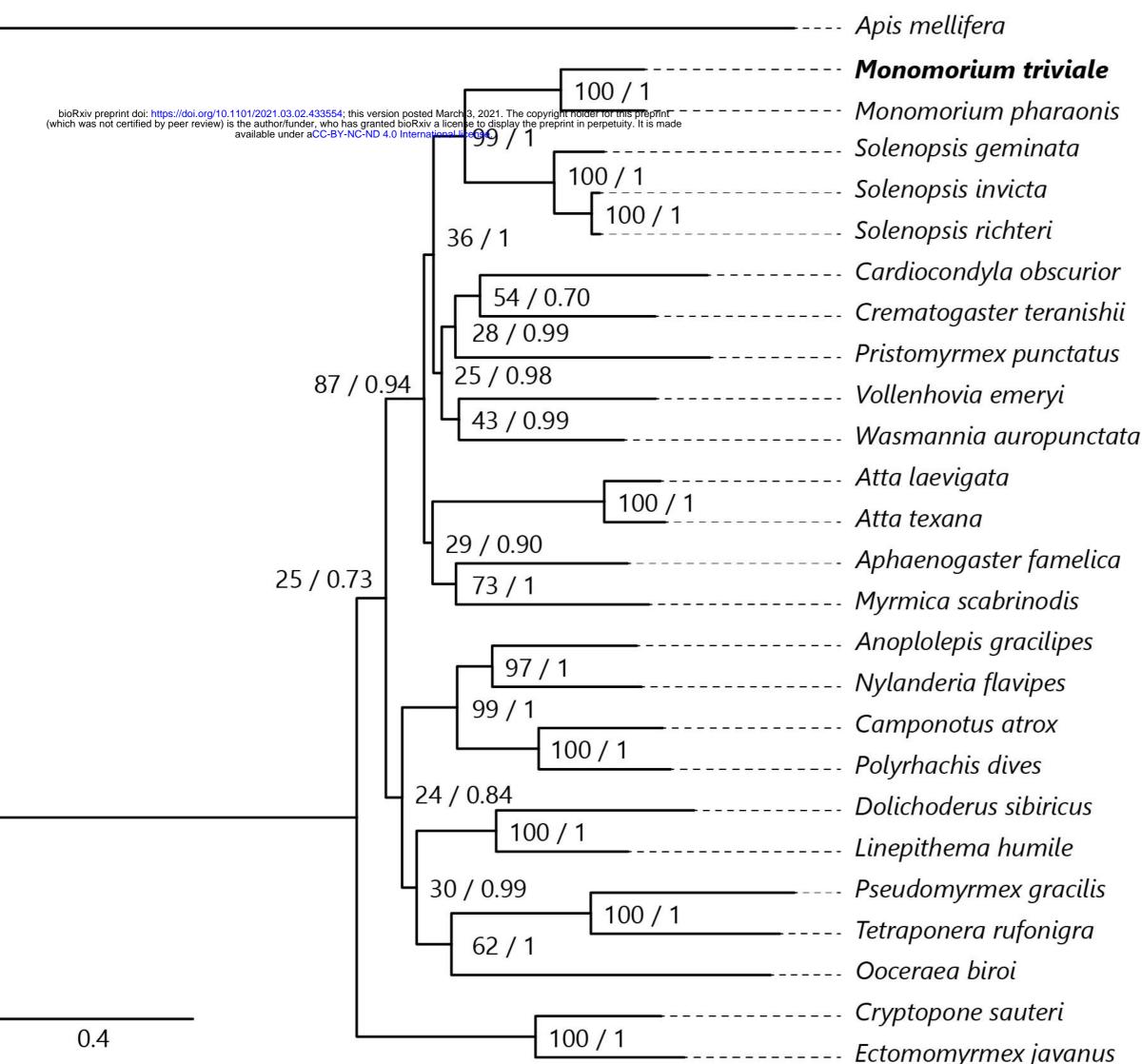
- 112 evolution in the mitochondrial gene order of Hymenoptera and Lepidoptera. Genome
- 113 Biol Evol 6:3326–3343. https://doi.org/10.1093/gbe/evu265
- 114 2. Bernt M, Donath A, Jühling F, et al (2013) MITOS: Improved de novo metazoan
- 115 mitochondrial genome annotation. Mol Phylogenet Evol 69:313–319.
- 116 https://doi.org/10.1016/j.ympev.2012.08.023
- 117 3. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: A flexible trimmer for Illumina
- 118 sequence data. Bioinformatics 30:2114–2120.
- 119 https://doi.org/10.1093/bioinformatics/btu170
- 120 4. Darriba Di, Posada D, Kozlov AM, et al (2020) ModelTest-NG: A New and Scalable
- 121 Tool for the Selection of DNA and Protein Evolutionary Models. Mol Biol Evol
- 122 37:291–294. https://doi.org/10.1093/molbev/msz189
- 123 5. Dierckxsens N, Mardulyn P, Smits G (2017) NOVOPlasty: De novo assembly of
- 124 organelle genomes from whole genome data. Nucleic Acids Res 45:
- 125 https://doi.org/10.1093/nar/gkw955
- 126 6. Gotoh A, Billen J, Tsuji K, et al (2012) Histological study of the spermatheca in three
- 127 thelytokous parthenogenetic ant species, *Pristomyrmex punctatus*, *Pyramica*
- 128 *membranifera* and *Monomorium triviale* (Hymenoptera: Formicidae). Acta Zool

129 93:200–207. https://doi.org/10.1111/j.1463-6395.2010.00498.x

- 130 7. Idogawa N, Sasaki T, Tsuji K, Dobata S (2021) Comprehensive analysis of male-free
- 131 reproduction in *Monomorium triviale*; (Formicidae: Myrmicinae). bioRxiv
- 132 2021.01.26.428225. https://doi.org/10.1101/2021.01.26.428225
- 133 8. Kozlov AM, Darriba D, Flouri T, et al (2019) RAxML-NG: A fast, scalable and

| 134 |     | user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics     |
|-----|-----|--------------------------------------------------------------------------------------|
| 135 |     | 35:4453-4455. https://doi.org/10.1093/bioinformatics/btz305                          |
| 136 | 9.  | Kumar S, Stecher G, Li M, et al (2018) MEGA X: Molecular evolutionary genetics       |
| 137 |     | analysis across computing platforms. Mol Biol Evol 35:1547–1549.                     |
| 138 |     | https://doi.org/10.1093/molbev/msy096                                                |
| 139 | 10. | Laslett D, Canbäck B (2008) ARWEN: A program to detect tRNA genes in metazoan        |
| 140 |     | mitochondrial nucleotide sequences. Bioinformatics 24:172-175.                       |
| 141 |     | https://doi.org/10.1093/bioinformatics/btm573                                        |
| 142 | 11. | Park J, Xi H, Park J (2020) The complete mitochondrial genome of Aphaenogaster       |
| 143 |     | famelica (Smith, 1874) (Hymenoptera: Formicidae). Mitochondrial DNA Part B           |
| 144 |     | 5:492-494. https://doi.org/10.1080/23802359.2019.1698992                             |
| 145 | 12. | Pontieri L, Linksvayer TA (2019) Monomorium. In: Encyclopedia of Social Insects.     |
| 146 |     | Springer International Publishing, Cham, pp 1–6                                      |
| 147 | 13. | Rombel IT, Sykes KF, Rayner S, Johnston SA (2002) ORF-FINDER: A vector for           |
| 148 |     | high-throughput gene identification. Gene 282:33-41.                                 |
| 149 |     | https://doi.org/10.1016/S0378-1119(01)00819-8                                        |
| 150 | 14. | Ronquist F, Teslenko M, Van Der Mark P, et al (2012) Mrbayes 3.2: Efficient bayesian |
| 151 |     | phylogenetic inference and model choice across a large model space. Syst Biol        |
| 152 |     | 61:539-542. https://doi.org/10.1093/sysbio/sys029                                    |
| 153 | 15. | Sparks KS, Andersen AN, Austin AD (2019) A multi-gene phylogeny of Australian        |
| 154 |     | Monomorium Mayr (Hymenoptera: Formicidae) results in reinterpretation of the genus   |
| 155 |     | and resurrection of <i>Chelaner</i> Emery. Invertebr Syst 33:225–236.                |
| 156 |     | https://doi.org/10.1071/IS16080                                                      |
| 157 | 16. | Thompson JD, Gibson TJ, Higgins DG (2003) Multiple Sequence Alignment Using          |
|     |     |                                                                                      |

| 158 | ClustalW | and | ClustalX. | Curr Proto | c Bioinforma 00: |
|-----|----------|-----|-----------|------------|------------------|
|     |          |     |           |            |                  |


- 159 https://doi.org/10.1002/0471250953.bi0203s00
- 160 17. Tillich M, Lehwark P, Pellizzer T, et al (2017) GeSeq Versatile and accurate
- 161 annotation of organelle genomes. Nucleic Acids Res 45: W6–W11.
- 162 https://doi.org/10.1093/nar/gkx391
- 163 18. Ward PS, Brady SG, Fisher BL, Schultz TR (2015) The evolution of myrmicine ants:
- 164 Phylogeny and biogeography of a hyperdiverse ant clade (Hymenoptera: Formicidae).
- 165 Syst Entomol 40:61–81. https://doi.org/10.1111/syen.12090

## 167 Acknowledgments

168 We are grateful to Kenji Matsuura who allowed us to use his laboratory.

### 169 Funding

- 170 This work was supported by a Japan Society for the Promotion of Science (JSPS)
- 171 Research Fellowship for Young Scientists to NI (19J22242) and a grant from the Secom
- 172 Science and Technology Foundation to SD.



NC\_001566 LC605004 NC 051486 NC\_014669 NC\_014672 NC\_014677 KX951753 MK940828 NC 015075 NC\_030176 NC\_030541 KC346251 MF417380 NC 049859 NC 026133 NC\_039576 NC 049861 NC 029357 NC\_030790 NC\_041075 NC 045057 BK010472 BK010387 CM010870 NC 041202 NC 042678

Solenopsidini

Crematogastrini

Attini

Stenammini

Myrmecini

Formicinae

Dolichoderinae

Pseudomyrmecinae

Dorylinae

Ponerinae