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ABSTRACT 

The suprachiasmatic nuclei (SCN) of the hypothalamus functions as the brain’s primary circadian 

clock, but circadian clock genes are also rhythmically expressed in several extra-SCN brain sites 

where they can exert local temporal control over physiology and behaviour. Recently, we found that 

the hindbrain dorsal vagal complex possesses strong daily timekeeping capabilities, with the area 

postrema and nucleus of the solitary tract exhibiting the most robust clock properties. The possibility 

that the executory part of this complex – the dorsal motor nucleus of the vagus (DMV), also exhibits 

daily changes has not been extensively studied. The DMV is the source of vagal efferent 

motoneurons largely responsible for the regulation of gastric motility and emptying and 

consequently influence meal size and energy homeostasis. We used a combination of multi-channel 

electrophysiology and patch clamp recordings to gain insight into possible daily variation in these 

DMV cells and how this is influenced by diet. We found that DMV neurons increase their 

spontaneous activity, excitability and responsiveness to metabolic neuromodulators at late day 

which was paralleled with an enhanced synaptic input to these neurons. A high-fat diet typically 

damps circadian rhythms, but we found that short-term exposure to a high-fat diet paradoxically 

amplified daily variation of DMV neuronal activity, while blunting their responsiveness to metabolic 

neuromodulators. In summary, we show for the first time that neural activity at a source of vagal 

efferents varies with time of day and that this temporal variation is modulated by diet. These findings 

have clear implications for our understanding of the daily control of parasympathetic outflow.  

Keywords: circadian clock, dorsal motor nucleus of the vagus, electrophysiology, excitability, high fat 

diet, multi-electrode arrays, synaptic input 

Abbreviations:  

ACSF – artificial cerebro-spinal fluid, AP – area postrema, Bic – bicuculline methiodide, CD – control 

diet, CNQX – cyano-7-nitroquinoxaline-2,3-dione, Cv – coefficient of variation, DL-AP5 – DL-2-Amino-

5-phosphonopentanoic acid, DMV – dorsal motor nucleus of the vagus, DVC – dorsal vagal complex, 

EPSC – excitatory postsynaptic current, GLP-1 – glucagon-like peptide 1, HFD – high fat diet, IPSC – 

inhibitory postsynaptic current, MEA – multi-electrode array, NDS – normal donkey serum, NPY – 

neuropeptide Y, NTS – nucleus of the solitary tract, OXA – orexin A, PBS – phosphate-buffered saline, 

PFA – paraformaldehyde, SCN – suprachiasmatic nuclei of the hypothalamus, SD – standard 

deviation, TTX – tetrodotoxin, ZT – Zeitgeber time
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1. INTRODUCTION 

Circadian rhythms have evolved as a mechanism by which life forms on our planet can anticipate and 

adapt to the recurrent 24 h variation in environmental conditions that arises from the Earth’s 

rotation on its axis. In mammals, internal timekeeping is observed at all levels of physiology – from 

daily variation in gene expression to complex behaviours such as the timing of feeding, drinking, or 

the onset of sleep. These rhythmic changes are governed by the circadian timing system with the 

suprachiasmatic nuclei of the hypothalamus (SCN) schematised as the master clock (Takahashi, 2017; 

Hastings et al., 2019). However, accumulating evidence challenges this uni-clock view, with several 

extra-SCN brain sites exhibiting rhythmic clock gene expression to potentially act as independent 

circadian clocks (Guilding & Piggins, 2007; Flanagan et al., 2020).  

Recently, we reported unusually robust circadian timekeeping properties of the mouse dorsal vagal 

complex (DVC), a multi-component hindbrain centre which regulates a plethora of homeostatic 

processes including osmoregulation, satiety, parasympathetic tone and cardio-vascular function (Grill 

& Hayes, 2012; Chrobok et al., 2020). This complexity of DVC function is supported by its three 

discrete, yet closely linked neuronal structures: (1) the area postrema (AP), a sensory 

circumventricular organ, (2) the nucleus of the solitary tract (NTS), a powerful hub for visceral and 

cardiovascular cues, and (3) the dorsal motor nucleus of the vagus (DMV). The DMV is the executive 

part of the DVC and is the origin of preganglionic vagal motoneurons which drive both inhibitory and 

excitatory control over gastro-intestinal smooth muscle (Grill & Hayes, 2009, 2012; Browning & 

Travagli, 2014; Constantinescu, 2016). Neuronal activity in the AP/NTS peaks at late day/early night, 

coinciding with elevated expression of the clock gene, Per2, in these structures. In ex vivo 

investigation, Per2 expression in cultured brain slices was robust and sustained for up to a week in 

the AP and NTS, whereas in the DMV, Per2 expression was only transient (lasting one day). Further, 

while firing activity of AP and NTS neurons varies over 24 h ex vivo, such daily variation could not be 

assessed in the mouse DMV owing to difficulty in distinguishing DMV from NTS recording sites in 

those multi-electrode array recordings (Chrobok et al., 2020). 

Current evidence supports the view of a functional organisation of the DVC by which its distinct 

nuclei play different roles in gastro-intestinal signal processing (Grijalva & Novin, 1990; Rogers et al., 

1996; Grill & Hayes, 2012). Excitatory sensory vagal afferents terminate predominately in the NTS, 

which integrates gastric cues with central metabolic and homeostatic information (Kaelberer et al., 

2018; Han et al., 2018). The principal target of this processed signal is the subjacent DMV, which 

receives mostly tonic inhibitory (but also some excitatory) signals from the NTS (Davis et al., 2004). 

Modulation of these NTS to DMV synapses exerts profound effects upon visceral function (Derbenev 

et al., 2004; Cruz et al., 2007). Thus, the NTS controls vagal outflow from the DMV through altering 

its synaptic input to this executory part of the DVC. Neuronal activity of DMV neurons is also potently 

modulated by metabolic signals that exhibit both periprandial and circadian rhythmicity. Appetite 

promoting factors include the hypothalamic orexin neuropeptides whose levels are increased 

preprandially and whose application to the DMV stimulates gastric motor function (Krowicki et al., 

2002). In contrast, the anorexigenic glucagon-like peptide 1 (GLP-1) which is expressed in intestinal L-

cells as well as NTS neurons, is released postprandially and acts via the DMV to induce 

gastroinhibition (Holmes et al., 2009). Both orexins and GLP-1 excite preganglionic DMV neurons, 
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with their opposing effects on gastric motility believed to be segregated at the postganglionic level 

(Cruz et al., 2007). 

Dietary constituents and dietary habits can modulate central nervous system function, including 

circadian timekeeping (Challet, 2013, 2015, 2019). The dysregulation of intrinsic circadian rhythmicity 

can result in metabolic syndrome and obesity, and conversely, consumption of calorie-dense high-fat 

diet alters endogenous rhythmic daily processes (Baron & Reid, 2014, 2015; Namvar et al., 2016; 

Engin, 2017). Typically such effects of diet are attributed to actions on the hypothalamus, but high-

fat diet can affect the NTS and blunt or eliminate circadian rhythmicity in its clock gene expression 

(Kaneko et al., 2009; Zhang et al., 2020). In a companion study, we also show that even short-term 

consumption of a high-fat diet alters neuronal activities of the rat NTS (Chrobok et al., 2021b). 

Further, multiple studies report adverse effects of perinatal and adult exposure to high-fat diet on 

DMV neuronal activity, including disturbances in glutamatergic and GABAergic signalling and its 

sensitivity to neuropeptides (Browning et al., 2013; Bhagat et al., 2015; Clyburn et al., 2018, 2019). 

However, whether the DMV expresses daily rhythms and if so, whether such rhythms are influenced 

by diet is unknown. 

To address this gap in current knowledge, we investigated daily variation in rat DMV neuronal 

activities, including firing rate, synaptic input and other fundamental membrane properties. We also 

assessed potential day-night difference in the responsiveness of DMV neurons to metabolically 

relevant neuropeptides. Additionally, we studied effects of short-term exposure to high-fat diet on 

these parameters. We report new evidence that there is a late day upregulation of DMV neural 

activities that manifests in increased synaptic input (predominately excitatory), enhanced excitability 

and spontaneous firing rates and in increased responsiveness to periprandial neuropeptides. 

Surprisingly, we found short-term high-fat diet to boost daily change in spontaneous activity and 

excitability of DMV neurons, while blunting their responsiveness to metabolic cues. Collectively, this 

study presents the first evidence that DMV neurons increase their activity and responsiveness 

around the day-night transition. These findings raise the possibility that daily changes in the DMV 

contribute to circadian variation in parasympathetic outflow.   

2. MATERIALS AND METHODS 

2.1. Ethical approval 

All procedures were approved by the Local (Krakow) Ethical Commission and performed in 

accordance with the European Community Council Directive of 24 November 1986 (86/0609/ EEC) 

and the Polish Animal Welfare Act of 23 May 2012 (82/2012). Every effort was made to minimise the 

number of animals used in the study and their suffering. 

2.2. Animals 

This study was performed on 4-8 week old male Sprague Dawley rats housed at the Institute of 

Zoology and Biomedical Research animal facility at the Jagiellonian University in Krakow under 

constant environmental conditions (temperature: 23°C, humidity: ~60%). Rats were kept under 

standard (12h/12h) light/dark cycle with water and food provided ad libitum. In these conditions, 

Zeitgeber time 12 (ZT12) represents lights-off and ZT0, lights-on.  

2.3. Diet 
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Two different dietary conditions were introduced at postnatal day 28, when animals were weaned. 

Control diet (CD, ~ 3,514 kcal/kg, energy from: 10% fat, 24% protein, 66% carbohydrates; Altromin, 

Germany) or high fat diet (HFD, ~ 5,389 kcal/kg, energy from: 70% fat, 16% protein, 14% 

carbohydrates; Altromin) was given ad libitum for 2-3 weeks prior electrophysiological procedures, or 

for 4 weeks before the cull for immunohistochemistry. 

2.4. Electrophysiology 

2.4.1. Tissue preparation 

Electrophysiological experiments were conducted on brainstem coronal slices containing the DMV at 

the level of AP (anteroposterior -14.3 to -13.7, mediolateral -1.6 to +1.6, dorsoventral -7.6 to -8 mm 

from Bregma; Paxinos & Watson, 2007). Rats were culled at two distinct time points for patch clamp 

experiments (ZT3 and 15) and at four for multi-electrode array (MEA) recordings (ZT3, 9, 15 and 21). 

Animals were deeply anaesthetised with isoflurane inhalation (2 ml/kg of body weight) and 

decapitated. Then, brains were immediately removed from the skull and transferred to ice‐cold 

preparation artificial cerebrospinal fluid (ACSF) composed of (in mM): 25 NaHCO3, 3 KCl, 1.2 

Na2HPO4, 2 CaCl2, 10 MgCl2, 10 glucose, 125 sucrose with addition of pH indicator, Phenol Red 0.01 

mg/l, osmolality ~290 mOsmol/kg. ACSF was continuously bubbled with carbogen (95% O2, 5% CO2). 

Block of tissue containing the brainstem and cerebellum was then mounted on a cold plate of the 

vibroslicer (Leica VT1000S, Heidelberg, Germany) and cut into 250 μm‐thick acute coronal slices. Up 

to five slices were then transferred to pre-incubation chamber filled with carbogenated recording 

ACSF composed of (in mM): 125 NaCl, 25 NaHCO3, 3 KCl, 1.2 Na2HPO4, 2 CaCl2, 2 MgCl2, 5 glucose, 

and 0.01 mg/l of Phenol Red (initial temperature: 32°C, cooled to room temperature) for at least one 

hour prior the recording. 

2.4.2. Multi-electrode array (MEA) recording 

Experiments with the use of the MEA platform (Belle et al., 2021) were carried out at four daily time 

points on brainstem slices obtained from 23 rats (CD: n=11, HFD: n=12). Four to five slices were 

recorded at each time point in each diet. Slices were positioned in the recording wells of the 

MEA2100-System (Multichannel Systems GmbH, Germany) with the whole DMV localised upon the 6 

× 10 recording array of a perforated MEA (60pMEA100/30iR-Ti, Multichannel Systems). Throughout 

the experiment, slices were perfused with fresh recording ACSF (2 ml/min), constantly bubbled with 

carbogen and heated to 32°C. Slices were allowed a minimum of 30 min to equilibrate before 

recordings were initiated. Data were acquired with MultiChannel Experimenter software (sampling 

frequency = 20 kHz; Multichannel Systems). Baseline recording was made for one hour. Then, drugs 

(orexin A, OXA 200 nM and GLP-1 1 µM) were diluted in 6 ml of fresh ACSF and bath applied in one 

hour intervals. 

2.4.3. Patch-clamp recording of DMV neurons 

Tissue for patch-clamp experiments was isolated at two daily time points: at ZT3 for subsequent ‘late 

day’ (recording window: ZT6-12; CD: n=28, HFD: n=21 rats) and at ZT15 for subsequent ‘late night’ 

experiments (recording at ZT18-0, CD: n=27, HFD: n=14 rats). Following an incubation period, slices 

were placed in the recording chamber and constantly perfused (2 ml/min) with carbogenated 

recording ACFS heated to 32°C. For each recording, a single neuron in the borders of the DMV was 

randomly selected with a Zeiss Axioscope microscope fitted with infrared differential interference 
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contrast under a 40x magnifying objective. Whole-cell configuration in both voltage- and current-

clamp modes (VC and CC, respectively) was obtained with borosilicate glass pipettes produced with 

horizontal puller (resistance ~7 MΩ; Sutter Instruments, USA) and suction applied by an Ez-

gSEAL100B Pressure Controller (Neo Biosystem, USA). The signal was amplified by a SC 05LX (NPI, 

Germany) amplifier low-pass filtered at 2 kHz and digitised at 20 kHz. All stages of experiments were 

recorded with Signal and Spike2 (Cambridge Electronic Design Inc., UK) software. A liquid junction 

potential of −15 mV was added to the measured values of membrane potential. 

Two intrapipette solutions with variant chloride concentration were used: normal intrapipette 

(nintra) containing (in mM): 125 potassium gluconate, 20 KCl, 10 HEPES, 2 MgCl2, 4 Na2ATP, 0.4 

Na3GTP, 1 EGTA and 0.05% biocytin; or low chloride intrapipette solution (low Cl-intra) containing (in 

mM): 145 potassium gluconate, 10 HEPES, 2 MgCl2, 4 Na2ATP, 0.4 Na3GTP, 1 EGTA and 0.05% biocytin 

(in both cases: pH 7.4 adjusted with 5 M KOH; osmolality ~300 mOsmol/kg). Low chloride 

concentration was introduced so as to shift the reversal potential for chloride current from −43 mV in 

nintra to −70 mV, in order to distinguish between inhibitory postsynaptic currents (IPSCs) visible as 

positive deflections and excitatory postsynaptic currents (EPSCs) seen as negative deflections. VC 

recordings were performed with nintra at holding potential of -65mV, whereas these using the lowCl-

intra at -50 mV. Negative rectangular pulses (duration: 1 s, amplitude: 25 mV) were applied every 60 

s throughout the recording. CC recordings were exclusively carried out with the nintra with a holding 

current adjusted to set the membrane potential on -65 mV. 

2.4.4. Drugs 

Orexin A (OXA; 200 nM, Bachem, Switzerland), glucagon-like peptide 1 (GLP-1; 1µM, Bachem), 6-

cyano-7-nitroquinoxaline-2,3-dione (CNQX; 10 µM, Tocris, UK), DL-2-Amino-5-phosphonopentanoic 

acid (DL-AP5, 40 µM, Tocris), bicuculline methiodide (Bic, 20 μM, Tocris), tetrodotoxin citrate (TTX; 

0.5 µM, Tocris) were stocked at 100x concentration at -20°C and were freshly diluted in the recording 

ACSF prior the application by bath perfusion.  

2.4.5. Post-recording immunostaining 

To visualise the location of cells recorded near the anatomical borders of the DMV, slices used in 

patch clamp recordings were subsequently processed immunohistochemically and the recording site 

was determined. Briefly, following a successful recording, slices were fixed in 4% PFA diluted in PBS 

overnight in 4°C. Next, slices were rinsed twice in fresh PBS and placed in a permeabilising solution 

containing 0.6% TritX-100 (Sigma) and 10% NDS (Abcam) diluted in PBS for three hours in room 

temperature. Subsequently, sections were transferred to a solution containing Cy3-conjugated 

ExtrAvidin (1:250, Sigma) and primary antibodies against neuropeptide Y (NPY, raised in rabbit, 

1:8000, Sigma) and incubated in 4°C overnight. Subsequently, slices were rinsed twice in PBS and 

incubated with anti-rabbit AlexaFluor 647-conjugated antisera (Jackson ImmunoResearch) for six 

hours at room temperature. Finally, slices were rinsed twice in PBS and mounted on glass slides in 

Fluoroshield™ (Sigma) and inspected under 10x magnification on an epifluorescence microscope 

(Axio Imager.M2, Zeiss). Biocytin-filled neurons were classified as DMV neurons based on their 

location in the NPY-ir-rich area as well as their large (>20 µm) cell body size (contrasting with the 

smaller neurons in the adjacent NTS). 

2.4.6. Spike-sorting and analysis of multi-electrode array data 
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Raw data were first exported to HDF5 files in Multi Channel DataManager (Multichannel Systems 

GmbH). Then, HDF5 files were remapped and converted to DAT format using a custom written 

MatLab script (R2018a version, MathWorks). Subsequently, DAT files were automatically spike-sorted 

with the use of KiloSort programme (Pachitariu et al., 2016) run in MatLab environment. To improve 

the speed of spike-sorting, a GPU was used (NVIDIA GeForce GTX 1050Ti GPU; CUDA 9.0 for 

Windows). Parallelly, raw data were also exported to CED-64 files with Multi Channel DataManager 

and further subjected to remapping and filtering with Butterworth band pass filter (fourth order) 

from 0.3 to 7.5 kHz by a custom-written Spike2 script. Subsequently, spike-sorted putative single 

units were transferred to CED-64 files using custom-made MatLab script and further refined in Spike2 

(Spike2 8.11; Cambridge Electronic Design Ltd.) with the use of principal component analysis and 

autocorrelation. 

Spontaneous neuronal activity was assessed in a 1800 s window, starting 30 min after the initiation 

of recording. Neuronal responses (activations and inhibitions evoked by the drug application) were 

calculated in 30 s bins with NeuroExplorer 6 (Nex Technologies, USA). A unit was classified as 

responsive if its single-unit activity varied by three standard deviations (SDs) from its baseline mean 

value. Amplitudes of these responses were calculated as a difference between maximal firing 

frequency (in 30 s bin) during the response and 10 minutes long mean baseline value. 

2.4.7. Analysis of patch-clamp data 

Responsiveness to drug administration was measured with a custom-made script in MatLab (R2018a 

version, MathWorks). Changes in the whole-cell current were considered significant if they differed 

by more than three SDs from the averaged baseline values. Synaptic input was measured by manual 

selection of postsynaptic currents from 100 seconds of baseline recording with Mini Analysis 

Program (Synaptosoft, USA). Frequency was calculated for every condition. Additionally, current 

kinetics (rise time and decay time constant) were examined for neurons recorded with low Cl-intra 

(differentiated EPSC and IPSC). Curve fitting for decay time constant was performed for cells with 

minimal frequency of 0.08 Hz. Electrophysiological tests in current clamp mode were analysed with 

custom made Signal 5.07 scripts (Cambridge Electronic Design Ltd.). 

2.5. Statistics 

All statistical testing was performed in Prism 7 (GraphPad). Outliers were removed with the aid of 

ROUT (Robust regression and Outlier removal) method with coefficient Q = 0.05. Data were 

presented as individual values and mean. P<0.05 was deemed significant. 

Two-way ANOVA was used to assess daily variation and dependence on dietary conditions in (1) the 

spontaneous DMV activity recorded on MEA, (2) frequency and kinetics of synaptic currents, (3) 

electrophysiological parameters of excitability and basic membrane properties and (4) responses to 

drug applications. Post-hoc multiple comparison was performed with Sidak’s test.  

Fisher’s test was carried out to elucidate possible differences in the proportion of drug responsive 

neurons in the DMV between day and night. 

3. RESULTS 

3.1. Daily variation in neuronal activity of DMV neurons 
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The intracellular molecular clock drives SCN cells as well as neurons in extra-SCN oscillators including 

the NTS, to vary their spontaneous neuronal activity from day to night (Takahashi, 2017; Chrobok et 

al., 2020; Paul et al., 2020). To assess if DMV neurons also alter their firing rate across the day-night 

cycle, we used the MEA platform and recorded spontaneous multi-unit activity in 36 brainstem slices 

(17 from rats fed CD and 19 from animals fed the HFD; Fig. 1A,B) obtained from animals culled at one 

of four time points (ZT3, 9, 15 and 23; where ZT12 = lights-off). Recording was always initiated 2h 

following slice preparation. Using spike-sorting, we discriminated and identified putative single units 

in these DMV multi-unit activity records (Fig. 1C). Notable time of day variation in neuronal activity 

was detected (ZT: p<0.0001; two-way ANOVA), with the highest activity recorded at the end of light 

phase (ZT11). Thus, rat DMV neurons vary their spontaneous firing rate across 24 h, peaking at a 

similar late day phase as previously reported for the mouse NTS (Chrobok et al., 2020). 

In mice, high-fat diet can eliminate circadian rhythmicity in NTS clock gene expression (Kaneko et al., 

2009). Therefore, we next examined if diet affects the daily pattern in DMV neural firing. Short-term 

(two to three weeks) exposure to high-fat diet significantly altered this daily variation (p=0.0003; 

two-way ANOVA interaction) by elevating firing rate in the DMV (diet: p=0.0005; two-way ANOVA; 

Fig. 1D). Interestingly, post-hoc evaluation revealed this diet-evoked increase in neuronal activity to 

be significant only around the day-to-night (ZT11: p=0.0003) and night-to-day transitions (ZT23: 

p=0.0015, Sidak’s test; Fig. 1D). These findings suggest that daily changes in DMV neuronal firing are 

sensitive to dietary conditions. Statistical recapitulation of these results is presented in 

Supplementary Table 1.  

3.2. Time of day variation in the synaptic input to the DMV 

Daily variation in spontaneous neuronal activity may stem from daily change in intrinsic membrane 

properties, synaptic input, or a combination of these. To determine if DMV neurons are subject to 

day-night variation in synaptic input, we made patch-clamp recordings from these neurons at ZT6-12 

(late day) or ZT18-0 (late night). First, we recorded all spontaneous postsynaptic currents (PSC) at -65 

mV holding potential such that both excitatory (EPSC) and inhibitory currents (IPSC) were depicted as 

inward events (Fig. 2A,B). We found that the overall PSC frequency was higher at late day than late 

night (ZT: p=0.0443, two-way ANOVA; Fig. 2C,D). To precisely evaluate the polarity of these inputs 

[EPSCs (inward) vs IPSCs (outward)], we altered the [Cl-] of the intrapipette solution and made 

recordings at a holding potential of -50 mV (Fig. 2E). From these, we first identified that EPSCs 

constitute the vast majority of all PSCs in the DMV. Second, we observed a prominent temporal 

difference in EPSC frequency, with higher excitatory input at late day (ZT: p=0.0006, two-way 

ANOVA; Fig. 2F,G). Last, to determine if alterations in glutamate receptor responsiveness contributed 

to the postsynaptic mechanisms shaping responses to synaptic input, we measured EPSC kinetics 

such as their rise and decay time. No day-to-night differences in EPSC rise time (ZT: p=0.0783; Fig. 

2H) or decay time constant (ZT: p=0.3050, two-way ANOVAs; Fig. 2I) were detected. This indicates 

that daily changes in presynaptic mechanisms are predominately responsible for enhanced excitatory 

input to DMV neurons at the late day phase.  

Subsequently, we evaluated inhibitory synaptic inputs to the DMV and found a significant time of day 

effect on IPSC frequency (ZT: p=0.0018; Fig. 2J,K). Interestingly, this daily change in inhibitory inputs 

was also accompanied by a change in postsynaptic mechanisms as the IPSC rise time was significantly 

elongated at ZT6-12 (ZT: p=0.0035; Fig. 2L), while the decay did not vary from late day to night (ZT: 
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p=0.4746, two-way ANOVAs; Fig. 2M). These findings indicate that both pre- and postsynaptic 

mechanisms contribute to elevated inhibitory tone on DMV neurons at late day. 

Finally, to evaluate if diet influenced this day-night change in synaptic inputs to DMV neurons, we 

compared recordings from CD and HFD rats. We found that high-fat diet reduced the frequency of all 

PSCs (recorded at -65 mV) (diet: p=0.0137, two-way ANOVA; Fig. 2C,D), but did not affect the 

frequency of EPSCs (recorded with the altered intrapipette solution at -50 mv; diet: p=0.0974, two-

way ANOVA; Fig. 2F,G). However, assessment of inhibitory synaptic input to DMV neurons indicated 

that high-fat diet increased IPSC frequency (diet: p<0.0001, two-way ANOVA; Fig. 2J,K). Additionally, 

diet had a significant effect on the daily variation in IPSC frequency (diet: p=0.0472, two-way ANOVA 

interaction; Fig. 2J) with the frequency of inhibitory synaptic input significantly elevated at late day in 

HFD (p=0.0005), but not CD fed rats (p=0.6321, Sidak’s test; Fig. 2J). Thus, these results suggest that 

high-fat diet selectively increases late day inhibitory input to DMV neurons, without affecting the 

excitatory input to these cells. Moreover, no diet-related alterations of EPSC (rise time, diet: 

p=0.2759, decay time constant, diet: p=0.0803; Fig. 2H,I) or IPSC kinetics were observed (rise time, 

diet: p=0.3498, decay time constant, diet: p=0.3897, two-way ANOVAs; Fig. 2L,M). Thus, these effects 

of diet on the DMV synaptic activity are attributable to changes at presynaptic sites. All statistics 

summarising the synaptic activity section are presented in Supplementary Table 2. 

3.3. Day to night change in intrinsic excitability of DMV neurons 

For increased detection and responsiveness to afferent information, neurons increase their resting 

membrane potential such that a small change in excitatory input can trigger action potential 

generation. Alternatively, without such a change in resting membrane potential, they can alter 

voltage-dependent mechanisms (e.g. increase membrane resistance) to elevate their excitability 

(Hille, 1992). To evaluate if DMV neurons adjust their excitability to changing synaptic input in a time 

of day fashion, we made patch clamp recordings ex vivo at late day and late night on hindbrain slices 

obtained from CD and HFD rats. First, high amplitude (1 nA) current ramp stimulation lasting 1 s was 

applied on DMV neurons manually held just below the threshold of action potential generation, at 

membrane potential of -65 mV (Fig. 3A). Robust time of day related change in the response to this 

stimulation was observed: at late day DMV neurons exhibited higher maximal instantaneous 

discharge frequencies as a result of ramp-evoked depolarisation (ZT: p<0.0001; Fig. 3B) and overall 

generated a substantially higher number of action potentials during the stimulation (ZT: p<0.0001; 

Fig. 3C). DMV neurons of HFD rats showed heightened responsiveness to ramp stimulation with 

higher maximal instantaneous firing frequency (diet: p=0.0252; Fig. 3B) and increased total number 

of action potentials evoked by current injection (diet: p=0.0103, two-way ANOVAs; Fig. 3C), 

compared to CD.  

Next, we used a step current stimulation protocol comprising 30 steps from -150 to +150 pA (every 

10 pA, duration: 0.5 s; Fig. 3D) to generate excitability curves and characterise possible changes in 

fundamental electrophysiological properties (such as membrane resistance and capacitance) of DMV 

neurons. Again, DMV neurons exhibited significantly higher excitability at ZT6-12 comparing to ZT18-

0, measured as higher excitability curve slopes (gain, ZT: p=0.0065; Fig. 3E) resulting from 

increasingly greater numbers of evoked action potentials at consecutive steps (at last step, ZT: 

p=0.0191; Fig. 3F). In this step protocol, we did not observe any diet-related effects (gain, diet: 

p=0.2033, action potentials at last step, diet: p=0.1288, two-way ANOVAs; Fig. 3E,F). Since this step 

protocol did not depolarise DMV neurons to the same extent as the ramp stimulation did, this 
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suggests that diet-evoked effects are voltage dependent. This assertion is further supported by the 

results of measurements of passive membrane properties with the hyperpolarising step current 

injections, which did not vary from late day to late night (resistance, ZT: p=0.1314, capacitance, ZT: 

p=0.2111; Fig. 3G,H) or between diets (resistance, diet: p=0.5995, capacitance, diet: p=0.6255, two-

way ANOVAs; Fig. 3G,H).  

Finally, we recorded spontaneous activity of DMV neurons in these four groups of animals in current 

clamp mode at holding current = 0 (Fig. 3I). The majority of recorded cells (~85 %) exhibited 

spontaneous, regular, low frequency firing around 1-2 Hz (as previously reported; Browning et al., 

1999), with no evident differences in discharge rate among groups (ZT: p=0.5674, diet: p=0.3379, 

two-way ANOVA; Fig. 3J). Additionally, the coefficient of variation in action potential generation (a 

measure of spiking regularity) was assessed and found to be subject to time of day variation (Cv, ZT: 

p=0.0140, two-way ANOVA; Fig. 3K), with neurons at late day firing less regularly. This variation in 

firing regularity was detected under CD, but lost under HFD conditions (p=0.0061, two-way ANOVA 

interaction; CD: p=0.0002, HFD: p=0.9754; Sidak’s tests; Fig. 3K), with HFD DMV neurons exhibiting 

regular firing at both late day and late night phases. Statistical details regarding this dataset can be 

found in Supplementary Table 3. These results provide evidence for increased excitability of DMV 

neurons at late day, coincident with the time of a day at which there is elevated synaptic input to 

these neurons. Additionally, they show that high-fat diet increased their excitability and regularity of 

firing at this late day phase. Further, these investigations suggest voltage-dependency of ionic 

mechanisms underlying daily and diet-evoked changes in neuronal excitability in the DMV. 

3.4. Responsiveness to neuromodulators in the DMV across 24 h 

Activity of DMV neurons is not only shaped by fast glutamate and GABA synaptic transmission, but is 

also influenced by neuromodulators conveying information on metabolic and arousal state (Travagli 

& Anselmi, 2016). To examine this, we investigated the responsiveness of DMV neurons to two 

peptides implicated in opposing physioogical states: the preprandial orexin A (OXA) that stimulates 

gastric function (Krowicki et al., 2002), and postprandial GLP-1 which promotes gastroinhibition 

(Holmes et al., 2009). Initially, we used the MEA platform and tested DMV neuronal responsiveness 

to these neuropeptides at four time points over 24 h in CD and HFD rats. The majority of single units 

recorded in the DMV were responsive to both OXA (200 nM; Fig. 4A) and GLP-1 (1 µM; Fig. 4D), 

predominately increasing their firing rate to both. However, using this experimental approach, we 

did not note any significant effects of time of day or diet on the amplitude of the response to OXA 

(ZT: p=0.3337, diet: p=0.8543, interaction: p=0.3013; Fig. 4B) or GLP-1 (ZT: p=0.8256, diet: p=0.1012, 

interaction: p=0.1498, two-way ANOVAs; Fig. 4E). For more statistical details on this dataset see 

Supplementary Table 4. These extracellular recordings suggest that DMV neurons are responsive to 

metabolically relevant neuropeptides across the 24 h cycle, but with no obvious day-to-night change 

in magnitude of response.  

3.5. Electrophysiological responses to metabolic signals exhibit day-to-night variation in the DMV, 

disturbed by high fat diet 

In the extracellular recording configuration, neuronal membrane potential cannot be controlled and 

therefore the possible contribution of voltage-dependent factors to the response of neurons to 

neuromodulators cannot be distinguished. Therefore, we used voltage clamp recordings to 

investigate with greater precision the effects of diet (CD vs HFD) and time-of-day influences (ZT6-12 
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or ZT18-0) on the electrophysiological responses of DMV neurons to orexin A (OXA, 200 nM) and 

GLP-1 (1 µM). Since diet-evoked changes in DMV electrophysiological parameters exhibited voltage-

dependency (Fig. 3), we next tested the response of DMV neurons to OXA and GLP-1 in voltage clamp 

configuration at two different holding potentials (-50 and -65 mV). The -65 mV holding potential was 

used to mimic the endogenous hyperpolarised state of DMV neurons, whereas -50 mV mimics their 

depolarised state, near their threshold of action potential generation. 

First, OXA was administered at holding potential of -50 mV in standard artificial cerebro-spinal fluid 

(ACSF) (Fig. 5A). The amplitude of OXA-evoked current measured at late day was significantly larger 

than that elicited at late night (ZT: p=0.0015), but no overall effect of diet on responses to OXA was 

detected (diet: p=0.9842, two-way ANOVA; Fig. 5C). In more hyperpolarised conditions (-65 mV), 

there were no time of day differences in the current evoked by OXA (ZT: p=0.6383), but high-fat diet 

significantly blunted responses to this neuropeptide (diet: p=0.0176, two-way ANOVA; Fig. 5B,D). A 

total of 132 DMV neurons were tested at one of the two holding potentials in the standard ACSF with 

similarly high proportion of cells responding to OXA in HFD (late day: 91%, late night: 96%, p>0.9999) 

and CD rats (late day: 83%, late night: 82%, p=0.6233, Fisher’s tests; Fig. 5E). To evaluate whether the 

response to OXA was generated intrinsically, DMV neurons were tested at -65 mV for response to 

this neuropeptide in the presence of tetrodotoxin (TTX, 0.5 µM) and fast synaptic transmission 

blockers (DL-AP5 40 µM, CNQX 10 µM, bicuculline 20 µM) in the ACSF. Under these synaptic isolation 

conditions, OXA application evoked inward current from all DMV neurons examined (41/41; Fig. 5B), 

indicating that this neuromodulator acts postsynaptically to alter DMV neuronal activity. Thus DMV 

neurons alter their responsiveness to OXA from late day to late night, with this effect being 

dependent on membrane potential and blunted by high-fat diet.  

Next, we tested time of day and diet-dependent actions of GLP-1 on the whole cell current of DMV 

neurons (Fig. 5F,G). Similarly to OXA, GLP-1 applied at -50 mV evoked inward currents of a higher 

amplitude at ZT6-12 comparing to ZT18-0, but only in rats fed CD (p=0.0306, two-way ANOVA 

interaction; CD: p=0.0272, Sidak’s test; Fig. 5H). The late day increase in GLP-1-evoked current 

amplitude was abolished by high-fat diet (HFD: p=0.8323; Sidak’s test; Fig. 5H). Similar to OXA, these 

time of day differences were not detected at lower holding potential (-65 mV; p=0.7957). In contrast 

to OXA, no diet-dependent changes were noted in the GLP-1 action at -65 mV (diet: p=0.8955, two-

way ANOVA; Fig. 5I). In total, responsiveness of 138 DMV neurons to GLP-1 was tested in standard 

ACSF at both potentials, with a significantly higher percentage of neurons responsive at late night for 

rats fed CD (38% vs. 67%, p=0.0131) or HFD (51% vs. 86%, p=0.0100, Fisher’s tests; Fig. 5J). 

Subsequent assessment of these GLP-1 responsive DMV neurons in the presence of TTX (0.5 µM) and 

fast synaptic blockers (DL-AP5 40 µM, CNQX 10 µM, bicuculline 20 µM) revealed similar changes in 

current (19/19 neurons tested; Fig 5G). This implicates a direct postsynaptic action of GLP-1 on DMV 

neurons. Statistical summary for these sections is depicted in Supplementary Table 5.  

These observations indicate that responsiveness of DMV neurons to metabolically relevant 

neuromodulators is elevated at the late day phase and that this is blunted by high-fat diet. These 

findings add further credence to the hypothesis that voltage-dependent mechanisms underpin daily 

rhythmicity of the DMV. 

4. DISCUSSION 
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Here we report for the first time daily variation in synaptic events and neuronal activity in the DMV, a 

brain structure of key importance to the parasympathetic system. Our findings indicate that 

compared to the late night, DMV neurons increase their firing rates and excitability at late day, which 

is accompanied by a significant rise in the frequency of predominately excitatory synaptic input. 

These are paralleled by elevated late day responsiveness to OXA and GLP-1, neuromodulators 

implicated in the control of food intake. Unexpectedly, short-term consumption of a high-fat diet 

increased DMV neuronal firing and excitability, while blunting their responses to these periprandial 

cues. These findings indicate complex interactions of diet and time of day on DMV neuronal activity.  

Previous investigations have determined that the DVC exhibits daily and circadian variation in 

molecular and neuronal activities (Herichová et al., 2007; Kaneko et al., 2009; Ubaldo-Reyes et al., 

2017; Chrobok et al., 2020). Through long-term bioluminescence imaging, we found that the AP was 

the most robust circadian oscillator amongst structures of the DVC, and contained a high density of 

Per2-expressing clock cells. At the same time, a target of AP efferents, the NTS, (Shapiro & Miselis, 

1985; Hay & Bishop, 1991) rhythmically expressed a lower density of Per2 cells for up to a week ex 

vivo. In that analysis, the DMV was the least robust circadian oscillator among these three – Per2 

expression in slice culture was expressed only transiently and diminished after one 24 h cycle in 

culture (Chrobok et al., 2020). To our knowledge, circadian rhythmicity of efferent vagal activity has 

not yet been reported, but the afferent branch of vagus nerve exhibits daily and circadian properties. 

The somas of sensory vagal neurons are localised in nodose ganglia and these demonstrate rhythmic 

clock gene expression as well as a daytime (ZT6-9) peak in mechanosensitivity (Kentish et al., 2013, 

2016, 2019). These observations raise the possibility that daily variation in DMV molecular and 

neuronal activity is dependent on recurrent circadian input from other DVC structures as well as 

signals from the peripheral nervous system. 

To communicate its circadian phase information to the rest of the body, the AP/NTS must control the 

DMV and both in vivo as well as in ex vivo brain slice preparations, DMV neuronal firing is indeed 

under control of the AP and NTS (Morest, 1967; Shapiro & Miselis, 1985; Davis et al., 2004). It has 

been unclear as to whether the DMV, which directly controls vagal tone, exhibits time of day 

variation in its neuronal activity. In our previous MEA study on the mouse DVC, it was not possible to 

reliably delineate the DMV from the suprajacent NTS. Here, the larger anatomy of the rat DVC 

enabled us to distinguish MEA electrodes in the DMV from those in the adjacent areas. In contrast to 

overt day-to-night variation in neuronal activity of the rat NTS (reported by our parallel study 

(Chrobok et al., 2021b)), here we observe that the rat DMV demonstrates low amplitude time of day 

variation in neuronal firing is consistent with the low level of clock gene expression observed in this 

structure (Chrobok et al., 2020). Alternatively, this daily change in neuronal activity may be a 

fingerprint of the upstream NTS, whose firing rates exhibit profound day-to-night variation in the 

same brain slice preparation (Chrobok et al., 2021b). Overall, this 24 h variation in the DMV firing 

likely originates from multiple sources, including a combination of intrinsic drive of DMV neurons to 

alter firing rate and daily change in synaptic input to the DMV. 

To attempt to differentiate these contributions, we performed patch clamp recordings to reveal 

more subtle characteristics in DMV electrophysiology. With these, we identified extrinsic and 

intrinsic sources for time of day variation in DMV function. First, spontaneous synaptic input was 

elevated at late day which was due to increased EPSCs. Although we did not identify the source of 

this synaptic input, it could reflect circadian changes in vagal afferents since these signals to the DMV 
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are predominately excitatory (Raab & Neuhuber, 2007). The NTS innervates the DMV, but the 

polarity of this input is mostly inhibitory (Davis et al., 2004) and since the IPSC frequency of DMV 

neurons did not robustly change from day to night in control conditions, then circadian activity in the 

NTS is not likely to be communicated to the DMV in this way. However, since the kinetics of DMV 

IPSCs showed time of day variation, then this suggests that these neurons can intrinsically alter how 

they process inhibitory input. Such postsynaptic changes could originate from several factors 

including alteration in the phosphorylation state of GABA receptor subunits, channel density, subunit 

composition or their subcellular localisation (Krishek et al., 1994; Browne et al., 2001).  

Second, we found a late day rise in DMV neuronal excitability that occurs in parallel with elevated 

synaptic input. This increase is manifested in higher maximal instantaneous firing frequency (lower 

inter-spike interval) and higher gain in DMV neuronal firing. Thus, intrinsic mechanisms of these 

neurons enable the generation of higher firing rates in response to depolarising stimuli at the late 

day phase. The magnitude of these day-night changes was more distinct at elevated membrane 

depolarisation, suggesting a voltage-dependent mechanism. We speculate that these changes arise 

from the late day downregulation of distinct potassium conductances. A candidate here is the 

transient A-type potassium current (IA), which increases the delay to next spike (Luther & Tasker, 

2000; Baranauskas, 2007). Indeed our observation of the late day decrease in regularity of action 

potential firing by DMV neurons is consistent with this idea since regularity of neuronal firing is 

typically guarded by IA (Khaliq & Bean, 2008). It is notable that in the dorsal SCN, expression of IA 

channel subunits varies in a circadian fashion, peaking during the day (Itri et al., 2010). Further 

research is required to test whether IA contributes similarly to daily variation in the regularity of DMV 

firing rate.  

Neurons in the SCN, NTS, and ventrolateral geniculate nucleus exhibit time of day adjustments in 

their responsiveness to neuromodulators (Belle & Piggins, 2017; Chrobok et al., 2020, 2021a). Here, 

using patch clamp to control for membrane potential, we found DMV neurons to exhibit daily 

changes in responsiveness to OXA and GLP-1 (peptides implicated in the control of food intake). 

Moreover, these higher amplitude responses were noted at the time of increased excitability and 

synaptic input to these DMV neurons. Therefore, this temporally dependent accentuated sensitivity 

to peptides with opposing effects on gastric motility (Krowicki et al., 2002; Holmes et al., 2009), 

suggests a nonspecific preparedness for processing metabolic information at this time of day. 

Interestingly, these day-to-night differences in DMV neurons responsiveness to OXA and GLP-1 were 

diminished at more hyperpolarised membrane potentials, paralleling our observation on the voltage-

dependence of daily changes in excitability of these DMV cells. Further, our MEA recordings revealed 

the DMV to be sensitive to these metabolic neuropeptides across the 24 h cycle. However, with the 

extracellular recording configuration, we did not detect any daily variation in the amplitude of these 

responses and this may be due to diverse baseline firing among neurons in different time points and 

voltage-dependence of ionic mechanisms underlying studied excitations (Acuna-Goycolea & van den 

Pol, 2004; Kukkonen, 2016). 

The parameters of diet schedule as well as the age at which the diet is consumed influence vagal 

neurocircuitry. For instance, perinatal high-fat diet can increase inhibition of DMV neurons 

(McMenamin et al., 2018), while an acute 3-5 days of consuming high-fat diet in adult rats 

upregulates glutamatergic signalling to the DMV (Clyburn et al., 2018). Excess calorie consumption 

can also disrupt circadian timekeeping in the DVC. In adult mice, long-term consumption of high-fat 
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diet eliminates rhythmic clock gene expression in the NTS (Kaneko et al., 2009). In our parallel study, 

we also found that short-term high-fat diet reduces neuronal activity of the NTS and blunts its daily 

rhythm (Chrobok et al., 2021b). As the DMV activity heavily depends on the NTS input, it is most 

likely that malfunctioning of this upstream DVC area under high-fat diet influences neuronal firing of 

the DMV. Diet can further alter the afferent branch of the vagal circuit. Consumption of a high-fat 

diet can abrogate circadian variation in vagal mechanosensitivity without altering clock gene 

expression in nodose ganglia (Kentish et al., 2016). Here we show, that high-fat diet unexpectedly 

boosted daily variation in neuronal activity of the DMV, increasing late day firing. We hypothesise, 

that this increase of neuronal firing in the DMV may be attributed to the disinhibition from a 

predominately inhibitory NTS, whose activity is heavily impaired by high-fat diet, particularly at late 

day (Chrobok et al., 2021b). Interestingly, the increased neuronal activity in the DMV by high-fat diet 

was not observed when recorded in the long-term set up (Chrobok et al., 2021b); in contrast to the 

acute ones, those longer-term (~30 h) registrations allow to assess circadian changes in neuronal 

activity without any inputs caused by animal behaviour preceding the cull (such as feeding). Thus, the 

elevated DMV firing under high-fat diet is most likely a combination of disturbances intrinsic to the 

DVC and altered patterning of food intake. 

Additionally after 2-3 weeks of diet, we observed a slight decrease in synaptic input to DMV, without 

any significant changes in EPSC frequency. Thus, due to the polarity of these changes, we speculate 

that they are unlikely to arise from afferent vagal activities. Since high-fat diet abolishes clock gene 

expression in the mouse NTS (Kaneko et al., 2009), it is tempting to speculate that such dietary 

conditions reduce tonic inhibitory drive from NTS to DMV. However, as high-fat diet elevated IPSCs 

from DMV neurons, then the increase in DMV neuronal activity is unlikely to be attributable to the 

influence of diet on inhibitory afferents to the DMV. Alternatively, high-fat diet may enhance the 

intrinsic excitability of DMV neurons and this is what we observed in this study. Interestingly, 

perinatal high-fat diet is reported to decrease DMV excitability (Bhagat et al., 2015), suggesting that 

effects of diet on vagal neurocircuitry varies markedly at a different stages of the lifespan. 

Previous studies report that perinatal and adult high-fat diet impair DMV responsiveness to the 

neuromodulators, cholecystokinin and GLP-1 (Bhagat et al., 2015). However, in this investigation, we 

found that this calorie dense diet unequivocally suppresses responsiveness of vagal motoneurons to 

OXA and GLP-1. Further we observed that high-fat diet eliminates daily variation in the amplitude of 

DMV neuronal response to exogenous GLP-1. Diet-related changes in the modulation of the DMV by 

metabolically relevant peptides are not limited to brainstem, but can also act upstream at the lateral 

hypothalamic source of DMV afferents, as high-fat diet reduces orexin synthesis in the lateral 

hypothalamus (Lin et al., 2000; Nobunaga et al., 2014).  

In summary, these findings indicate that synaptic input and intrinsic neuronal activity in the DMV can 

vary with time of day and are influenced by diet. The increase in activity and responsiveness to 

neuromodulators at the late day phase may function to prepare the DMV for processing the 

nocturnal rise in central and peripheral ingestive signals. There are potentially multiple sources 

underpinning these temporal changes including (1) intrinsic changes in DMV excitability and 

responsiveness to neuromodulators, (2) extrinsic variation in synaptic input, and (3) both intrinsically 

and extrinsically regulated alterations in DMV neuronal firing. Additionally, here we observed that 

short-term exposure to high-fat diet unexpectedly elevates the activity of DMV neurons, while 

blunting their responsiveness to neuromodulators. The function(s) of these daily changes in the DMV 
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are not yet defined, but potentially contribute to temporal alteration in parasympathetic tone. Thus, 

our study is first to report possible daily differences in the efferent branch of the vagal system. 
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FIGURES WITH LEGENDS 

 

Figure 1. Daily variation in neuronal activity of dorsal motor nucleus of the vagus (DMV) is 

enhanced by short-term high fat diet (HFD). (A) Representative photomicrograph of the brainstem 

slice mounted on the multi-electrode array (MEA). (B) Outline of the dorsal vagal complex with 

recording locations reconstructed. Those localised to the DMV are coloured in red. AP – area 

postrema, CC/4thV – central canal/4th ventricle, NTS – nucleus of the solitary tract. (C) Example 20 s 

recording trace with raw multi-unit extracellular signal (top trace) and four individual spike-sorted 

single units (below). Distinct average spike waveforms are shown for each single unit. (D) Scatterplot 

displaying all individual single-unit activity in the DMV (above) and a summary plot for the same data 

with means only (below). Data were plotted for four daily time points and two dietary conditions 

(****ZT p<0.0001, ###diet p=0.0005, $$$interaction p=0.0003, two way-ANOVAs; &&diet p=0.0015, 

&&&diet p=0.0003, Sidak’s multiple comparison test). 
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Figure 2. Spontaneous synaptic input to dorsal motor nucleus of the vagus (DMV) displays robust 

day-to-night variation which is altered by high fat diet (HFD). (A) Schematic location of DMV 

neurons superimposed on two planes, recorded at late day (ZT6-12) or late night (ZT18-0) from slices 

obtained from HFD and control diet (CD) rats. Warm colours code higher total frequency of 

postsynaptic currents (PSC). (B) Representative examples of synaptic activity throughout 10 s, for 

each group of rats. EPSC – excitatory postsynaptic currents, IPSC – inhibitory postsynaptic currents. 

(C) Daily changes in the frequency of total synaptic input to the DMV (ZT: *p=0.0443, diet: 

#p=0.0137) with corresponding cumulative frequency plot in D (bin=100 ms). (E) Example EPSC and 

IPSC for all experimental groups depicted as an average of all events from one neuron. (F) Day-to-

night difference in the frequency of EPSC (ZT: ***p=0.0006) with cumulative frequency traces shown 

in G (bin=100 ms). (H). Length of an averaged EPSC rise time. (I) Fitted EPSC decay time constant. (J) 

Daily changes in the IPSC frequency (ZT: **p=0.0018, diet: ####p<0.0001, interaction: $p=0.0472). 

Note that significant changes were noted in HFD rats (***p=0.0005), but not CD (ns p=0.6321). 

Corresponding cumulative frequency plot is shown in K (bin=400 ms). (L) Daily change in the average 

IPSC rise time (**p=0.0035). (M) Fitted IPSC decay time constant. All statistical testing was performed 

with ordinary two-way ANOVA followed by Sidak’s multiple comparison test (results drawn above 
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black bars). In all plots, grey codes recordings at late day from rats fed CD, black – at late night from 

CD, pink – at late day from HFD and red – at late night from HFD. 

 

Figure 3. Late day increase in the excitability of the dorsal motor nucleus of the vagus (DMV). (A) 

Example traces of ramp current stimulation recorded from single DMV neurons at late day and late 

night in slices obtained from rats fed high fat (HFD) or control diet (CD). (B) Apparent decrease in the 

maximal instantaneous frequency elicited on the current ramp at late night (****p<0.0001) and its 

significant reduction under high-fat diet (#p=0.0252). (C) Corresponding effect in the number of 

action potential generated during the ramp (ZT: ****p<0.0001, diet: #p=0.0103). (D) Representative 

traces of step current protocol applied on the DMV neurons from the same four experimental 

groups. (E) Evident rise in the excitability curve slope (gain) at late day comparing to late night 

(**p=0.0065). (F) Parallel diurnal rise in the number of action potentials fired at the last step of the 

stimulation protocol (*p=0.0191). (G&H) Basic membrane properties of DMV neurons: membrane 

resistance and capacitance. (I) Representative spontaneous firing activity of DMV neurons at holding 

current 0. (J) Spontaneous firing rate measured over 10 s. (K) Regularity of single DMV neurons 

calculated as the coefficient of variation (Cv) of inter-spike intervals. Daily variation (*p=0.0140) 

explained by a loss of regularity at late day in the CD-fed rats only (interaction: $$p=0.0061, CD: 
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***p=0.0002, HFD: ns p=0.9754). All statistical testing was performed with ordinary two-way ANOVA 

followed by Sidak’s multiple comparison test (results drawn above black bars). In all plots, grey codes 

recordings at late day from rats fed CD, black – at late night from CD, pink – at late day from HFD and 

red – at late night from HFD. 

 

Figure 4. Responsiveness to orexin A (OXA; 200 nM) and glucagon-like peptide-1 (GLP-1; 1 μM) in 

the dorsal motor nucleus of the vagus (DMV) across 24 h. (A & D) Proportion of single units excited 

(yellow), suppressed (purple) and non-sensitive (grey) to drug application at four daily time points. 

Black outline of the pie chart codes control diet (CD), whereas red depicts high fat diet (HFD). 

Numbers code total ns of neurons tested. (B & E) Scatterplots displaying individual amplitudes of 

excitatory drug responses (above) and a summary plot for the same data with means only (below). (C 

& F) Representative excitatory responses to drug application, presented as spike-sorted single unit 

wave marks (above) and firing frequency histograms (below). Bin = 30 s. In all subpanels black codes 

CD and red – HFD.  

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 2, 2021. ; https://doi.org/10.1101/2021.03.02.433571doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.02.433571
http://creativecommons.org/licenses/by/4.0/


 

Figure 5. Day-night variation in the responsiveness of neurons in the dorsal motor nucleus of the 

vagus (DMV) to orexin A (OXA) and glucagon-like peptide 1 (GLP-1). (A) Example raw voltage clamp 

recording traces (holding potential = -50 mV) of DMV neurons from late day (ZT6-12) or late night 

(ZT18-0) obtained from rats fed high fat (HFD) or control diet (CD). (B) Representative recordings at -

65 mV in standard artificial cerebrospinal fluid (ACSF) or ACSF containing tetrodotoxin (0.5 μM) and 

fast synaptic blockers: DL-AP5 (40 µM), CNQX (10 µM) and bicuculline (20 µM) (syn. block). Orange 

bars pinpoint bath applications of OXA (200 nM). (C) Current amplitude in response to OXA at -50 mV 

with a clear daily variation (**p=0.0015). (D) Inward current evoked by OXA at -65 mV (diet: 

#p=0.0176). (E) Number of responsive DMV neurons tested in each of four experimental groups. (F) 

Example traces at -50 mV showing responses to GLP-1 (blue bars) of DMV neurons. (G) 

Representative recordings presenting current responses to GLP-1 at -65 mV, in control ACSF or ACSF 

containing tetrodotoxin and blockers of fast synaptic transmission (syn. block). (H) Late day rise in 

the amplitude of current evoked by GLP-1 application at -50 mV in rats fed CD only (interaction: 
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$p=0.0306, CD: *p=0.0272, HFD: ns p=0.8323). (I) No changes in current amplitudes evoked by GLP-1 

application at -65 mV. (J) Nocturnal rise in the proportion of GLP-1-responsive neurons in the DMV in 

both CD (*p=0.0131) and HFD rats (**p=0.0100). All current amplitudes were compared using two-

way ANOVA followed by Sidak’s multiple comparison test (results drawn above black bars). Response 

occurrence ratios were tested with Fisher's test. In all plots, grey codes recordings at late day from 

rats fed CD, black – at late night from CD, pink – at late day from HFD and red – at late night from 

HFD. 
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SUPPLEMENTARY TABLES 

Table 1. Statistical analysis for short-term recordings of spontaneous neuronal activity in the dorsal 

motor nucleus of the vagus (DMV) with multi-electrode arrays. CD – control diet, HFD – high-fat diet. 

DMV (p) 

RM two-way ANOVA Sidak’s test (HFD) Sidak’s test (CD) n units 

ZT <0.0001 ZT5 vs 11 <0.0001 ZT5 vs 11 0.1171  HFD CD 

diet 0.0005 ZT5 vs 17 0.2276 ZT5 vs 17 0.9970 ZT5 130 110 

inter. 0.0003 ZT5 vs 23 0.0002 ZT5 vs 23 0.5299 ZT11 172 81 

 ZT11 vs 17 <0.0001 ZT11 vs 17 0.2774 ZT17 96 128 

Z11 vs 23 0.1817 Z11 vs 23 0.9198 ZT23 145 125 

ZT17 vs 23 <0.0001 ZT17 vs 23 0.8429  

 

Table 2. Statistical analysis for synaptic activity in the dorsal motor nucleus of the vagus (DMV) in rats 

fed high-fat (HFD) control diet (CD). PSC –postsynaptic currents, total; EPSC – excitatory postsynaptic 

currents; IPSC – inhibitory postsynaptic currents 

Frequency 

PSC  EPSC 

two-way ANOVA (p) n cells two-way ANOVA (p) n cells 

ZT 0.0443 CD ZT6-12 14 ZT 0.0006 CD ZT6-12 17 

diet 0.0137 CD ZT18-0 14 diet 0.0974 CD ZT18-0 14 

inter. 0.9150 HFD ZT6-12 14 inter. 0.4937 HFD ZT6-12 16 

 HFD ZT18-0 12  HFD ZT18-0 15 

IPSC 

two-way ANOVA (p) n cells Sidak’s test ZT6-12 – ZT18-0 (p) 

ZT 0.0018 CD ZT6-12 13 CD 0.6321 

diet <0.0001 CD ZT18-0 15 HFD 0.0005 

inter. 0.0472 HFD ZT6-12 16  

 HFD ZT18-0 16 

Rise time 

EPSC  IPSC 

two-way ANOVA (p) n cells two-way ANOVA (p) n cells 

ZT 0.0783 CD ZT6-12 17 ZT 0.0035 CD ZT6-12 13 

diet 0.2759 CD ZT18-0 14 diet 0.3498 CD ZT18-0 15 

inter. 0.0654 HFD ZT6-12 16 inter. 0.5830 HFD ZT6-12 16 

 HFD ZT18-0 15  HFD ZT18-0 16 

Decay time constant 

EPSC  IPSC 

two-way ANOVA (p) n cells two-way ANOVA (p) n cells 

ZT 0.3050 CD ZT6-12 17 ZT 0.4746 CD ZT6-12 13 

diet 0.0803 CD ZT18-0 14 diet 0.3897 CD ZT18-0 15 

inter. 0.0692 HFD ZT6-12 16 inter. 0.3055 HFD ZT6-12 16 

 HFD ZT18-0 15  HFD ZT18-0 16 
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Table 3. Statistical analysis for excitability tests in the dorsal motor nucleus of the vagus (DMV) in 

rats fed high-fat (HFD) control diet (CD).  

Ramp current stimulation 

Max instantaneous frequency  No of action potentials 

two-way ANOVA (p) n cells two-way ANOVA (p) n cells 

ZT <0.0001 CD ZT6-12 35 ZT <0.0001 CD ZT6-12 35 

diet 0.0252 CD ZT18-0 33 diet 0.0103 CD ZT18-0 33 

inter. 0.5928 HFD ZT6-12 30 inter. 0.2322 HFD ZT6-12 30 

 HFD ZT18-0 28  HFD ZT18-0 28 

Step current stimulation 

Gain  No of action potentials at last step 

two-way ANOVA (p) n cells two-way ANOVA (p) n cells 

ZT 0.0065 CD ZT6-12 33 ZT 0.0191 CD ZT6-12 33 

diet 0.2033 CD ZT18-0 31 diet 0.1288 CD ZT18-0 31 

inter. 0.7328 HFD ZT6-12 29 inter. 0.7552 HFD ZT6-12 29 

 HFD ZT18-0 29  HFD ZT18-0 29 

Resistance  Capacitance 

two-way ANOVA (p) n cells two-way ANOVA (p) n cells 

ZT 0.1314 CD ZT6-12 32 ZT 0.2111 CD ZT6-12 30 

diet 0.5995 CD ZT18-0 32 diet 0.6255 CD ZT18-0 29 

inter. 0.6097 HFD ZT6-12 30 inter. 0.4470 HFD ZT6-12 30 

 HFD ZT18-0 28  HFD ZT18-0 27 

Current 0 

Coefficient of variance (Cv) in inter-spike intervals 

two-way ANOVA (p) n cells Sidak’s test ZT6-12 – ZT18-0 (p) 

ZT 0.0140 CD ZT6-12 38 CD 0.0002 

diet 0.2369 CD ZT18-0 30 HFD 0.9754 

inter. 0.0061 HFD ZT6-12 25  

 HFD ZT18-0 25 

Firing rate  

two-way ANOVA (p) n cells 

ZT 0.5674 CD ZT6-12 40 

diet 0.3347 CD ZT18-0 35 

inter. 0.1721 HFD ZT6-12 26 

 HFD ZT18-0 27 
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Table 4. Statistical analysis for short-term recordings of the response amplitude to orexin A (OXA) 

and glucagon-like peptide 1 (GLP-1) in the dorsal vagal complex with multi-electrode arrays. CD – 

control diet, DMV – dorsal motor nucleus of the vagus, HFD – high-fat diet, NTS – nucleus of the 

solitary tract. 

OXA DMV (p) GLP-1 DMV (p) 

RM two-way ANOVA n activated / inhibited / 
total 

RM two-way ANOVA n activated / inhibited 
/ total 

ZT 0.3337 
 

 HFD CD ZT 0.8256  HFD CD 

diet 0.8543 ZT5 105/3 
/152 

85/2 
/124 

diet 0.1012 ZT5 75/2 
/152 

90/3
/124 

inter. 0.3013 ZT11 119/3 
/178 

34/0 
/55 

inter. 0.1498 ZT11 106/4 
/178 

29/0
/55 

 ZT17 72/3 
/115 

125 
/1/162 

 ZT17 64/3 
/115 

92/3
/162 

ZT23 92/6 
/150 

67/2 
/109 

ZT23 74/1 
/150 

69/0
/109 

  

Table 5. Statistical analysis for drug-evoked inward current amplitudes of the dorsal motor nucleus of 

the vagus (DMV) in rats fed high-fat (HFD) control diet (CD). 

OXA 

-50 mV  -65 mV 

two-way ANOVA (p) n cells two-way ANOVA (p) n cells 

ZT 0.0015 CD ZT6-12 14 ZT 0.6383 CD ZT6-12 20 

diet 0.9842 CD ZT18-0 13 diet 0.0176 CD ZT18-0 14 

inter. 0.1215 HFD ZT6-12 13 inter. 0.3810 HFD ZT6-12 16 

 HFD ZT18-0 13  HFD ZT18-0 10 

GLP-1 

-50 mV 

two-way ANOVA (p) n cells Sidak’s test ZT6-12 – ZT18-0 (p) 

ZT 0.1410 CD ZT6-12 9 CD 0.0272 

diet 0.2441 CD ZT18-0 9 HFD 0.8323 

inter. 0.0306 HFD ZT6-12 9  

 HFD ZT18-0 11 

-65 mV  

two-way ANOVA (p) n cells 

ZT 0.7957 CD ZT6-12 9 

diet 0.8955 CD ZT18-0 11 

inter. 0.3779 HFD ZT6-12 9 

 HFD ZT18-0 8 
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