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Significance We show that the microRNA transcriptome undergoes a global state transition during the 

initiation and progression of acute myeloid leukemia, and accurately predicts time to disease 

development. 
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Abstract  

MicroRNAs (miRNAs) are small non-coding RNA molecules involved in post-transcriptional regulation of 

gene expression and have been shown to hold prognostic value in a variety of settings, including acute 

myeloid leukemia (AML). However, the temporal dynamics of miRNA expression profiles as it relates to 

AML initiation and progression is poorly understood. Using serial samples from a mouse model of AML, 

we show that the miRNA transcriptome undergoes state-transition during AML initiation and progression. 

The AML state-transition was visualized and modeled by constructing an AML state-space from singular 

value decomposition of the time-series miRNA sequencing data. Within the AML state-space, we 

identified critical points of AML development characterized by unique differentially expressed miRNAs 

compared to healthy controls at critical points of leukemogenesis (early, transition, and late). 

Interestingly, we observed that changes in miRNA expression during leukemogenesis followed two 

patterns: 1) a monotonic pattern with continuously increasing or decreasing expression; and 2) a non-

monotonic pattern with a local maximum or minimum at the transition critical point which was the “point 

of no-return” from health to AML. We validated the AML state-space and dynamics in an independent 

cohort of mice and demonstrated the state-transition model accurately predicted time to AML. Of note, 

we show that the miRNA-derived state-transition model produced a state-space and critical points that 

were strikingly similar, but not identical to that produced by the coding (i.e., messenger [m]RNA-based) 

transcriptome. This indicates that while both miRNA and mRNA expression may provide similar 

information, they also capture independent features of AML state-transition. 

 

Introduction 

Acute myeloid leukemia (AML) is a molecularly heterogeneous neoplastic disease originating in the bone 

marrow (BM) with more than 20,000 new cases diagnosed in the USA each year1. The relatively low 5-

year survival rate of 28% reflects the urgent need for more effective treatments. With the rapid 

development and pervasive use of sequencing technologies in the clinical management of AML, there is 

an opportunity to take advantage of time-sequential multi-omic samplings of relevant tissues (BM and 

peripheral blood [PB]), identify new targets and devise novel therapeutic approaches.  

 

State-transition models have been a useful way to interpret and predict time-sequential dynamics in 

stochastic biological systems. The biological applications of state-transition models include development, 

cell differentiation, and disease. In the context of diseases, including cancer, state-transitions are useful 
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for studying disease initiation and progression. Constructing a state-space to model biological transitions 

can capture changes produced by a vast number of processes that occur simultaneously in a biological 

system. State-spaces have been constructed using a number of different types of data, but the mRNA 

transcriptome is often used because it is easy to assay and contains sufficient information to represent 

the main cellular processes. However, the large amount of information and high dimensionality of the 

transcriptome also presents challenges. Dimensionality reduction techniques, such as SVD used here and 

generalized SVD for multi-omic and pan-cancer studies, have proven useful because they represent the 

information of the entire system as linear combinations of orthogonal basis vectors2–4. Similar 

mathematical approaches including endogenous network theory have been used to identify steady states, 

or attractors, using configurations of gene regulatory networks5–9.  

 

MicroRNAs (miRNA) are small non-coding RNA molecules involved in post-transcriptional regulation of 

gene expression. MiRNA expression profiles have been associated with pathogenesis and prognosis of 

AML. Yet very little is known about the dynamics of miRNA expression over the course of AML initiation 

and progression and how it can be targeted therapeutically. To our knowledge, state-transition modeling 

of miRNA transcriptome in AML as not been previously reported. 

  

Here, using PB mononuclear cells (PBMCs) collected at sequential timepoints from a murine model of 

inv(16) AML, we show that miRNA transcriptome undergoes a state-transition (i.e., occupies stepwise 

transcriptional states) from disease initiation to progression. We defined a state-space and identified 

critical points which represent phenotypic states of AML progression. Analysis of the critical points 

identified miRNA-based regulatory events that predicts the dynamics of AML development from health 

to overt disease. This approach allowed us also to prioritize miRNAs that have a concerted role in AML 

development and that can potentially represent novel therapeutic targets. 

 

Materials and Methods 

Mouse model 

The expression of the leukemogenic fusion gene Cbfb-MYH11 (CM) in conditional CM knock-in mice 

(Cbfb56M/+/Mx1-Cre) leads to development of AML with a median survival of approximately 4 months after 

induction of CM. This model recapitulates the human inv(16) AML, one of the common subsets of AML 

characterized by the rearrangement of chromosome 16 at bands p13 and q22, which at the molecular 
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level creates the chimeric fusion gene CBFB-MYH11. To induce CM expression, 6-8 weeks old CM knock-

in mice were injected intraperitoneally with polyinosinic–polycytidylic acid [poly (I:C)] (InvivoGen, tlrl-

picw-250) at 14 mg/kg/dose every other day for a total of 7 doses. Age-matched littermates lacking the 

transgene were similarly treated and used as control. All mice were maintained in an Association for 

Assessment and Accreditation of Laboratory Animal Care–accredited animal facility and all experimental 

procedures were performed in accordance with federal and state government guidelines and established 

institutional guidelines and protocols approved by the Institutional Animal Care and Use Committee at 

City of Hope.  

 

Experimental design  

We used two independent cohorts of mice as training and validation cohorts. For the training cohort, we 

collected PBMC from the CM-induced mice (n = 7) and the similarly treated littermate controls (n = 7) 

before induction (t = 0) and monthly after induction up to 10 months (t = 1-10) or when the mouse 

developed leukemia and became moribund, whichever event occurred first. Similarly, for the validation 

cohort, we collected PBMC from CM mice (n=9) or control (n=7) before induction and monthly thereafter 

up to 6 months. Total RNA was isolated from PBMC using AllPrep DNA/RNA Kit (Qiagen). Sequencing 

details including library preparation and differential expression analysis can be found in the supplemental 

methods. 

 

Mathematical model of state-transition 

Using a state-transition model, we represented the miRNA transcriptome of each individual mouse as a 

particle in a “leukemogenic” double well quasi-potential with two steady states: normal hematopoiesis 

(health; 𝑐1) and AML (𝑐3) separated by an unstable transition state (𝑐2) (Figure 1A). After induction of the 

leukemogenic CM gene, we postulated that the potential energy landscape was perturbed such that a 

transition from health to leukemia became more likely.  

 

We modeled the miRNA state-transition trajectories for individual mice as a particle undergoing Brownian 

motion in the double-well quasi-potential energy with a Langevin equation of the form 𝑑𝑋𝑡 =

−∇𝑈𝑝(𝑋𝑡)𝑑𝑡 + √2𝛽−1𝑑𝐵𝑡. The position of the particle in the quasi-potential is denoted 𝑋𝑡, 𝐵𝑡 is a 

Brownian stochastic process that is uncorrelated in time 〈𝐵𝑖, 𝐵𝑗〉 = 𝛿𝑖,𝑗 , and the double-well quasi-
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potential 𝑈𝑝 is given by a quadratic polynomial specified by critical points (𝑐1, 𝑐2, 𝑐3) which correspond to 

the local minima and maxima of the quasi-potential, so that 𝑈𝑝(𝑥) = 𝛼∫ (𝑥 − 𝑐1)(𝑥 − 𝑐2)(𝑥 − 𝑐3)𝑑𝑥, 

where 𝛼 is a scaling parameter.  

 

To be clear, we used the term quasi-potential to clarify this is a model and not a physical energy potential. 

We defined the double-well quasi-potential with a quadratic polynomial because this is a simple and 

parsimonious mathematical interpretation of our model, assuming health and AML to be stable stationary 

states. This assumption relies on the fact that in absence of an oncogenic event, the probability of 

spontaneous transition from health to AML is low, and conversely, in a state of AML, in absence of 

treatment, the probability of transitioning back from AML to health is also low. Although many states of 

the system may exist, the aim of our model was to capture state-transition dynamics between two clearly 

defined phenotypic states: health (i.e., normal hematopoiesis) and AML.  

 

Because the Langevin equation of motion is a Brownian stochastic process, the probability distribution for 

a miRNA transcriptome particle to be at a certain position at a given time is given by a Fokker-Plank (FP) 

equation (Figure S1). Thus, to compute the probability of state-transition at a point in state-space and 

time 𝑃(𝑥, 𝑡), we solved the FP equation that relates to the stochastic equation of motion, given by 

𝜕

𝜕𝑡
𝑃(𝑥, 𝑡) =  −

𝜕

𝜕𝑥
(∇𝑈𝑝(𝑥)𝑃(𝑥, 𝑡)) +

𝜕2

𝜕𝑥2 (𝛽−1𝑃(𝑥, 𝑡))   (1) 

where 𝛽−1 is the diffusion coefficient, and 𝑈𝑝(𝑥) is the quasi-potential. The diffusion coefficient was 

estimated for the CM and control mice as the average slope of the mean-squared displacement in the 

state-space over time (supplemental methods Figure S2). 

 

Constructing the leukemogenic state-space 

In order to construct a miRNA-based leukemogenic state-space required to describe the miRNA 

transcriptome state-transition, we used the singular-value decomposition (SVD) method to perform 

principal component analysis (PCA) on the data matrix (X). The data matrix was composed of all time-

sequential samples from CM and control mice as rows and miRNAs as columns, so that 𝑋 = 𝑈Σ𝑉∗  where 

the columns of 𝑋 were mean-centered, log-normalized counts and * indicates the conjugate transpose. 

The SVD therefore decomposed the log-transformed normalized miRNA count matrix into singular values 

and left- and right-singular vectors (U and V* respectively; Figure 1B).  
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The singular vectors are basis vectors of the miRNA transcriptome and span either the state-space (U; 

composed of samples) or the feature space (V*; in this context the feature space contains the miRNA 

loadings and is hereafter referred to as the “miRNA space”). Therefore, singular vectors or linear 

combinations of singular vectors represent lower dimensional representations of the miRNA 

transcriptome. Additionally, each singular vector i has an associated singular value (σ𝑖,𝑖 from the diagonal 

matrix Σ), which indicates what fraction of the total variance is explained by the associated singular vector 

and were ordered from largest to smallest. The associated left-singular vectors (columns of U) 

corresponded to the state-space and the principal components (PCs) were given as 𝑃𝐶 = 𝑈Σ. The right 

singular vectors (V*) were the principal component loadings and were used to define eigen-miRNAs (i.e., 

the coefficient weights of miRNA contributions to the PCs; Table S1).  

 

Results 

Construction of an AML state-transition state-space using time-sequential miRNA data and mapping 

the critical points of the AML double-well quasi-potential 

We performed SVD on the miRNA transcriptome to construct an AML state-space where the critical points 

of the leukemogenic potential could be mapped and where the state-transition trajectories could be 

visualized. Each PC produced by SVD was correlated with the expression of Kit which in this mouse model, 

is an immunophenotypic marker of AML blasts that progressively increases during leukemogenesis. We 

identified PC1 as the PC that most strongly correlated with Kit expression (R2 = 0.68; p<0.001; Figure S3; 

Table S2) and that revealed the greatest separation between control and CM samples. Strikingly, as early 

as 1 month post induction, differences in PC1 between CM and control could be detected, prior to any 

evidence of leukemic cells in the peripheral blood (see Figure S4).  Therefore, we used PC1 to define the 

AML state-space and AML eigen-miRNAs. To map state-transition trajectories for each mouse, we plotted 

time-sequential samples in a two-dimensional space constructed with PC1 vs PC2 (Table S3). Since each 

PC is orthogonal to each other by construction, any other PC would create an orthogonal 2-dimensional 

space; PC2 was chosen for simplicity and convenience. In the AML state-space, as the mice developed 

leukemia, their PC1 coordinate decreased (Figure 1C). Critical points (𝑐1, 𝑐2 and 𝑐3) and AML state-

transition dynamics in the state-space were identified using PC1 (see Methods section) and used to define 

states of health, transition, and AML (Figure 1D).  

 

To identify the three critical points of the double-well quasi-potential 𝑈𝑝 in the AML state-space, k-means 

clustering with k=3 was performed on the sample coordinates of PC1. The health and AML states 
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corresponding to 𝑐1 and 𝑐3 (Figure 1D) were taken as the means of the clusters including the health and 

AML samples, denoted K1 and K3, respectively4. The transition critical point 𝑐2 was estimated by 

maximizing the Boltzmann ratio between the 𝑐1 and 𝑐3  states as 𝑐2 = arg max
𝑥∈𝐾2

𝑒−(𝑈𝑝(𝑥,𝑐3)−𝑈𝑝(𝑥,𝑐1))𝑘𝐵 

where K2 is the cluster between K1 and K3, and 𝑘𝐵 is the Boltzmann constant (Figure S5; Table S4). 

Simulation studies confirmed that the cluster means of K1 and K3 were the best estimators of 𝑐1  and 

𝑐3 respectively, and 𝑐2 was best estimated to be near the boundary of clusters K1 and K2 (Figure S6). 

 

State-transition critical points enable interrogation of differentially expressed miRNA during AML 

development 

Although the time-series sampling allowed us to observe changes in miRNA expression during 

leukemogenesis, the mice were not synchronized and did not develop leukemia at the same time (Figure 

2A). Consequently, the same time points did not coincide with identical phenotypic states of AML 

development and therefore, could not be used to compare miRNA expression changes. Thus, to identify 

differentially expressed miRNAs (DE miRNAs) that occurred at the same states of AML development, we 

used the critical points of the double well quasi-potential identified in the AML state-space to align 

sequential homogeneous and therefore comparable phenotypic states of disease among individual mice 

(i.e., pseudo-time points). Pairwise comparisons of miRNA expression at each critical point between the 

CM-induced mice and the control mice allowed us to identify early, transition, late, and persistent DE 

miRNA events. Early events were defined as the unique DE miRNAs that occurred post-CM induction at 

𝑐1, transition events were those that occurred at 𝑐2, late events were those that occurred at 𝑐3, while 

persistent events were the miRNAs detected as DE at all three critical points, (𝑐1, 𝑐2, and 𝑐3; Table S5; 

Figure 2B).  

 

Since the AML state-space is built with the eigen-miRNA loadings (𝑉1
∗ ), to assess the contribution of 

individual DE miRNAs to the leukemogenic state-space, we plotted the miRNA space (𝑉1
∗ loadings vs 

𝑉2
∗ loadings; Figure 2C). In this newly defined miRNA space, the contribution of each miRNA to AML state-

space was determined by its 𝑉1
∗ loading value (see Figure 1B). Thus, each miRNA had either a positive or 

negative contribution to the AML state-space construction. For example, miR-409-5p had the largest 

negative loading value, and therefore, also had the largest positive contribution to the state-space since 

progression to AML in PC1 went toward a more negative value (𝑐3 AML state coordinate is negative). 

Whereas miR-135a-1-3p had the largest positive loading value and therefore, the largest negative 

contribution to the state-space.  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 2, 2021. ; https://doi.org/10.1101/2021.03.02.433582doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.02.433582


 

Using the early, late, transition and persistent events, we then analyzed the contribution of the DE miRNA 

to movement in the state-space corresponding to AML state-transition. The contribution of each miRNA 

to AML state-transition depended on both its location in the miRNA space and on whether it was up- or 

down-regulated. A miRNA that contributed to the AML state-transition could have either: 1) a negative 

𝑉1
∗ loading value and increased expression; or 2) a positive 𝑉1

∗ loading value and a decrease in expression. 

Using two miRNAs from the late events as an example, miR-126a-3p had a negative 𝑉1
∗ loading value (right 

of x=0) and was up-regulated (orange), indicating that it contributed to the AML state-transition; 

alternatively, miR-181c-5p had a positive 𝑉1
∗ loading value (left of x=0) and was down-regulated (green), 

indicating that it also contributed to the AML state-transition (Figure 2D). 

 

To summarize the net leukemic contribution of early, transition, late, and persistent events, we plotted 

vectors representing the mean of the miRNA state-space coordinates (i.e., 𝑉1
∗ loading vs 𝑉2

∗ loading values) 

separately for the up- and down-regulated DE miRNA (Figure 2D). The DE miRNAs in each comparison 

more strongly contributed to leukemogenesis if the representative vector had a large 𝑉1
∗ component. With 

this interpretation, we observed that the early events have a smaller net contribution to leukemogenesis 

as compared to the transition or late events.  To interrogate the biological role of the DE miRNAs in 

leukemogenesis, we also identified pathways implicated by the DE miRNAs of each comparison10. Early 

events were involved in IL-7 signaling and metabolic pathways; transition events in Wnt and inflammation 

pathways; late event in MAPK and adhesion pathways, and persistent events in apoptosis, cytokines and 

PI3K-AKT signaling pathways (Figure S7). 

 

Dynamics of miRNA expression  

To investigate changes of the miRNA patterns of expression during AML state-transition, we leveraged 

both the time-series samples and the critical points. Correlation coefficients between each miRNA were 

calculated to produce a correlation matrix. Hierarchical clustering of the correlation coefficients revealed 

four distinct groups of miRNA expression dynamics (Figure 3A; Table S6). When plotted in the state-space 

(PC1), the miRNA expression dynamics corresponded to two patterns: non-monotonic (Figure 3B; groups 

1,3); and monotonic (Figure 3B; groups 2,4). The miRNA groups which exhibited a non-monotonic 

expression dynamic revealed a local maximum (group 1) or local minimum (group 3) around the transition 

critical point 𝑐2. As 𝑐2 is the unstable stationary point in the state transition model that separated healthy 

and AML states, changes in expression at 𝑐2 indicated that these miRNAs likely play a role in facilitating 
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the irreversible transition from health to AML. Without the identified critical points to align the 

leukemogenic states of time-series samples, the nonlinear expression patterns of group 1 and 3 would 

not be detected or interpreted in this way. 

 

Of note, when we tested each group for over-representation of DE miRNAs using the hypergeometric test, 

we observed that the monotonic groups 2 and 4 showed over-representation of late and persistent events 

respectively whereas the non-monotonic groups 1 and 3 showed over-representation of early events. 

Pathways implicated based on miRNA expression dynamics reveal the non-monotonic pattern in group 1 

was seemingly associated with IL-6, TNF-NFB signaling, cytokines inflammation response, and Wnt 

signaling while group 3 was seemingly associated with immunologic pathways including antigen 

processing and toll-like receptor (TLR) signaling (Figure 3C; pathway summary in Table S7). Similar to 

group 3, group 4 also was associated with immunogenic and TLR signaling but differed from group 3 in its 

association with PI3K-AKT signaling. Group 2 showed heterogeneous pathway involvement. 

 

Validation of miRNA state-space in an independent cohort 

As a validation of the SVD derived state-space, we used an independent cohort of CM and control mice 

(validation cohort). The eigen-miRNA loadings (𝑉1
∗) were used to project data from the validation cohort 

into the state-space. Without any prior knowledge of the genotype or timepoint of the samples, the eigen-

miRNAs predicted the disease status and trajectories of the validation samples (Figure 4A). Of note, the 

state-space trajectories of three CM mice in the validation cohort which were induced but did not develop 

AML during the observation period (6 months) were correctly projected to be with the control mice (black 

arrows; Figure 4A). 

 

The state-transition model correctly predicts time to AML development 

Thus far we have illustrated the use of pseudo-time points (i.e., critical points) to phenotypically 

synchronize the transition of each mouse from health to AML. However, the state-space model can also 

be used to predict the AML development in each mouse in real time. To this end, in order to predict the 

time to AML, we initialized the FP equation (Eq. 1) with a Gaussian distribution based on the first time 

point post induction (t=1) of CM samples in the state-space and solved the equation forward in time 

(Figure S1). By integrating the solution of the FP from 𝑐2 to 𝑐3, we calculated the probability of state-

transition over time. We then compared the predicted time to develop AML with that observed in the 

mice using the Kaplan-Meir estimator. Our model accurately predicted the time to develop leukemia for 
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the cohort of mice, as the predicted and observed survival curves were not significantly different (p>0.05; 

Figure 4C).  

 

mRNA and miRNA transcriptomes both encode a similar but not identical AML state-transition 

We show here that the miRNA transcriptome undergoes state-transition during leukemogenesis similar 

to the mRNA transcriptome (RNA-seq) that we previously reported using the same mouse model4. 

However, in contrast to the miRNA-derived state-space, which was encoded in PC1, mRNA state-transition 

was encoded in PC2. Nevertheless, the overall displacement of each mouse in the state-space, defined to 

be a connecting line between the first (t=0) and the last time points, revealed similar trajectories in both 

the mRNA and miRNA AML state-spaces (Figure 5A; Table S8).  

 

To quantitatively assess the similarity and differences of the mRNA- and miRNA-derived state-spaces, we 

then computed the angle between all the miRNA and mRNA transcriptome PCs pairs using the vector dot 

product (see supplemental methods). We interpreted the results as follows: miRNA and mRNA 

transcriptome PCs that were orthogonal to each other encoded different sources of variation within each 

data type; whereas miRNA and mRNA transcriptome PCs that had an angle closer to zero encoded sources 

of variance that were shared between the two data sets. Strikingly, these two PCs with the smallest angle, 

and therefore the most similar, were those that encoded the variation associated with state-transition 

from health to AML (i.e., PC1 for miRNA and PC2 for mRNA; Figure 5B). Not only were no other PCs more 

aligned than miRNA PC1 and mRNA PC2, but the other PCs were also nearly orthogonal to each other 

(Figure S8). This suggests that the time-series dynamics of mRNA and miRNA can both be used to predict 

AML development since they encode similar, albeit not identical, information of the state-transition from 

health to disease. In fact, by plotting the miRNA and mRNA state-spaces against each other and annotating 

the critical points, the overall state-transition trajectories had a striking similarity (Figure 5C,D). Only 5 

samples out of 129 total samples were classified differently as being in 𝑐1, 𝑐2, or 𝑐3 states based on which 

critical points—mRNA or miRNA—are used.  

 

Taken together, state-transition trajectories, the angle between the principal components, and the 

locations of the critical points between mRNA and miRNA-derived state-spaces, we concluded that both 

miRNA and mRNA expression undergo a system-wide state-transition during AML development and they 

encode information of disease progression that is similar, but not identical for the leukemogenic 

processes.  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 2, 2021. ; https://doi.org/10.1101/2021.03.02.433582doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.02.433582


 

Discussion 

Here we report the application of a state-transition theory to the interpretation of how temporal changes 

in the miRNA expression informs AML initiation and progression. Using miRNA expression analysis of 

PBMCs collected at sequential time points from a mouse model of inv(16) AML from induction of the 

leukemogenic CM fusion gene until development of overt disease, we identify “key” states of the miRNA 

transcriptome corresponding to the critical points of a miRNA-based leukemic double-well quasi-

potential. To confirm the accuracy of our prediction, we utilized time-series miRNA sequencing data from 

an independent cohort of mice. Notably, we found no difference when we compared the predicted vs 

actual survival curves, supporting the accuracy of our state-transition model prediction. 

 

The state-transition model is a system-wide holistic approach to biology where the transformation from 

one state to another is viewed as a change in state of the whole system as opposed to a change resulting 

from one (or a small collection) of molecules5,11,12. Using gene expression as an example of this 

perspective, a state transition occurs because the entire mRNA transcriptome transitions to a new steady 

state: the expression of all genes contribute to the transition, not the change in expression of a single 

gene. To be clear, as was the case in our CM AML model, a single mutation or molecule may be sufficient 

to cause a perturbation that induces a state-transition; however, in the system-wide holistic view, the 

perturbation causes an alteration to the underlying gene regulatory network that results in a state-

transition to the entire transcriptional state. Currently, miRNA expression is more commonly used to 

investigate the regulatory effects of a single or small set of miRNA molecules. Although smaller in 

dimensionality, the miRNA transcriptome, similar to the mRNA transcriptome, is both involved in a wide 

range of biological processes and a highly regulated subset of RNA molecules. Our finding that the miRNA 

transcriptome can be used to construct an AML state-transition model is, to the best of our knowledge, 

the first report of miRNA transcriptome encoding system-wide dynamics during the course of AML 

pathogenesis and progression. Thus, this work reveals that a more system-wide holistic view of the miRNA 

transcriptome is warranted. 

 

The state-space and state-transition model provided a theory-guided approach to the analysis of 

differential expression, with early, transition, late, and persistent events defined relative to critical points 

in the state-transition. The biological significance of the critical points is provided by the analysis of early, 
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transition, late and persistently DE miRNAs that are respectively associated with 𝑐1, 𝑐2, 𝑐3 or all three 

critical points. This in turn allowed for a novel approach to quantify miRNA contributions to AML 

pathogenesis through identification of distinct dynamics of miRNA expression, including monotonic and 

non-monotonic patterns. The miRNAs groups (2 and 4) with a monotonic patterns of expression changes, 

i.e., continuously decreased expression (group 2) or continuously increased expression (group 4) were 

enriched with miRNAs that were found to be persistent DE miRNAs at all three critical points. These groups 

included miRNAs that regulate genes involved in the “inflammasome” (i.e., miR-467), cell differentiation 

(i.e., miR-669, miR-31) and leukemia stem cell function (i.e., miR-126).  The miRNA groups with a non-

monotonic expression patterns included several miRNAs that regulate glucose and lipid metabolisms (i.e., 

miR-320 and miR-142) or directly target KIT (i.e., miR-122) or ubiquitination (i.e., miR-378, miR-30c). While 

the biological meaning of the two patterns of expression dynamics requires additional analyses and 

experimental evidence both in silico and at the bench, it is possible that they may represent key features 

of leukemogenesis. We interpreted the monotonic patterns of expression dynamics as the representation 

of a “leukemogenic force” given by the continuous increase and decrease of onco- and tumor-suppressor 

miRNAs respectively during AML state-transition. In contrast, it is possible that the non-monotonic 

patterns of expression dynamics represent a “restoring force” that attempts to return the miRNA-

transcriptome to the initial equilibrium (i.e., health or 𝑐1) after CM induction but that inevitably breaks 

down at the point of “no-return” in AML state-transition (i.e., the critical point 𝑐2), where it is overcome 

by the “leukemogenic force”.  This work therefore suggests that the dynamics of miRNA transcriptome 

encode critical information and may serve as a novel blood-based biomarker of state-transition from 

health to AML or an early indicator for response to treatments (i.e., transition from AML to health) upon 

a therapeutic intervention. 

 

Of note, we recently showed that state-transition theory and double-well potential of the mRNA 

transcriptome can also predict AML initiation and development.4 When we analyzed state-transition 

trajectories, the angle between the principal components, and the locations of the critical points between 

mRNA and miRNA-derived state-spaces, we observed that both miRNA and mRNA expression undergo a 

system-wide state-transition during AML development and they encode information of disease 

progression that is similar, but not identical. Thus, while miRNAs and mRNA are mostly functionally 

associated, it is possible that certain steps of leukemogenesis are instead uniquely dependent on either 

miRNA or mRNA expression. We expect that simultaneous state-transition modeling of miRNA and mRNA 

expression dynamics will provide a unique perspective to map the inter-relationships and information 
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content that will be instrumental to detect early indications, monitor treatment response, and predict 

relapse in individual AML patients. 
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Figure 1. A. Our state-transition model represents the miRNA-transcriptome as a particle undergoing 

Brownian motion in a potential energy landscape. The time evolution of the miRNA transcriptome is 

represented as movement in the potential. In absence of an oncogenic event, there exists a large energy 

barrier between a state of normal hematopoiesis and leukemia, corresponding to a low probability of 

state-transition. An oncogenic event, such as Cbfb-MYH11 (CM) fusion resulting from inversion 16 

translocation, alters the potential energy landscape, reducing the energy barrier and increasing the 

probability of state-transition. The states are characterized by local maxima and minima in the energy 

landscape, labeled 𝑐1, 𝑐2, and 𝑐3, corresponding to normal hematopoiesis, an unstable transition, and 

AML states, respectively. B. The miRNA state-space is created with the singular value decomposition (SVD) 

of time-sequential samples collected from control and CM induced mice over leukemia development. The 

SVD gives basis vectors which form principal components (U) representing the sample timepoints, singular 

values (𝛴) and basis vectors for miRNA expression corresponding to the principal components (V*) which 

define eigen-miRNA (first column of V*). C. The first two principal components (PC1, PC2) reveal state-

transition trajectories from a state of hematopoiesis to AML. D. State-transition critical points are 

identified in the state-space which characterize the state-transition from health to AML.  

 

Figure 2. A. The miRNA transcriptome undergoes a state-transition from health to AML and can be seen 

in the first principal component (PC1) plotted over time for control and CM induced mice. All samples 

have a similar initial value of PC1 at time t=0 prior to CM induction. CM mice and control mice diverge and 

create state-transition trajectories as CM mice samples move south toward the AML state (𝑐3). B. 
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Differential expression at each critical point is used to define early, transition, late and persistent 

differential expression events as compared to control samples. Numbers indicate how many miRNA are 

differentially expressed. C.  All miRNA are plotted in the miRNA space (𝑉1
∗ loading vs 𝑉2

∗ loading values) to 

illustrate their contribution to the AML state-space construction. The basis vectors for eigen-miRNA 

expression given by 𝑉1
∗ in the SVD provides a geometric interpretation of miRNA expression so that miRNA 

may be identified as having a positive or a negative contribution to the construction of the AML state-

space. D. Early, transition, late, and persistent DE miRNA shown in the state-space and colored for up or 

down regulation. After taking the direction of expression change into account, the total contribution of 

the differentially expressed (DE) miRNA are visualized as a mean vector. The magnitude of the mean 

vector in PC1 (x-axis) indicates how strongly the DE miRNA contribute to AML state-transition (i.e., sample 

movement toward AML in the state-space). Early events have smaller contribution to AML, revealed by 

small PC1 component of the arrows, followed by increasing contributions to AML in transition events, 

with stronger more prominent pro-leukemogenic events indicated by larger arrows in late and persistent 

events. Kernel density plots above each plot also show the distribution of up- and down-regulated DE 

miRNA. Tables underneath each plot indicate the 10 most significantly DE miRNA of each comparison. The 

color of the miRNA indicates whether it was detected to be up or down regulated. The rank of each miRNA, 

based on their adjusted p-value, is shown in the table and used to indicate their location in the miRNA 

space. 

 

Figure 3. A. Hierarchical clustering of correlated miRNA expression annotated with state-transition critical 

point DE miRNA. Four distinct patterns of miRNA expression are identified. B. Four patterns, or groups of 

miRNA expression dynamics include monotonic (groups 2,4) and non-monotonic (groups 1,3) patterns 

when plotted in the state-space (PC1). Interestingly, a local maximum (group 1) and minimum (group 3) 

are identified very near the unstable transition critical point 𝑐2. C. Pathways implicated based on miRNA 

expression dynamics are summarized to reveal the non-monotonic pattern in group 1 is associated with 

both Cell/Nuclear Signaling pathways including IL-6, TNF-NFB signaling, and cytokines inflammation 

response, and Wnt signaling. The opposite non-monotonic expression dynamic (group 3) is enriched for 

Immune Response pathways including antigen processing and toll-like receptor signaling. Full list of 

pathways in each summarized category is shown in Table S7. 

 

Figure 4. A. State-space predictions on an independent validation experiment. Using only the coefficient 

weights determined by the eigen-miRNA in V*, new samples are projected into the state-space to 
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characterize state-transition trajectories. Control and CM trajectories are accurately identified, including 

3 CM induced mice which did not develop leukemia at the experiment endpoint (t=6) indicated with 

arrows. B. The solution of the Fokker-Planck model of state-transition gives the evolution probability 

density function (PDF) and prediction of state-transition for any point in the state-space at any time. C. 

The PDF is used to predict the time to develop AML from an initial state of the miRNA transcriptome and 

accurately predicts the manifestation of leukemia in the mice. 

 

Figure 5. A. By plotting the first and last timepoint samples in miRNA and mRNA state-spaces, net 

displacement trajectories reveal similarities between the gene expression and miRNA state-transition 

state-spaces. B. The angle between mRNA (x-axis) and miRNA was computed for every pair of principal 

components. The smallest angle, which indicates the states with the most similarity, between all states 

was detected for the AML state-space (miRNA PC1 and mRNA PC2). The close alignment of the miRNA- 

and mRNA-derived AML state-spaces indicate that the time-evolution of AML state-transition is more 

similar than any other source of variance. C. State-spaces for miRNA and mRNA plotted against each other 

annotated with critical points reveals similarities in both the state-transition dynamics and the critical 

point classification. Only 5 out of 132 samples would be categorized differently depending on which 

critical points were used, mRNA or miRNA. D. The trajectories for both the miRNA and mRNA AML state-

spaces for each sample are plotted as function of time.  
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Supplemental materials and methods 

miRNA-seq library preparation and sequencing  

Samples were allocated to randomized batches for library preparation, such that samples from each 

timepoint were distributed evenly over all sequencing runs. All libraries were prepared using the Illumina 

TruSeq Small RNA protocol with minor modification following the manufacturer’s instructions.  Briefly, for 

each sample, 280 ng of total RNA was ligated to the sRNA 3′ adaptor (5’-

TCTGGAATTCTCGGGTGCCAAGGAACTCC-3’) with T4 RNA Ligase 2, truncated (New England BioLabs) for 1 

h at 22°C, and subsequently ligated to a 5′ adaptor: 5’-GUUCAGAGUUCUACAGUCCGACGAUCNNN-3’) with 

T4 RNA ligase 1 (New England BioLabs) for 1 h at 20°C. The constructed small RNA library was first reverse-

transcribed using GX1 (5′- GGAGTTCCTTGGCACCCGAGA) as the RT primer then subjected to PCR 

amplification for 13 cycles, using the primers GX1 (5′-

CAAGCAGAAGACGGCATACGAGAT[NNNNNN]GTGACTGGAGTTCCTTGGCACCCGAGAATTCCA-3’) and GX2 

(5′- AATGATACGGCGACCACCGAGATCTACAC[NNNNNNNN]CGACAGGTTCAGAGTTCTACAGTCCGA-3’), 

followed by 6% TBE PAGE gel purification with size selection (for targeted small RNAs of 17–35 nt). 

Individual libraries were prepared using a unique index primer (NNNNNNNN in the GX1 and GX2 primer) 

in order to allow for pooling of multiple samples prior to sequencing. The purified libraries were quantified 

using qPCR. Sequencing of single end 50 cycles was performed on a HiSeq 2500 (Illumina Inc., San Diego, 

CA), and image processing and base calling were conducted using Illumina's RTA pipeline. 
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Raw sequencing reads were processed with the nf-core smRNASeq pipeline version 1.013 using the 

GRCm38 genome reference (with the parameter --genome GRCm38) and adapters for the Illumina small 

RNA protocol (by setting --protocol illumina). Briefly, trimmed reads were mapped using bowtie14 to 

miRBase15 mature miRNAs (using the parameters -k 50 --best --strata), and the number of reads mapping 

to each was counted using samtools stats16. Each library was also subjected to extensive quality control, 

including estimation of library complexity, contamination, sequence quality, read length and depth, 

among other metrics detailed in the pipeline repository. Mapped reads were merged into a matrix of 

counts per gene for each sample at each timepoint and normalized to counts per million (CPM) reads 

mapped, as implemented in edgeR17. Surrogate variable analysis was used to check for confounding 

experimental effects18. None were apparent (data not shown). The miRNA dataset is submitted to GEO 

and accession number pending. 

 

miRNA analysis  

Log normalized miRNA were generated by taking the log (base 2) of CPMs [i.e., log2(CPM+0.01)] and used 

for singular value decomposition (SVD). We treated each mouse as a replicate to investigate how 

expression changed as the mice moved through the leukemic state space (PC1). Differentially expressed 

(DE) miRNA were determined by comparing control samples to the sample classified as each of the critical 

points (𝑐1, 𝑐2,  and 𝑐3) using miRTOP generated miRNA counts and default settings of DEseq219,20 (Figure 

2B-D). For the validation cohort, data were processed by removing adapters using cutadapt v1.9.1, and 

trimmed sequences were aligned to mm9 genome using Bowtie v0.12.7 with “--best” option21,22. Mature 

miRNAs counts were determined using R scripts and miRbase v2115. Log normalized counts were again 

generated from CPM [i.e., log2(CPM+0.01)]; one sample (out of 99 total samples) was removed as an 

outlier based on poor library quality and abnormal expression patterns. To project the validation cohort 

samples into the AML state-space, the log normalized expression matrix (𝑋𝑉) was multiplied by 𝑉 (i.e., 

𝑈𝑉 =  𝑋𝑉 ∗ 𝑉), and time was plotted vs the first component of 𝑈𝑉  (Figure 4A). 

 

Identification of leukemia state-transition state-space and comparison to Kit expression 

In order to identify which principal component was most associated with leukemia, we examined all 

principal components and correlated them with expression of Kit gene, which is an immunophenotypic 

marker of AML. PC1 had both the highest R2 and lowest p-value of all PCs (Table S2; Figure S2). PC1 and 

PC2 accounted for 5 and 4%, respectively, of the total variance present in the data. Kit expression was 
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determined using the matched mRNA sequencing (RNA-seq) for each sample which is previously 

described4.  

 

Angle between mRNA and miRNA principal components 

The angle between each of the PCs from mRNA and miRNA (Figure 5B) is computed such that for two 

vectors a and b, 𝜃 =  cos−1 (
𝒂⋅𝒃

‖𝒂‖‖𝒃‖
) where ‖⋅‖ is the L-2 norm, or magnitude of the vector. The angle is 

computed using all PCs with non-zero eigenvalues for the full state space with all samples. 
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Validation experiment Survival predictionA CB Fokker-Planck solution
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