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ABSTRACT 19	
Breast cancer patient stratification is mainly driven by tumour receptor status and 20	
histological grading and subtyping, with about twenty percent of patients for which absence 21	
of any actionable biomarkers results in no clear therapeutic intervention. Cancer cells 22	
within the same tumour have heterogeneous phenotypes and exhibit dynamic plasticity. 23	
However, how to evaluate such heterogeneity and its impact on outcome and drug response 24	
is still unclear. Here, we transcriptionally profiled 35,276 individual cells from 32 breast 25	
cancer cell lines covering all main breast cancer subtypes to yield a breast cancer cell line 26	
atlas.  We found high degree of heterogeneity in the expression of clinically relevant 27	
biomarkers across individual cells within the same cell line; such heterogeneity is non-28	
genetic and dynamic. We computationally mapped single cell transcriptional profiles of 29	
patients’ tumour biopsies to the atlas to determine their composition in terms of cell lines. 30	
Each tumour was found to be heterogenous and composed of multiple cell lines mostly, 31	
but not exclusively, of the same subtype. We then trained an algorithm on the atlas to 32	
determine cell line composition from bulk gene expression profiles of tumour biopsies, 33	
thus providing a novel approach to patient stratification.  Finally, we linked results from 34	
large-scale in vitro drug screening1,2 to the single cell data to computationally predict 35	
responses to more than 450 anticancer agents starting from single-cell transcriptional 36	
profiles. We thus found that transcriptional heterogeneity enables cells with differential 37	
drug sensitivity to co-exist in the same population. Our work provides a unique resource 38	
and a novel framework to determine tumour heterogeneity and drug response in breast 39	
cancer patients. 40	
 41	
MAIN TEXT 42	
 43	
Introduction 44	
One of the main roadblocks to personalized medicine of cancer is the lack of biomarkers 45	
to predict outcome and drug sensitivity from a tumour biopsy. Multigene assays such as 46	
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MammaPrint3, Oncotype DX4,5 and PAM506 can classify Breast Cancer (BC) tumour types 47	
and risk of relapse7 but with limited clinical utility7,8. Genomic and transcriptional 48	
biomarkers of drug sensitivity are available only for a restricted number of drugs1,2,9. As a 49	
consequence, BC patient stratification is still mainly driven by receptor status and 50	
histological grading and subtyping7, with about twenty percent10 of patients  for which 51	
paucity of actionable biomarkers  limits personalized therapies. Moreover, even when a 52	
targeted treatment option is available, drug resistance may arise7 partly because of rare 53	
drug tolerant cells characterized by distinct transcriptional or mutational states11–17.  54	
Determining tumour heterogeneity and its impact on drug response is essential to better 55	
stratify patients and aid in the development of personalized therapies. Expression-based 56	
biomarkers measured from bulk RNA-sequencing of a tumour biopsy are powerful 57	
predictors of drug response in vitro1,2,18, but average out tumour heterogeneity. Single-cell 58	
transcriptomics yields a molecular profile of each cell19,20, however, it is still unclear if and 59	
how it can inform clinical decision making. Here, we focused on tumour-derived breast 60	
cancer cell lines. We hypothesized that despite being simplistic models of tumours, cancer 61	
cell lines may exhibit themselves heterogeneous phenotypes, and serve as cell-state 62	
“primitives” to deconvolve tumour cell composition from patients’ biopsies for patient 63	
stratification and prediction of drug response. 64	
 65	
 66	
RESULTS 67	
 68	
1. Single-cell Transcriptome Profiling of Breast cancer cell lines. 69	
We performed single cell RNA-sequencing (scRNA-seq) of 31 breast cancer cell lines 70	
(Supplementary Table 01) and one non-cancer cell line, MCF12A21, by means of the Drop-71	
seq technology20. Following pre-processing (Methods), we retained a total of 35,276 cells, 72	
with an average of 1,069 cells per cell line and 3,248 genes captured per cell 73	
(Supplementary Figure 01 and Supplementary Table 01). 74	

We next generated an atlas (http://bcatlas.tigem.it) encompassing the 32 BC cell 75	
lines, as shown in Figure 1A. In the atlas, luminal BC cell lines form a big “island” with 76	
multiple “peninsulas” with intermixing of cells from distinct cell lines; on the contrary, 77	
triple-negative breast cancer (TNBC) cell lines give rise to an “archipelago”, where cells 78	
tend to separate into distinct islands according to the cell line of origin, thus suggesting that 79	
TNBC cell lines represent instances of distinct diseases.  80	

Single-cell expression of clinically relevant biomarkers (Figure 1B,C) including 81	
oestrogen receptor 1 (ESR1), progesterone receptor (PGR), Erb-B2 Receptor Tyrosine 82	
Kinase 2 (ERBB2 a.k.a. HER2) and the epithelial growth factor receptor (EGFR)  across 83	
the different cell lines are in agreement with their reported status21–23.  84	

To gain further insights into each cancer cell line, we analysed the expression of 48 85	
literature-based biomarkers of clinical relevance24, as reported in Figure 1D. Luminal cell 86	
lines highly express luminal epithelium genes, but neither basal epithelial nor stromal 87	
markers; on the contrary, triple-negative BC cell lines (11 out of 15) show a basal-like 88	
phenotype with the expression of at least one of keratin 5, 14 or 1725,26, with triple-negative 89	
subtype B (TNB) cell lines also expressing vimentin (VIM) and Collagen Type VI Alpha 90	
Chains (COL6A1, COL6A2, COL6A3)21. Interestingly, two out of five HER2 91	
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overexpressing (HER2+) cell lines (JIMT1 and HCC1954) in the atlas are in the triple-92	
negative “archipelago” and express keratin 5 (KRT5) (Figure 1A,D), which has been linked 93	
to poor prognosis and trastuzumab resistance27. Indeed, both cell lines  are resistant to anti-94	
HER2 treatments28. Finally, the non-tumorigenic MCF12A cell line lacks expression of 95	
ESR1, PGR and HER2 and displays a basal-like phenotype characterized by the expression 96	
of all basal-like marker genes including keratin 5, 14, 17 and TP63, in agreement with the 97	
literature29. 98	

Overall, these results show that single cell transcriptomics can be successfully used  99	
to capture the overall expression of clinically relevant markers. 100	

 101	
 102	
2. The BC single-cell atlas identifies clinically relevant transcriptional signatures.  103	
By clustering the 35,276 single-cells in the atlas, we identified 22 clusters, as shown in 104	
Figure 1E. Within the luminal island, cells did not cluster according to their cell line of 105	
origin, indeed four out of the five luminal clusters contain cells from distinct cell lines 106	
(Figure 1F and Supplementary Figure 02). On the contrary, triple-negative cell lines 107	
clustered according to their cell line of origin, with each cluster containing mostly cells 108	
from the same cell line (Figure 1F). 109	

We identified genes specifically expressed among cells in the same cluster for a 110	
total of 22 biomarkers, one for each cluster (Figure 1G,H and Supplementary Figure 03). 111	
Interestingly, neither ESR1 nor ERRB2 were part of this set. Literature mining confirmed 112	
the significance of some of these markers: clusters in the luminal island (Figure 1G) were 113	
associated to genes involved in cancer progression (BCAS330,31 cluster 2), dissemination 114	
(SCGB2A232,33 cluster 6), proliferation (DRAIC34,35 cluster 1), migration and invasion 115	
(CLCA236,37 cluster 8 and PIP38 cluster 18). Interestingly, whereas DRAIC is correlated 116	
with poorer survival of luminal BC patients35, both CLCA2 and PIP are significantly 117	
associated with a favourable prognosis36,37,39,40. 118	

To examine the clinical relevance of these 22 biomarkers, we analysed their 119	
expression across 937 breast cancer patients from the TGCA collection encompassing all 120	
four BC types. Out of the 22 biomarkers, two (MAGEA4 and XAGE2) could not be 121	
mapped to the TGCA dataset. As shown in Figure 1H, there is a marked difference in the 122	
expression of the 20 cluster-derived biomarkers across Luminal A, Luminal B, Her2 123	
positive and Triple Negative patients. Moreover, it is possible to distinguish subtypes 124	
within each category, which may lead to novel diagnostic/prognostic biomarkers (Figure 125	
1H and Supplementary Figure 04). For example, one subset of triple-negative patients 126	
strongly expresses the protease kallikrein-10 (KLK10), which has been associated with 127	
poor prognosis, poor response to tamoxifen treatment41 and identified as potential target to 128	
reverse trastuzumab resistance42. Whereas a second subset is characterised by actin gamma 129	
2 expression (ACTG2), which has been linked in BC to cell proliferation43 and platinum-130	
based chemotherapy sensitivity44–47.   131	

Finally, we compared the performance of the 20 biomarker genes in classifying BC 132	
subtypes from bulk RNA-seq data (Methods) against the PAM50 gene signature (50 133	
genes)6 used in clinics to identify breast cancer subtypes (Figure 1I). The performances 134	
were overall comparable, with the obvious exceptions of HER2-overexpressing cancers. 135	
Indeed, when adding ERBB2 to the list of 20 cluster-based biomarkers, classification of 136	
this subtypes markedly improved (Figure 1I).  137	
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Altogether, these analyses confirm that the single cell BC cell line atlas allows 138	
identifying clinically relevant gene signatures useful for patient stratification and tumour 139	
type classification.  140	
 141	
3. The BC atlas as a reference for automated cancer diagnosis 142	
The BC atlas can be used as a reference against which to compare single cell 143	
transcriptomics data from a patient’s tissue biopsy and to perform cancer subtype 144	
classification and assessment of tumour heterogeneity. To this end, we developed an 145	
algorithm able to map single-cell transcriptional profiles from a patient onto the BC atlas 146	
and to assign a specific cell line to each of the patient’s cells (Methods). We first tested the 147	
ability of the algorithm in correctly classifying the very cells in the atlas starting from their 148	
single-cell transcriptional profiles and correctly classified 92% of the cells (Supplementary 149	
Figure 05). We then turned to single-cell transcriptional profiles obtained from five triple-150	
negative breast cancer patients48. As shown in Figure 2A, most, but not all the patients’ 151	
cells mapped to the triple-negative “archipelago”, except for the TNBC5 sample, for which 152	
most cells mapped to the luminal island. As the algorithm assigns a specific cell line to 153	
each tumour cell, it is also possible to look at the cell line composition of each patient, as 154	
reported in Figure 2B. These results demonstrates that heterogeneity varies across patients 155	
but is present in all the samples, as no patient’s biopsy mapped to a single cell line. 156	
Moreover, information on the drug sensitivity of the individual cell lines composing the 157	
tumour may prove useful in guiding therapeutic choices. 158	
  We next tested the algorithm on spatial transcriptomics dataset obtained from the 159	
tissue biopsy of two patients, one diagnosed with ESR1+/ERBB2+ lobular oestrogen 160	
positive carcinoma (Figure 2C-E and Supplementary Figure 06A) and the other with 161	
ESR1+/ERBB2+ ductal carcinoma (Supplementary Figure 06C,D)49. The dataset consists 162	
of 3,808 transcriptional profiles for patient 1 (Figure 2C) and 3,615 profiles for patient 2 163	
(Supplementary Figure 06C), each obtained from a different tissue “tile” of size 100um x 164	
100um x 100 um. The algorithm projected each of the spatial tiles onto the BC atlas and 165	
assigned a cell line to each tile. We coloured the tiles according to the cell line and the BC 166	
subtype of the cell line (Figure 2C) to yield an automatic cancer subtype classification of 167	
tiles. Most of the tiles for both patients were assigned to just two cell lines and correctly 168	
classified as luminal (A or B); the remaining 13% of the tiles for patient 1 and 20% for 169	
patient 2 were instead classified either as HER2-overexpressing or Triple Negative, which 170	
could be an important information to guide therapeutic choice and to predict the occurrence 171	
of drug resistance.  172	

As bulk gene expression profiles are more clinically relevant than single-cell gene 173	
expression profiles, we next trained a deconvolution algorithm Bisque50 (Methods and 174	
Supplementary Figure 07) by leveraging our single-cell atlas to predict the cell line 175	
composition of a tumour sample. To test the effectiveness of this algorithm, we collected 176	
937 bulk gene expression profiles from breast cancer patients in TGCA whose BC subtypes 177	
were annotated, and then assigned to each patient the corresponding  cell line composition, 178	
as shown in Figure 2D,E. Reassuringly, patients diagnosed with a specific breast cancer 179	
subtype tend to have a tumour cell line composition consisting of cell lines of the same 180	
subtype. We quantified this observation in Figure 2F and observed some interesting 181	
exceptions: JIMT-1 is an HER2-overexpressing cell line with an amplified ERBB2 locus, 182	
but no HER2+ patient was mapped to this cell line. Interestingly, JIMT-1 cells are resistant 183	
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to anti-HER2 treatments51; another example is the HS578T cell line, which is reported to 184	
be triple-negative, however the majority of patients who map to it are luminal; surprisingly, 185	
this cell line has been reported to be sensitive to fulvestrant1,2, an anti-ESR1 drug.  186	

These results show that this single cell atlas of cancer cell can be used to 187	
automatically assign cell line composition and cancer subtypes both from single-cell 188	
expression profiles and bulk gene expression profile.  189	
 190	
4. Clinically relevant biomarkers exhibit heterogenous and dynamic expression in BC 191	
cell lines. 192	
Clinically relevant receptors are heterogeneously expressed across cells belonging to the 193	
same cell line, as assessed by computing the percentage of cells in a cell line expressing 194	
the receptor as in Figure 3A. Consider the seven Luminal B and HER2+ cell lines present 195	
in the BC atlas, which by definition overexpress HER2: whereas more than 90% of cells 196	
in AU565, BT574 and HCC1954 cell lines express ERBB2, in the remaining four cell lines 197	
ERBB2 expression ranged from 31% of EVSAT cells to 46% of JIMT1 cells and up to 64% 198	
of MDA-MB-361  cells. This happens despite both JIMT1 and MDA-MB-361  harbour a 199	
copy number gain of the locus containing the ERBB252. We first excluded the possibility 200	
that these results were artifacts of single-cell RNA-sequencing technology (Supplementary 201	
Figure 08). We then assessed HER2 protein levels by flow cytometry in three 202	
representative cell lines: AU565 (high HER2 expression), MDA-MB-361 (heterogeneous 203	
HER2 expression) and HCC38 cell lines (low HER2 expression). As shown in Figure 3B, 204	
single-cell transcriptional data agree with the cytometric analysis; however, the origin of 205	
this heterogeneity is unclear. To exclude hereditable genetic differences as a source of 206	
heterogeneity, we sorted MDA-MB-361 cells into HER2+ and HER2- subpopulations 207	
(Methods) and checked whether these homogenous subpopulations were stable over time, 208	
or rather spontaneously gave rise to heterogeneous populations. As shown in Figure 3C, 209	
after 18 days in culture, both subpopulations re-established the original heterogeneity, 210	
demonstrating that HER2 expression in these cells is dynamic and driven by a yet 211	
undiscovered mechanism.   212	

Interestingly, HER2+ circulating tumour cells (CTCs) isolated from an ER+/HER2− 213	
breast cancer patient were shown to spontaneously interconvert from HER2− and HER2+, 214	
with cells harbouring a phenotype producing daughters of the opposite one53. To check if 215	
cell-cycle phase could explain the observed heterogeneity in the MDA-MB-361  cell line, 216	
we computationally predicted (Methods) the cell cycle phase of each cell in both the HER2− 217	
and HER2+ subpopulations from single cell transcriptomics data54.  A higher proportion of 218	
HER2− cells was predicted to be in S/G2/M phases when compared to HER2+ cells (Figure 219	
3D). This result is consistent with previous observations that report cell cycle arrest in 220	
G2/M phase following HER2 inhibition55. 221	

We next set to identify biological processes differing between the two 222	
subpopulations by computing differentially expressed genes (DEGs) from the single-cell 223	
transcriptional profiles of HER2+ cells against HER2− cells (Supplementary Table 02). 224	
Gene Set Enrichment Analyses (GSEA) 56 against the ranked list of DEGs, reported in 225	
Figure 3E, revealed seven significantly enriched pathways (FDR<10%): four of which 226	
were upregulated in HER2+ cells, but downregulated in HER2− cells, and included 227	
adipogenesis, myogenesis and OXPHOS, all indicative of EMT engagement, which has 228	
been reported in HER2+ cells57–59; the remaining three pathways were upregulated in 229	
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HER2− cells and related to cell-cycle and specifically to G2/M phase, in agreement with 230	
our previous analysis, suggesting that cell cycle may play a role in HER2 expression in this 231	
cell line.  232	

These results show that heterogeneity in the expression of clinically relevant 233	
biomarkers is present even in cell lines and that it can also be dynamic and of a non-genetic 234	
nature. 235	

 236	
5. Heterogeneity in gene expression affects drug response. 237	
To investigate the role of heterogeneity in gene expression within a cell line on drug 238	
response, we collected large-scale in vitro drug screening data1,2 reporting the effect of 450 239	
drugs on 658 cancer cell lines from solid tumours. As show in Figure 3F and 240	
Supplementary Figure 09, sensitivity of the BC cell lines to HER2 inhibitors was 241	
significantly correlated with the percentage of cells in the cell line expressing ERBB2 242	
(Supplementary Table 03). Receptor expression level is substantially the same across cells 243	
expressing it, irrespective of the cell line they belong to (Supplementary Figure 10), except 244	
for cell lines harbouring CNVs of the ERBB2 locus. Furthermore, we found that the 245	
correlation between drug target expression and drug sensitivity holds true also for several 246	
other targets (Figure 3G), thus suggesting that variability in gene expression within cells 247	
of the same tumour may cause some cells to respond poorly to the drug treatment. 248	

Starting from these observations, we developed DREEP (DRug Estimation from 249	
single-cell Expression Profiles), a novel bioinformatics tool that, starting from single-cell 250	
transcriptional profiles, allows to predict drug response at the single cell level. To this end, 251	
we first detected expression-based biomarkers of drug sensitivity for 450 drugs2, as 252	
schematised in Figure 4H,I (Methods). Briefly, we crossed data from the Cancer Cell Line 253	
Encyclopaedia (CCLE) on the response to 450 drugs across 658 cancer cell lines from solid 254	
tumours with their gene expression profiles from bulk RNA-seq. In the CCLE, drug 255	
potency is evaluated as the inverse of the Area Under the Curve (AUC) of the dose-256	
response graph, with low values of the AUC indicating drug sensitivity, while high values 257	
implying drug resistance (Figure 3H).  For each gene and for each drug, we computed the 258	
correlation between the expression of the gene across the 658 cell lines with the drug 259	
potency in the same cell lines. Hence, genes positively correlated with the AUC are 260	
potential markers of resistance, vice-versa, negatively correlated genes are markers of 261	
sensitivity (Figure 3H). In this way, we generated a ranked list of expression-based 262	
biomarkers of drug sensitivity and resistance for each of the 450 drugs. We then used these 263	
biomarkers to predict drug sensitivity at the single-cell level (Figure 3I). To this end, the 264	
250 genes most expressed of each cell in the atlas were compared against the ranked list of 265	
biomarkers for each one of 450 drugs by means of GSEA56 and thus associated to the drug 266	
it is most sensitive to, or to no drug, if no significant enrichment score from GSEA is found 267	
(Figure 3I).  268	

To assess the algorithm’s performance, we applied it to the single-cell BC atlas and 269	
estimated its performance by checking how well we could predict sensitivity of the 32 BC 270	
cell lines to 86 drugs for which this information was publicly available60 (Figure 3J). To 271	
convert single-cell predictions to predictions at the cell line level, we simply used the 272	
percentage of cells in the cell line deemed to be sensitive to the drug by the algorithm. To 273	
experimentally validate DREEP, we turned to the MDA-MB-361 cell line for which we 274	
found coexistence of two distinct and dynamic cell subpopulations (HER2+ and HER2−). 275	
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We applied DREEP to each subpopulation to identify drugs able to selectively inhibit 276	
growth of either the HER2− subpopulation or the HER2+ subpopulation: 42 drugs (FDR < 277	
1%, Supplementary Table 04) were predicted to preferentially inhibit growth of HER2− 278	
cells; the most overrepresented class among these drugs was that of inhibitors of DNA 279	
topoisomerases (TOP1/TOP2A) (Supplementary Figure 11) such as Etoposide. 280	
Surprisingly, no drug was found to specifically inhibit growth of HER+ cells, whereas 44 281	
drugs (FDR <1%) were predicted to be equally effective on both subpopulations and 282	
unexpectedly included HER2 inhibitors,  such as afatinib  (Supplementary Table 03 and 283	
Supplementary Figure 12). 284	

We selected etoposide and afatinib for further experimental validation. MDA-MB-285	
361 cells were first sorted by FACS into HER2+ and HER2− subpopulations and then cell 286	
viability was measured following 72h drug treatment at five different concentrations as 287	
shown in Figure 3K (and Supplementary Table 05).  In agreement with DREEP predictions, 288	
HER2− cells were much more sensitive to etoposide than HER2+ cells, while afatinib was 289	
equally effective on both subpopulations. This counterintuitive result was similar to that 290	
observed by Jordan et al53 using circulating tumour cells from a BC patient sorted into 291	
HER2−and HER2+ subpopulations, which were found to be equally sensitive to Lapatinib 292	
(another HER2 inhibitor), but no mechanism of action was put forward.  293	

We hypothesise that the dynamic interconversion of MDA-MB-361 cells between 294	
the HER2− and the HER2+ state may explain this surprising result: when the starting 295	
population consists of HER2− cells only, some of these cells will nevertheless interconvert 296	
to HER2+ cells during afatinib treatment, and they will thus become sensitive to HER2 297	
inhibition, explaining the observed results. We mathematically formalised this hypothesis 298	
with a simple mathematical model (Supplementary Figure 13 and in the Supplementary 299	
Material) where two species (HER2+ and HER2− cells) can replicate and interconvert, but 300	
only one (HER2+) is affected by afatinib treatment. The model shows that if the 301	
interconversion time between the two cell states is comparable to that of the cell cycle, then 302	
afatinib treatment will have the same effect on both subpopulations. If instead the 303	
interconversion time is much longer than the cell cycle, then afatinib will have little effect 304	
on HER2− sorted cells, but maximal effects on HER2+ sorted cells, and vice-versa, if the 305	
interconversion time is much shorter than the cell cycle, then afatinib’s effect would be 306	
minimal on both HER2− and HER2+ sorted cells.  307	

Comparison of the modelling results with the experimental results thus suggests 308	
that the interconversion rate should be of the same order of the cell cycle (about 72h for 309	
MDAM361 cells). The model further predicts that treating the unsorted population of 310	
MDA-MB-361  cells with afatinib reduces the percentage of HER2+ cells, since only 311	
HER2+ will be affected, but that this percentage quickly recovers once Afatinib treatment 312	
is interrupted (Supplementary Figure 14 and 15 and Supplementary Material). 313	

To test modelling predictions, we treated the MDAM361 cell line (without sorting) 314	
with afatinib and etoposide and then assessed by cytofluorimetry the percentage of HER2+ 315	
and HER2− cells before and after the treatment. As shown in Figure 3L,M (Supplementary 316	
Table 06 and Supplementary Table 07) etoposide increased the percentage of HER2+ cells, 317	
in agreement with the increased sensitivity of HER2− cells to this treatment, whereas 318	
afatinib strongly decreased the percentage of HER2+ cells, confirming that its effect is 319	
specific for HER2+ cells only. We next measured the percentage of HER2+ cells following 320	
removal of afatinib from the medium; as shown in Figure 3N,O the percentage of HER2+ 321	
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cells quickly increased confirming the modelling results (Supplementary Figure 15 and 322	
Supplementary Material). 323	

All together our results show that DREEP can predict drug sensitivity from single-324	
cell transcriptional profiles and that dynamic heterogeneity in gene expression does play a 325	
significant role in how the cell population will respond to the drug treatment. 326	
 327	
Discussion 328	
In this study we provide the first transcriptional characterization at single cell level of a 329	
panel of 32 breast cell lines. We show that single cell transcriptomics can be used to capture 330	
the expression of clinically relevant markers. We show that breast-cancer cell lines express 331	
clinically relevant BC receptors heterogeneously among cells within the same cell line. 332	
Moreover, we observed dynamic plasticity in the regulation of HER2 expression in the 333	
MDA-MB-361 cell line with striking consequences on drug response. This phenomenon 334	
has been recently observed also in circulating tumour cells of a BC patient53 and in other 335	
cell lines17,61. 336	

We determined cell line composition of patients’ biopsies both from both single-337	
cell and bulk gene expression profiles. Estimation of cancer cell line composition provides 338	
an alternative and more information-rich framework to link bulk gene expression 339	
measurement of patient’s biopsies to preclinical cancer models. Knowledge of drugs to 340	
which cancer cell lines are sensitive to  may also inform drug treatment for patients for 341	
which bulk gene expression profiles have been measured.  342	

Single cell transcriptomics is still not clinically ready because of the costs and time 343	
needed, however this work shows the importance of performing single-cell sequencing on 344	
the available cancer models, including cell lines and organoids to build a set of cell cancer 345	
states with known phenotypes and drug response to which patients’ tumour can be mapped 346	
to make a leap in personalised diagnosis, prognosis and treatment of cancer patients. 347	
 348	
 349	
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Figures 1	
 2	

Figure 1 – The Breast	Cancer	Single	Cell	Atlas.	 (A)	Representation	of	single-cell	3	
expression	profiles	of	35,276	cells	from	32	cell	lines	color-coded	according	to	cancer	4	
subtype	(LA=Luminal	A,	LB=Luminal	B,	H=Her2	positive,	TNA	=	Triple	Negative	A,	5	
TNB	=	Triple	Negative	B).	(B)	Expression	levels	of	the	indicated	genes	in	the	atlas,	6	
with	 red	 indicating	expression,	 together	with	their	 (C)	distribution	within	 the	 cell	7	
lines,	shown	as	a	violin	plot.	(D)	Dotplot	of	literature-based	biomarker	genes	along	8	
the	columns	for	each	of	the	32	sequenced	cell	lines	along	the	rows.	Biomarker	genes	9	
are	 grouped	 by	 type	 (Basal	 Epith.	 =	 Basal	 Epithelial,	 Luminal	 Epith.	 =	 Luminal	10	
Epithelial,	L.P.	=	Luminal	Progenitor,	EMT	=	Epithelial	to	Mesenchymal	Transition).	11	
(E)	Graphical	representation	of	35,276	cells	color-coded	according	to	their	cluster	of	12	
origin.	 Clusters	 are	 numbered	 from	 1	 to	 22.	 (F)	 For	 the	 indicated	 cluster,	 the	13	
corresponding	pie-chart	represents	the	cluster	composition	in	terms	of	cell	lines.	Cell	14	
lines	 in	 the	 same	 pie-chart	 are	 distinguished	 by	 colour.	 Only	 the	 top	 10	 most	15	
heterogenous	clusters	are	shown.	Cluster	2	is	the	most	heterogeneous	while	cluster	16	
19	 is	 the	most	homogeneous.	 (G)	Expression	 levels	 in	 the	atlas	of	 the	 five	 luminal	17	
biomarkers	identified	as	the	most	differentially	expressed	in	each	of	the	five	luminal	18	
clusters	(1,	2,	6,	8	and	18).	(H)	Expression	of	20	out	of	22	atlas-derived	biomarkers	in	19	
the	 biopsies	 of	 937	 breast	 cancer	 patient	 from	 TCGA.	 (I)	 Accuracy	 in	 classifying	20	
tumour	subtype	for	937	patients	from	TCGA	by	using	either	PAM50	or	the	20	atlas	21	
derived	 	 biomarker	 genes	 (scCCL)	 alone	 or	 augmented	with	 HER2	 gene	 (scCCL	 +	22	
HER2).	23	

	24	
Figure	2	–Automatic	classification	of	patients’	tumour	cells	(A)	Cancer	cells	from	25	
triple	negative	breast	cancer	(TNBC)	biopsies	of	5	patients	are	embedded	in	the	BC	26	
atlas	to	predict	their	tumour	type.	(B)	For	each	patient,	the	pie	chart	shows		cell	line	27	
composition	obtained	by	mapping	patient’s	cells	onto	the	atlas.	(C)	Tissue-slide	of	an	28	
oestrogen	 positive	 breast	 tumour	 biopsy	 sequenced	 using	 10x	 Visium	 spatial	29	
transcriptomics	(top-left)	and	the	position	of	the	mapped	tissue	tiles	onto	the	atlas	30	
(top-left).	Tiles	are	colour-coded	according	to	the	cell	line	(bottom-left)	and	to	tumor	31	
subtype	 (bottom-right)	 as	 predicted	 by	 the	 mapping	 algorithm.	 (D)	 Cell	 line	32	
composition	for	each	patient	as	estimated	by	the	algorithm	from	bulk	RNA-seq	of	937	33	
BC	 patients.	 For	 ease	 of	 interpretation,	 in	 the	 heatmap	 patients	 are	 clustered	34	
according	to	their	cell	line	composition.	The	bottom	row	reports	the	annotated	cancer	35	
subtype	in	TGCA.	(E)	Predicted	cell-line	composition	for	four	representative	patients.	36	
(F)	The	distribution	of	the	937	BC	patients	across	the	32	cell	lines.	For	each	cell	line,	37	
the	stacked		bars	report	the	percentage	of	patients	of	a	given	cancer	subtype	assigned	38	
by	the	algorithm	to		that	cell	line	.	 39	

	40	
Figure	 3	 –	 Transcriptional	 heterogeneity	 in	 breast	 cancer	 cell	 lines	 and	 its	41	
impact	on	drug	response.	(A)	Percentage	of	cells	expressing	the	indicated	genes	in	42	
each	of	the	sequenced	32	cell	lines.	(B)	Fluorescence	cytometry	of	HCC38,	MDA-MB-43	
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361	 and	 AU565	 cell	 lines	 stained	 with	 a	 fluorescent	 antibody	 against	 Her2.	 (C)	44	
Expression	of	HER2	protein	in	MDA-MB-361		cells	is	dynamic	and	re-established	in	45	
less	 than	 3	weeks.	 (D)	 Analysis	 of	 the	 cell	 cycle	 phase	 for	 the	 HER2+	 and	 HER2-	46	
subpopulations	of	MDA-MB-361		cells.	The	cell	cycle	of	each	cell	is	estimated	from	its	47	
single-cell	transcriptomics	profile.	(E)	Enriched	pathways	(GSEA,	FDR<10%)	across	48	
the	genes	differentially	expressed	between	the	HER2+	and	HER2-	subpopulations	of	49	
MDA-MB-361	 cells.	 Orange	 refers	 to	HER2+	 subpopulation	 and	 blue	 to	 the	HER2-	50	
ones.	(F)	Relationship	between	gene	expression	and	drug	potency	for	four	anti-HER2	51	
drugs.	Each	dot	corresponds	to	a	cell	line	reporting	the	percentage	of	cells	expressing	52	
ERBB2	or	EGFR	in	the	cell	line	[y-axis]	and	the	drug	potency	[x-axis].	PCC	(pearson	53	
correlation	 coefficient)	 and	 p-value	 are	 also	 shown.	 (G)	 Box-plot	 reporting	 the	54	
distribution	of	PCCs	between	percentage	of	cells	expressing	the	cognate	drug	target	55	
and	 the	 potency	 of	 the	 drug	 across	 cell	 lines	 for	 66	 drugs	 for	 two	different	 drug	56	
potency	databases.	For	comparison,	 the	PCC	distribution	when	choosing	a	random	57	
gene	in	place	of	the	cognate	drug	target	is	also	shown.	(H)	Bioinformatics	pipeline	for	58	
the	 identification	of	drug	sensitivity	biomarkers	 for	450	drugs.	For	each	drug,	 the	59	
expression	of	a	gene	across	658	cell	lines	is	correlated	with	drug	potency	in	the	same	60	
cell	 lines;	 genes	 are	 then	 ranked	 from	 most	 positively	 correlated	 to	 the	 most	61	
negatively	correlated.	(I)	The	top	250	most	expressed	genes	in		a	single	cell	are	used	62	
as	input	for	a	Gene	Set	Enrichment	Analysis	(GSEA)	against	the	ranked	list	of	genes	63	
for	each	one	of	the	450	drugs	to	predict	its	drug	sensitivity.	At	the	end	of	the	process,	64	
each	cell	in	the	sample	is	associated	to	the	drug	it	is	most	sensitive	to,	or	to	no	drug,	65	
if	 no	 significant	 enrichment	 score	 is	 found.	 Finally,	 for	 each	 of	 the	 450	 drugs,	 the	66	
number	 of	 cells	 predicted	 to	 be	 either	 sensitive,	 resistant,	 or	 not	 classified	 in	 the	67	
considered	sample	is	estimated.	(J)	Validation	of	DREEP	on	the	Breast	Cancer	Single	68	
Cell	atlas	data	to	predict	drug	sensitivity	 to	86	drugs.	The	PPV	(Positive	Predicted	69	
Value)	is	shown	as	a	function	of	the	percentage	of	cells	in	a	cell	line	predicted	to	be	70	
sensitive	 to	 the	 same	 drug.	 Dashed	 line	 represents	 the	 performance	 of	 a	 random	71	
algorithm.	(K)	Dose-response	curve	for	afatinib	and	etoposide	on	sorted	MDA-MB-72	
361		cell	populations	(triplicate	experiment).	(L)	Percentage	of	HER2+	cells	in	MDA-73	
MB-361		after	72h	treatment	with	either	afatinib	(statistic:	two-sided	t-test,	*P	≤	0.05;	74	
**P	 ≤	 0.01;	 ***P	 ≤	 0.001)	 or	 etoposide	 and	 (M)	 measured	 cell	 viability	 after	 the	75	
treatment.	 (N)	 Percentage	 of	 HER2	 positive	 cells	 in	 MDA-MB-361	 cell-line	 at	 the	76	
indicated	time-points	either	after	48h	of	afatinib	pre-treatment	(red	bars)	or	without	77	
any	afatinib	pre-treatment	(black	bars)	and	(O)	the	relative	number	of	cells	rescaled	78	
for	the	number	of	cells	at	the	beginning	of	the	experiment.	 79	

 80	
  81	
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Methods 82	
 83	
Cell culture: The 32 cell lines used in this study were obtained from commercial providers and cultured in 84	
ATCC recommended complete media at 37°C and 5% CO2. 85	
 86	
DROP-seq platform set-up: Single cell transcriptomic of the 32 cell lines was performed by implementing 87	
in-house the DROP-seq technology20. The microfluidics device for the generation of droplet was fabricated 88	
using a bio-compatible, silicon-based polymer, polydimethylsiloxane (PDMS) that was rendered 89	
hydrophobic with Aquapel® treatment as per protocol20. In each sequencing experiment, cell suspension, 90	
bead suspension and carrier oil (QX200 droplet generation oil, Bio-Rad) were first loaded in syringes and 91	
then placed in syringe pumps (Leafluid). Flow rates of syringe pumps were set at 4,000 µL/hr for both cell 92	
and barcoded bead suspensions while carrier oil syringe pump was set at 15,000 µL/hr. In each sequencing 93	
experiment, cells and barcoded beads were respectively diluted at the concentration of 200 cell/µL in PBS 94	
with BSA 0.01% (Merck) and 120 bead/µL in lysis buffer. A self-built magnetic stirrer system was used to 95	
keep in suspension barcoded beads. To count the occurrence of a single cell together with a barcoded bead 96	
several tests were performed without lyses buffer in the bead suspension. In these tests, we observed about 97	
5% of generated droplets filled with just one bead and one cell. 98	

Single cell RNA library preparation and sequencing: For each sequencing experiment, the targeted 99	
number of cells to sequence was set to 2,000. Droplets were collected in a 50 mL falcon and broke by adding 100	
1 mL of Perfluoro-1-octanol. Captured RNA was reverse transcribed in a single reaction following the 101	
original protocol 20 and then digested with exonuclease 1 to degrade unbound primers. Next, cDNA was first 102	
amplified with a total of 12 PCR cycles and then purified using AMPure XP beads at 0.6X ratio. Finally, the 103	
quality of the resulting cDNA library was quantified with the BioAnalyzer High Sensitivity DNA Chip and 104	
its concentration measured using the Qubit Fluorometer. The Illumina Nextera XT v2 kit was used to produce 105	
the next generation sequencing (NGS) libraries using four aliquots of 600pg of each cDNA library. Quality 106	
and concentration of NGS libraries were respectively quantified on the BioAnalyzer High Sensitivity DNA 107	
Chip and Qubit Fluorometer. Finally, either Illumina NextSeq 500/550 or NovaSeq 6000 machines were used 108	
to sequence the produced NGS libraries (Supplementary Table 01). Samples processed with NextSeq500/550 109	
NGS library were diluted at the final concentration of 3 nM and sequenced using the 75-cycle high output 110	
flow cell while samples processed with NovaSeq 6000 machine were diluted at the final concentration of 250 111	
pM and sequenced using the S1 100 cycles flow cell. 112	

Read alignment and gene expression quantification: Raw data processing was performed using the Drop-113	
seq tools package version 1.13 and following the Drop-seq Core Computational Protocol 114	
(http://mccarrolllab.org/dropseq). Briefly, raw sequence data was filtered to remove all read pairs with at 115	
least one base in their barcode or UMI with a quality score less than 10. Then read 2 was trimmed at the 5’ 116	
end to remove any TSO adapter sequence, and at the 3’ end to remove polyA tails. Reads were then aligned 117	
using STAR 62 on hg38 human genome (primary assembly, version 28) downloaded from GENCODE 63. 118	
After reads alignment, UMI tool 64 was used to perform UMI deduplication and quantify the number of gene 119	
transcripts in each cell. The initial number of sequenced cells was identified using a simple (knee-like) 120	
filtering rule as implemented by CellRanger 2.2.x. After this, only high depth cells with at least 2,500 UMI, 121	
more than 1,000 captured genes and with less than 50% of reads aligned on mitochondrial gene were retained. 122	
Putative multiples among the sequenced cells of each BC cell line were simply discarded identifying outliers 123	
in the count depth distribution by using Tukey's method based on lower and upper quartiles with k equal to 124	
3. 125	

BC Atlas Construction: Single cells expression profiles were normalized using GF-ICF (Gene Frequency 126	
– Inverse Cell Frequency) normalization using the gficf package65,66 for R statistical environment 127	
(https://github.com/dibbelab/gficf). GF-ICF is based on a data transformation model called term frequency-128	
inverse document frequency (TF-IDF) that has been extensively used in the field of text mining. GF-ICF 129	
transformation was applied on CPM (count per million) after EdgeR normalization 67 and discarding genes 130	
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expressed in less than 5% of the total number of sequenced cells. Finally, each cell was summarized with its 131	
first 10 Principal Components (PCs) and projected with UMAP 68 into a two dimensional embedded space. 132	
The number of principal components was chosen as the “elbow” point on the plot of the first 50 PCs. UMAP 133	
projection was performed by using the uwot package in the R statistical environment 3.6. 134	

Cell clustering and identification of marker genes: Transcriptionally similar subpopulations of cells were 135	
found using a Phenograph like approach69 as implemented in the clustcells function of gficf package65. 136	
Briefly, we initially built a graph of cells by using the K-Nearest Neighbours (KNN) algorithm applied to the 137	
PC-reduced space where each cell was connected to its 50 most similar cells using the manhattan distance. 138	
Then, to build the final graph of cells, the edge weight between any two cells was computed as the Jaccard 139	
similarity, i.e. the proportion of neighbours they share. The Louvain algorithm with resolution parameter 140	
equal to 0.25 was used to find communities of cells in this graph. Differentially expressed genes in each 141	
cluster were identified by the findClusterMarkers function of gficf package, which compares the expression 142	
of a gene in each cluster versus all the other by using the Wilcoxon rank-sum test65. 143	

TGCA bulk expression dataset and cell-line deconvolution: Raw bulk expression data and relative patient 144	
clinical information were collected from the Genomic Data Commons (GDC) portal70 by using the 145	
TCGAbiolinks package71. Then, raw counts were normalized using the EdgeR package67 into R statistical 146	
environment 3.6. Bisque tool50 (available at https://github.com/cozygene/bisque) was used to estimate the 147	
cell-line composition from the patient’s bulk gene expression profile. Specifically, we applied the 148	
ReferenceBasedDecomposition function with parameters: bulk.eset set to the bulk gene expression dataset in 149	
log2 scale; sc.eset set to our single-cell BC atlas with normalized raw counts rescaled in log2; use.overlap 150	
set to FALSE and markers set to the marker genes across the 32 BC cell-lines estimated by using the function 151	
findClusterMarkers of gficf package. As in the original manuscript describing the Bisque tool50, only marker 152	
genes with an FDR<0.5 and Log2 fold change greaten then 0.25 were used for deconvolution purpose.  153	

Spatial sequencing data: Spatial transcriptomic data of two BC patients were download from 10x Genomic 154	
website (https://www.10xgenomics.com/resources/datasets). Only tiles reported to be “in tissue” according 155	
to the related metadata of each patient slide were used. 156	

Mapping new cells into the BC atlas and estimation of the cancer subtype: New points were mapped to 157	
the UMAP space via embedNewCells function of gficf package65. Briefly, tiles from 10x spatial 158	
transcriptomics were normalized with gficf package using the ICF weight estimated on the BC atlas. Then 159	
tiles were projected to the existing PC space using gene loadings from the BC atlas. After this transformation, 160	
tiles were mapped to the BC atlas via umap_transform function of uwot package. Finally the cancer subtype 161	
of each mapped tile was predicted with the function classify.cells of the package gficf with the k nearest-162	
neighbour parameter set to 7.  163	

Single-cell drug sensitivity prediction: The naïve gene expression profile (RNA-seq) of about 1,000 cancer 164	
cell line was obtained from the Cancer Cell Line Encyclopaedia (CCLE) portal72. Cell lines belonging to 165	
liquid tumour were discarded and only 658 cell lines belonging to solid tumours were retained and used for 166	
further analysis. The raw counts of each gene were normalized with edgeR package 67 and transformed in 167	
log10(CPM+1). Poorly expressed genes and genes whose entropy was in the fifth percentile were excluded 168	
from the analysis. Expression profiles of the 658 CCLs were then crossed with drug sensitivity data2. This 169	
dataset was originally composed of 481 small molecules, but, after removing drugs for which the in vitro 170	
response was available for less than 25 CCLs, only 450 small molecules were retained for further analysis. 171	
For each gene and for each of the 450 drugs, we computed the Pearson correlation coefficient (PCC) between 172	
the expression of the gene across the 658 cell lines and the effect of the drug expressed in terms of Area 173	
Under the Curve (AUC). Since the AUC reflects the in vitro response of a cell line to different concertation 174	
of a drug in a timeframe of 72 hours, lower values of AUC are associated with sensitivity whereas higher 175	
values with resistance to the drug. Hence, genes positively correlated with the AUC are potential markers of 176	
resistance (the more expressed the gene, the higher the concentration needed to inhibit growth), vice-versa, 177	
negatively correlated genes are markers of sensitivity. We this approach, we generated a ranked list of 178	
expression-based biomarkers of drug sensitivity and resistance for each of the 450 drugs where genes 179	
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positively correlated with the AUC are at the top, and those negatively correlated at the bottom. Finally, to 180	
predict drug sensitivity at the single-cell level, we used the top 250 expressed genes of each cell as input of 181	
Gene Set Enrichment Analysis (GSEA) 56 against the ranked list of biomarkers for each one of 450 drugs 182	
built as described above. Hence, while a negative enrichment score implies that genes associated to drug 183	
sensitivity are highly expressed by the cell, a positive one indicates the cell express genes conferring drug 184	
resistance. GSEA and associated p-values were estimating using the fgsea package in the R statistical 185	
environment version 3.6. 186	

Drug sensitivity of the  HER2+ and HER2- subpopulations in the MDA-MB-361  cell line: For each 187	
sequenced cell of the MDA-MB-361 cell line, the enrichment score of 450 anticancer drugs was predicted as 188	
described above. Then, to identify drugs exhibiting differential sensitivity for the two subpopulations,  we 189	
used the Mann-Whitney test was to assess if there was a difference between the enrichment scores of HER2+ 190	
and HER2- subpopulations. P-values were corrected for false discovery rate using Benjamini-Hochberg 191	
correction. A drug was considered specific for HER2- cell population if and only if its FDR was less than 192	
0.05 and the median enrichment score across HER2- cells less than zero while its median enrichment score 193	
across HER2+ cells greater than zero. Conversely, a drug was considered specific for HER2+ cell population 194	
if and only if FDR was less than 0.05 and the median enrichment score across HER2+ cells less than zero 195	
while its median enrichment score across HER2- cells greater than zero. 196	

Validation of drug sensitivity prediction: Precision of the DREEP method in predicting drug sensitivity 197	
from single cell transcriptional profiles was evaluated using an independent publicly available  drug screening 198	
dataset9 composed by 1,001 CCLs and their maximal inhibitory concentration (IC50) values for 265 small 199	
molecules. Hence, we applied DREEP to the single-cell profiles of the 32 BC cell lines to predict the 200	
percentage of sensitive cells in each cell line for the 86 drugs. The “golden standard” was built by assigning 201	
to each of 32 x 86 (=2,752) cell line/drug pair the value 1 if the cell line was sensitive to the drug and 0 202	
otherwise. To determine if a cell line was sensitive or not to a specific drug from the experimental data, we 203	
converted for each drug its IC50 distribution in Z-scores using all the 1,001 available cell lines and then 204	
defined a cell line sensitive to the drug if and only if its Z-score was in the 5% percentile. Finally, Positive 205	
Predicted Values (PPV) were defined as TP/(TP+FP) where TP represents the number of true positives and 206	
FP the number of false positives predicted cell lines/drug pairs. 207	

Prediction of cell cycle phase from scRNA-seq: The cell cycle phase of each sequenced cell was predicted 208	
using the function CellCycleScoring of the Seurat tool with default parameter and following what was 209	
suggested in the corresponding vignette (https://satijalab.org/seurat). 210	

HER2 antibody staining procedure for flow cytometry analysis: Cells were first washed with phosphate-211	
buffered saline (PBS) 1x, detached with 0.05% trypsin-EDTA, resuspended and harvested with the 212	
appropriate medium in single-cell suspension. Then, cells were counted, washed with PBS-FBS 1%, and 213	
finally incubated for 15 min at 4° in the dark at the concentration of 1.0 × 106 cell/µL with staining buffer. 214	
The staining buffer was prepared diluting the mouse anti-human HER2 antibody (BD BB700) at the final 215	
concentration of 0.00114 ng/µL. Then, to remove unbound antibody, cells were washed three times with 216	
PBS-FBS 1%. Flow cytometry measurements were performed on either BD Accuri C6 or BD FACSAria III 217	
instruments. To define antibody positive and negative cells, the unstained samples were used to set the gate. 218	
To record data, at least 1.0 × 104 events were collected for each sample. Data analysis was performed using 219	
the either BD FACSDiva 8.0.1 or BD Accuri C6 software. 220	
 221	
HER2 expression dynamics experiment: Sorting of MDA-MB-361 HER2-positive and HER2-negative 222	
cells was performed following the antibody staining procedure described above with the only exception that 223	
before sorting, each sample was resuspended in sorting buffer (PBS 1x, FBS 1%, trypsin 0.1%, EDTA 2mM). 224	
Then, 4.0 × 105 cells were collected for each cell subpopulation (i.e. HER2-positive and HER2-negative), 225	
plated in their appropriate medium, and incubated at 37°. After 18 days, the percentage of cells expressing 226	
HER2 protein was checked by performing the antibody staining procedure described above. 227	
 228	
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Drug sensitivity assay: Cells were seeded in 96-well microplates (PerkinElmer); the seeding cell confluency 229	
was specifically optimized for each cancer cell line to have cells in growth phase at the end of the assay. 230	
After overnight incubation at 37°, cells were treated with DMSO (Merck) for the negative control and with 231	
five concentrations of selected drugs in triplicate. Cells were then incubated at 37° for 72hr. Cell viability 232	
was assessed by measuring either luminescence with GloMax® Discover instrument from Promega or by 233	
nuclei count using the Operetta instrument from PerkinElmer. Luminescence measurements were normalized 234	
using background wells as manufacturer protocol. For luminescence measurement, cells were treated with 235	
Promega CellTiter-Glo® Luminescent Cell Viability Assay according to the manufacturer protocol. For 236	
nuclei count, cells were washed with PBS 1x, fixed with paraformaldehyde (PFA) 4% for 10 min at room 237	
temperature, washed with PBS 1x, incubated at room temperature in the dark with HOECHST 33342 238	
(Thermo Fisher Scientific) diluted 1:1000 in PBS 1x for 10 min and finally washed with PBS 1x. Nuclei 239	
count was performed using Columbus image analysis software (PerkinElmer). All drug used in this study 240	
were purchased from Selleckchem. 241	
 242	
Data availability: 	243	
Raw sequence data of BC single cell atlas are available on Gene Expression Omnibus 244	
(GEO) repository under the accession number. 245	
 246	
Code availability: The code to reproduce main results in the manuscript is available on 247	
github at the following address https://github.com/dibbelab/singlecell_bcatlas. Moreover, 248	
the single cell atlas can be explored at http://bcatlas.tigem.it. 249	
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