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ABSTRACT:

Neural communication or signal transmission in the brain propagates via distinct oscillatory frequency bands. 

With aging, the communication mediated by these frequency bands is hindered by noise, which arises from the 

increased stochastic variability in the baseline neural spiking. This increase in noise measured as 1/f power-law 

scaling re�ects the global background noise and is often linked to impaired cognition in di�erent tasks. In this 

study, we quanti�ed the 1/f slope and intercept of MEG brain signal as a putative marker of neural noise and 

examined its e�ect on cognitive and metacognitive measures. We hypothesize that as neural communication 

becomes noisier with age, it impacts global information processing, whereas speci�c periodic features mediate 

local aspects of cognition. Using recently proposed parametric Fooof model, we �rst characterised the normative 

pattern of periodic and aperiodic features (temporal dynamics) across the lifespan, modelled via spectral peaks 

(Central frequency, power, bandwidth) and 1/f noise activity (slope and intercept) respectively. Secondly, how 

this Resting-State (RS) baseline shift in temporal dynamics of the signal is associated with various aspects of 

visual short-term memory (VSTM). Our results suggest that age-associated global change in noisy baseline 

a�ects global information processing and crucially impacts the oscillatory features, which relates to more local 

processing and selective behavioural measures in the VSTM task. Moreover, we suggest that the task-related 

di�erences observed across age groups are due to the baseline shift of periodic and aperiodic features.

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 2, 2021. ; https://doi.org/10.1101/2021.03.02.433594doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.02.433594
http://creativecommons.org/licenses/by-nc/4.0/


Signi�cant statement: Aging is accompanied by the decline in cognitive functions and age itself is a major risk

factor for Alzheimer’s Disease and other neurological conditions. Our study provides MEG 1/f aperiodic and

periodic markers across the healthy adult lifespan and shows that di�erent frequency bands and their spectral

features mediate age-related changes across di�erent brain regions, in multiple cognitive and metacognitive

domains, which not only provides us with a better understanding of the aging process but would also help in

better prevention of cognitive impairments. A clear characterization of the association between baseline MEG

temporal dynamics, healthy aging and cognition, is established in this study.

INTRODUCTION:

It has recently become more evident that spontaneous oscillations in the electrical potential are not just brain

activity engulfed with noise, rather the local as well global change in spontaneous dynamics may index key

aspects of behavioural response associated with healthy aging process (Bishop et al., 2010; Foster et al., 2015;

Sahoo et al., 2020). The brain oscillations emerging in the spontaneous state based on the underlying intrinsic

neuronal coupling even in the absence of goal-directed tasks allow us to quantify normative patterns of brain

dynamics and it’s marked alterations through the lifespan to the extent to even capture salient aspects of

cognitive functions in the domain of attention, perception, and memory processing (Buzsáki, G. 2006). In

principle, neural oscillation ideally should represent the rhythmic activity of the signal arising from di�erent

sensors or underlying brain sources, however, non-oscillatory/aperiodic component (1/f noise) almost always

pervasively co-exists with the oscillatory components. This background noise has been modelled in the literature

as a characteristic 1/f component (slope and o�set of the ongoing oscillatory power) and found to be very

dynamic in nature (Grigolini et al., 2009; Haller et al., 2018; Voytek et al., 2015). One possible mechanism

underlying this dynamical change is an alteration in the underlying neuronal population spiking stats and the
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relationship of the spiking dynamics on the underlying change in the excitation-inhibition balance which is

primarily re�ected as an increased baseline activity. A large majority of the works till this day has used prede�ned

canonical frequency bands to examine rhythmic activities without giving substantial amounts of considerations

to the aperiodic signal which strongly impacts the oscillatory signal measured from various sensors and brain

regions. Therefore, investigation of neural oscillations using the traditional signal processing analysis might not

represent the true oscillation rather the dynamically changing slope or o�set within the 1/f signal as was

suggested recently (Donoghue et al., 2020; Ouyang et al., 2020). Physiological aging has been characterized as a

progressive change in Oscillatory power, central frequency, and functional connectivity between relevant brain

areas indexing decline in coordination dynamics during resting-state and task conditions. While there is general

consensus among �ndings what typically constitute neural correlates of age-associated oscillatory changes e.g.,

(i) slowing down of central frequency of alpha band(7–12 Hz), and (ii) global increase of beta (13–30 Hz) and

theta band power (4–8 Hz) (Klimesch et al., 1999), there are also noticeable discrepancies among the existing

studies. For instance, studies have reported mixed evidence for the di�erence in the theta band power associated

with healthy aging. While many of the earlier studies have reported that theta band power tends to increase

(Cummins et al., 2007; Klass et al., 1995) some of the later studies tend to suggest the opposite (Stomrud et al.,

2010) with age. For the alpha band, while few studies have reported no change (Aurlien et al., 2014; Scally et al.,

2018 ), others, have reported a decrease in power (Ishii et al.,2017).

Hence, it is often notoriously di�cult to reconcile those age-associated oscillatory �ndings during spontaneous

activity and trusting power changes in the relevant frequency band were estimated accurately. . One possible

reason for this inconsistency might be the mixing of oscillatory power with the background 1/f activity, which

was not taken into su�cient consideration by most of the studies.

The aperiodic 1/f noise of the background activity also attempts to account for changes observed associated

with aging, for example, to ascertain memory (Nyberg et al, 2012), shift of sustained attention(Gazzaley et al.,

2005), and processing speed (Salthouse et al., 2010). Recent studies have used 1/f slope of the power spectrum as
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a marker of neural noise and found it to be even predictive of N900 lexical prediction (Dave et al., 2018),

measures of working memory cognitive load (Voytek et al., 2020) and in grammar learning (Cross et al., 2020).

Considering these results, 1/f noise does not necessarily seem to mediate behaviour in a restricted cognitive

domain of interest rather it seems to have much broader repercussion on the overall cognitive processes and

brain functions. Therefore, we examined the e�ect of 1/f noise on cognitive and metacognitive measures during

resting-state brain dynamics and correlated those neural measures with multiple aspects of working memory

performance through lifespan, instead of focusing on multiple task categories. First, we hypothesised any speci�c

change in the background 1/f slope and o�set would index change in the age-associated shift in the baseline

neural noise and in turn would impact oscillations in the di�erent frequency bands associated with healthy aging

process. Secondly, we hypothesized age-associated 1/f neural di�erences would correlate to all the behavioural

measures suggesting more global changes associated with di�erent aspects e.g., processing speed, cognitive load,

accuracy and metacognitive awareness of the participants in a memory task, whereas di�erences in the

oscillations mediated by relevant frequency bands theta, alpha and beta would correspond more to speci�c

behavioural measures reaction time and speed of processing in the same task.

Although behavioural and neuroimaging studies have shown that neural noise increases with age, these studies

have relied upon proxies (e.g., reaction time) for neural noise. In this study, we have used a parameterisation

model developed by Donoghue et al., 2020, which parametrize the two components and avoid con�ating them

with one another, where 1/f noise is well characterised by the line in semi-log or log-log of frequency spectra.

Dissociating these two aspects of the brain signals naturally give a more accurate estimate of the neural

oscillations and normative changes associated with healthy aging and would provide a re�ned understanding of

the aging process in both rest and task conditions and the relationship thereof. Hence, a better characterization

of normative features associated with healthy aging would also inadvertently provide a better understanding of

how these neural mechanisms a�ect cognition in general. Most studies have looked at the oscillatory changes
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while the participant performs a task and correlated the changes with behavioural measures (Moran et al., 2010;

need more citation and reference) in an age-strati�ed manner with a smaller sample of aging participants. One

distinct approach from the previous studies here is that we leverage the big data by testing the neural noise

hypothesis using a large publicly available dataset by tracking the neural noise dynamics su�ciently at all the

important milestones of healthy adult lifespan. By regressing out age, we show that how aperiodic change in 1/f

could predict su�ciently well various aspects of memory tasks and has the potential to predict chronological age

from task data. In summary, we argue that the normative brain oscillations and dynamical features in the

resting-state brain dynamics is a crucial gateway to understand overarching goals of understanding pathological

changes. However, the di�erence in oscillations with aging are often notoriously di�cult to understand as they

co-exist with underlying change in aperiodic 1/f dynamics (neural noise) and may crucially hinder

understanding the patterns associated with cognitive state and aspects of task performance. In this work, we have

been able to dissociate those two dynamics and demonstrate how the age associated baseline shift in neuronal

dynamics might be responsible for the di�erences in the task-induced changes across age.

METHODS:

1. Participants:

The Cambridge Centre for Aging and Neuroscience (Cam-CAN) is a large scale, multimodal, cross-sectional

adult life-span (18-88) population-based study. The Cam-CAN consists of 2 stages. In stage 1, 2681 participants

had gone through general cognitive assessments at their home. Tests for hearing, vision, balance and speeded

response were also assessed. Additionally, measures taken in stage 1 served to screen participants for stage 2.

Those with poor hearing, poor vision, with neurological diseases such as stroke, epilepsy or a score less than 25

in MMSE (cognitive assessment examination) were excluded from the further participation. From stage 1 to

stage 2, 700 participants were screened (50 men and 50 women from each age band). All screened participants

were recruited for testing at the Medical Research Council (UK) Cognition and Brain Sciences Unit
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(MRC-CBSU) in Cambridge, UK. In this stage, MRI scans, MEG recordings and cognitive task data were

collected, all the participants performed a range of psychological tests and neuroimaging assessments, but only

the MEG RS data and VSTM task data are included in this study. Out of 700 participants,

Magnetoencephalogram (MEG) data from 650 subjects were available. Age values of participants were divided

into 4 age groups for categorical analysis (See Methods). Young Adults (YA), Middle Elderly (ME), Middle-Late

(ML), Older Adults (OA), Similar grouping has been performed in our previous study also. 70 participants were

randomly chosen from each age group resulting in total of N=280 subjects comprise of all four important stages

of adult lifespan ( Chan et al., 2014; Sahoo et al., 2020).

TABLE 1: Each representative age group

S.No. Group Age N % Female

1. Young Adults (YA) 18-35 126 55

2. Middle Elderly (ME) 36-50 159 49

3. Middle-Late (ML) 51-65 149 50

4. Old Adults (OA) 66-88 216 46

2. Data acquisition:

2.1 MEG Resting-State data

MEG Data used for this study were obtained from the CamCAN repository (available at

http://www.mrc-cbu.cam.ac.uk/datasets/camcan/) (Taylor et al., 2007; Shafto et al., 2014). For all the 700

participants, MEG data were collected by Elekta Neuromag, Helsinki at MRC-CBSU using 306 channels,

consisting of 102 magnetometers and 204 orthogonal planar gradiometers. MEG data collection was done in a

light magnetically shielded room (MSR). A high pass �lter of 0.03 Hz cuto� was used to sampled the data at
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1000Hz. Head-Position Indicator (HPI) coils were used to continuously assess the head position within the

MEG helmet. To monitor blinks and eye-movements, two pairs of bipolar electrodes were used to record

horizontal and vertical electrooculogram signals. To monitor pulse- related artefacts, one pair of electrodes were

used to record electrocardiogram signals. MEG data collected for resting-state required the participants to sit still

for a minimum of 8mins and 40 sec with their eyes closed. From this subset, 280 participants were included in

the present study (70 in each group).

2.2 VSTM Stimuli and Task

In CamCAN, the design was adapted from Zhang et al., 2008 (Figure 1). On each trial, participants were

presented with 1,2,3, or 4 coloured discs (mimicking di�erent memory load conditions) for 250ms. Following

that, a blank screen was presented for 900ms to hold those colours in memory. One of the original locations was

highlighted by a thick black border (acting as a probe for participants to remember the colour at that location),

and at the same time, a response colour wheel was presented. Participants had as much time as required to report

by touching or clicking, as accurately as possible the remembered hue of the highlighted disc. No feedback was

given. After every trial, 830 ms �xation period was there. Participants indicated their lack of con�dence in the

precision of the colour (metacognitive awareness) by the length of the time they hold down the �nger onto the

point. Participants complete two blocks of 112 trials, with memory load (1,2,3 or 4) counterbalanced and

randomly intermixed. For each set size (memory load), the following measures were estimated by �tting the error

distribution with a mixture model of von-mises and uniform distributions, proposed by Zang & luck (2008)

and modi�ed by Bays and Husain (2008). For detailed analysis refer to Zhang et al., 2008; Mitchell et al., (2018).
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TABLE 2: Estimated measures of  VSTM task

S.No Variable Description

1. Precision Accuracy of reportable items (reciprocal of Std. deviation of �tted von-mises)
(degrees)

2. RT Median Reaction time (ms)

3. K(VSTM
Capacity)

Number of reportable items (k-score)

4. Mean Uncertainty Size of con�dence interval within which answer is thought to lie (degrees)

2.3 MEG Data Preprocessing

MEG processed data was provided by Cam-CAN. Preprocessing pipeline included temporal signal space

separation, applied on continuous MEG data to remove noise from the HPI coils, environmental sources and

continuous head motion correction. For removing the main frequency noise (50 Hz notch �lter) and to

reconstruct any noisy channel, max �lter was used. More details about data acquisition and pre-processing have

been presented elsewhere (Shafto et al., 2014; Taylor et al., 2007). Additionally, we performed independent

component analysis (ICA) to get rid of the artifacts and harmonics in the signal (Sahoo et al., 2020).

2.4 Data Analysis

All data were analyzed in MatLab and python using custom scripts. Python MNE for preprocessing, standard

python libraries including Scipy, Pandas and NumPy for data management and processing, python-matplotlib

and seaborn for data visualisation were used in this study. The analysis pipeline is concisely represented in Figure

2.
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2.4.1 Power Spectral Density (PSD) using Welch’s periodogram method

The Power spectrum of a signal capture how the strength of the signal is distributed in the𝑆
𝑥𝑥

 (𝑓) 𝑥 𝑡( )

frequency domain. Using Fast Fourier Transform (FFT), (a variant of Fourier Analysis), the representation of

raw signal (time or space) is transformed into a frequency representation of the signal.

Processed MEG data provided in ‘.�f’ format was analysed using Fieldtrip toolbox (Oostenveld et al., 2011).

Data for each N=280 subjects were �rst downsampled from 1000 Hz to 250Hz. The frequency resolution was

held at 0.05 Hz. Power spectral density (PSD) was estimated using Welch’s periodogram method implemented

in MATLAB 2019b, which has 2 additional steps before computing the FT. First, the estimation divides the

signal into segments (creating epochs) with some overlap. Subsequently, the epoched signal further windowed𝑛

using a window function.

For each participant, 102 magnetometer sensor’s time series data resulted in a matrix of size , where102 𝑋 𝑇 𝑇 

correspond to the number of time points. Each sensor’s time series c was further divided into segments of𝑐'𝑠 𝑥 (𝑡)

20s without any overlap. For each segment, the spectrum was calculated and then was averaged. For estimation

of global spectrum, representative of each subject i.e., I , the grand average across the spectrum of all the𝑆 (𝑓)

magnetometer sensors are provided below

(1)                                                            𝑆
𝐼(𝑓)

=
𝑐
∑ 𝑆

𝐼
(𝑐, 𝑓)

For each participant, resulted power spectrum matrix was . For group-wise analysis, each participant’sν 𝑋 𝑐

spectrum was averaged across sensors of interest.
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2.4.2 Extracting Periodic and Aperiodic Features using a Parameterization model

To detangle the periodic (oscillatory) component from the aperiodic properties of the signal power spectra. we

used a recently proposed parameterization model, �tting-oscillations-and-one-over-f (FOOOF toolbox) (for a

full description refer to Donoghue et al., 2020). In brief, the PSDs calculated using pwelch was given as an input

to the model, which considers PSDs as a linear sum of aperiodic 1/f like characteristics of neural power spectra

and it is entirely described by the aperiodic “exponent” and “o�set”. Periodic components describe putative

oscillations that describe power above aperiodic component (so-called ‘peaks’, simulated as Gaussian function;

are described by Peak Frequency in hertz (Hz); peak power over and above the 1/f signal in arbitrary units (au)

and bandwidth which describes the spread also measured in the unit of Hz). The simulation, for a power

spectrum P is described as follows,

(2)𝑃 = 𝐿 +
𝑛=0

𝑁

∑ 𝐺𝑛

Where P is the linear sum of the aperiodic signal ‘L’ and N Gaussian peaks ‘Gn’. For each peak, Gaussian

function ‘ ’ is �tted which is modelled as:𝐺
𝑛

(3)                                                         𝐺(𝐹)
𝑛 

= 𝑎 * 𝑒𝑥𝑝( −(𝐹−𝑐)2

2 * 𝑤2 )

Where ‘a’ denotes the amplitude, ‘c’ denotes the central frequency, ‘w’ denotes the bandwidth of the Gaussian.

‘F’ is the frequency vector. Subsequently, all �tted Gaussians were subtracted from the original power spectrum

to get a peak-removed power spectrum (PRPS). Finally, a 1/f signal is estimated from this PRPS using Eq. (4),

representing the actual cortical noise. Exponential function in semilog-power space (logged power values and

linear frequencies) is used to model the aperiodic signal (initial and �nal �t both), ‘L’, as:

𝜒) (4)                                                              𝐿 = 𝑏 − 𝑙𝑜𝑔(𝑘 + 𝐹
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Where ‘b’ denotes the broadband o�set, ‘χ’ is the slope, and ‘k’ is the knee parameter, which depends on the

bend in the aperiodic signal. The FOOOF model was �tted across the frequency range of 1 to 45 Hz in �xed

mode, as no knee was expected in the MEG recordings across 1-50 Hz frequency range (Miller et al., 2009)

Algorithm was implemented using custom python scripts on the python3 version.

The Model was �t per subject and output parameters were averaged across subjects for each group (Figure.

3(A)). The settings for the algorithm were set as: (1) peak_width_limits = [0.5, 12]; (2) min_peak_height = 0;

(3) max_n_peaks = 12; (4) peak_threshold = 2; (5) aperiodic_mode = “�xed”; and (6) verbos = ‘True’.

Oscillations were pot-hoc grouped into theta (θ, 4-8 Hz), alpha (8-12 Hz), and Beta (β, 13-30 Hz). For

estimating the topographical dynamical changes, the brain was segmented into 5 non-overlapping regions:

frontal (number of sensors = 26), parietal (number of sensors = 26), occipital (number of sensors =24), right

and left temporal (number of sensors = 26).

2.5.3 Band Ratio Measures

Additionally, we estimated the band ratios which re�ect the quantitative measure of oscillatory activity and are

investigated in di�erent cognitive processes; however, they also get impacted by the 1/f background noise

(Donoghue et al., 2020). After removing the aperiodic signal using a parametrization method proposed by the

Fooof toolbox, periodic values were estimated. Thus after implementing appropriate parametrization of the

aperiodic component of the signal power spectra band ratio values were re-estimated to indicate the true power

changes and �nally, were grouped into di�erent frequency bands of interest. For each participant, we calculated

the ratio of periodic components of di�erent frequencies and averaged across participants for age bin-wise

distribution. Band ratio of all the periodic components for each frequency band was then calculated by dividing

the average of low band periodic features by the average of high band periodic features. We calculated

frequency-speci�c band ratios of all periodic features.
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(5)             𝐵𝑎𝑛𝑑 𝑅𝑎𝑡𝑖𝑜 (𝑋) =
𝐴𝑣𝑔 (𝑋

𝐿𝑜𝑤 𝐵𝑎𝑛𝑑
)

𝐴𝑣𝑔 (𝑋
𝐻𝑖𝑔ℎ 𝐵𝑎𝑛𝑑)

𝑤ℎ𝑒𝑟𝑒 𝑋 = 𝑃𝑊,  𝐶𝐹,  𝐵𝑊 

2.5.4 Statistical Analysis:

We performed both categorical as well as continuous analysis to capture di�erent aspects of age-associated

functional di�erences. For the continuous analysis, we divided the total number of participants into bins of 5

years starting from 18 years, a total of 14 bins and the centre value was taken to be the representative age for each

bin. For the categorical analysis, we divided data into the following age strati�cations (18-35 years, 36-50 years,

51-64 years, 66-88 years) to get insights about di�erent important stages of adult lifespan and comparison with

previous works (Chan et al., 2014; Sahoo et al., 2020).

Correlation Analysis:

Depending on the data distribution, Pearson or Spearman’s correlation was used to estimate the strength

between two variables. Estimated aforementioned functional changes (oscillatory, aperiodic, band-ratio

measures) and VSTM task measures were correlated with age. Finally, VSTM task measures were then correlated

with those functional changes.

Regression Analysis:

Linear and Non-linear Regression were performed separately considering each Power, central frequency,

Bandwidth, slope, o�set and band-ratios of periodic features, as the estimated measures (R) of functional

changes and Precision, Reaction Time (RT), Metacognitive awareness (d) and memory capacity (k), as the

estimated measures (R) of the VSTM behavioural task, while keeping age as an explanatory variable.

(6)𝑅 = β
◦

+ β
1

* (𝐴𝑔𝑒)
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Linear regression was performed using fitlm matlab function. To capture the potential non-linear e�ects of age,

we also added 2nd order polynomial terms to the model, such as:

(7)                                                       𝑅 = β
◦

+ β
1

* (𝐴𝑔𝑒) +  β
2
 * (𝐴𝑔𝑒2)

Linear regression was also performed considering each VSTM task measures as a response variable (R) and the

functional measures as the explanatory variable (E). (Detailed report is provided in supplementary)

(8)                                                                 𝑅 = β
◦

+ β
1

* (𝐸) 

All regression tables are provided in the supplementary document. For estimating the signi�cance, �rst

normality of the data distribution was assessed using the Kolmogorov Smirnov test. Based on the data

distribution, parametric (t-test) or nonparametric (Wilcoxon rank-sum test) was performed.

RESULTS:

From the parametrization model �t, all the simulated Gaussian peaks were removed to analyse the background

signal. Thereafter, the aperiodic component of the signal was �tted in the log-log space line (Extended �g. 3-2)

from which 1/f Slope and o�set were extracted from the Fooof model for each individual participant. Periodic

features Central Frequency (CF), Power (PW), Band Width (BW) were estimated using peak parameters from

the �tted model (refer to the materials and methods section). To check if the parameterisation using the

simulated fooof model is able to capture lifespan associated changes, we �rst simulated the Fooof model for

young and old adults. The model well captured the well-established lifespan associated slowing down of Peak

alpha frequency (PAF)(Figure 3). Original spectrum, aperiodic �t and full model are being depicted in Figure

3(B)(C) for YA and OA group respectively (refer Extended �g. 3-1 for model’s output parameters of ME and

ML groups).

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 2, 2021. ; https://doi.org/10.1101/2021.03.02.433594doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.02.433594
http://creativecommons.org/licenses/by-nc/4.0/


To capture the dynamical changes in the dominant oscillations (highest power peak across all frequencies) across

the adult lifespan, the central frequency, power and bandwidth of the dominant oscillations were also extracted

for young and old adults. No signi�cant di�erence was found in the frequencies of dominant oscillation

however, the power of the respective dominant frequencies was found to be signi�cantly di�erent between YA

and OA (Extended �g. 5-1).

1. Topographical distribution of  Aperiodic componentof  the signal with Age

Increase in Aperiodic 1/f  slope and decrease in 1/fintercept

We found that aperiodic 1/f slope increases signi�cantly (𝛽1 =+0.0034901, R2 = 0.584, p = 0.003) whereas 1/f

o�set doesn’t show signi�cant decrease across the adult lifespan (𝛽1 = -0.0033423, R2 = 0.3, p =0.03) (Figure

4(A), (B), Extended �g. 3-3). Categorical analysis also con�rmed signi�cant di�erence in the 1/f slope between

the OA vs YA (t(140) = 4.38, p <0.0001), ML vs YA ( t(140) = 4.07, p = 0.02), ME vs YA ( t(140) = 2.7749, p =

0.007) , ME vs OA ( t(140) = -2.4581, p = 0.02). Categorical di�erence in 1/f o�set was also found between OA

vs YA (t(140) = 2.0345, p = 0.0457) and ML vs YA (t(140) = -2.3441, p = 0.02) (Figure 4(A), 4(B)). Within

group analysis revealed more variability in aperiodic features in the older adults (Slope: SEM = 0.023; O�set:

SEM = 0.0404) compared to young adults (Slope: SEM = 0.014; O�set: SEM = 0.0364) (Extended �gures 3-4,

2-4). Figure 4C and Figure 4D shows variability in spatial topographies of aperiodic 1/f slope and o�set for

Young and Old adults.

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 2, 2021. ; https://doi.org/10.1101/2021.03.02.433594doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.02.433594
http://creativecommons.org/licenses/by-nc/4.0/


2. Topographical distribution of  oscillatory component with age

Age-associated slowing of  Central Alpha frequencyand Beta frequency

For each participant, PF was quanti�ed by estimating the peak power value within the 8-12 Hz and 13-30 Hz for

alpha and beta range, respectively. Each participant's PF was then averaged to get the group-wise estimation of

Central Alpha Frequency (CAF). Visual inspection revealed bin 65 to be the outlier (for CAF). After removing

the outlier, signi�cant linear age-related decline was found (𝛽1 = -0.010234, R2= 0.4, p = 0.02) however, central

beta frequency (CBF) showed non-linear decrease with age (𝛽1 = -0.024068, R2= 0.462, p = 0.007) (Figure

5(A)). Categorical analysis also revealed signi�cant CAF di�erences between YA vs OA (t(140) = 4.7551 p

=0.00001), YA vs ME ( t(140) = 3.4198, p = 0.001) and YA vs ML (t(1400 = 4.8826, p = 0.000001), and for

CBF between YA vs OA (t(140) = 1.912, p = 0.03). Almost all sensors were found to be contributing to the

decrease in CAF in OA whereas the decrease in CBF was mainly contributed by the central sensors (Figure

5(B)).

Functional Power change in Alpha, Theta and Beta frequency with age

We found a robust decline of Alpha power with age (𝛽1 = -0.0059263, R2= 0.75, p =0.00005) (Figure 6(A)).

Visual inspection suggests that sensor level Alpha power di�erence was mainly contributed by the occipital,

parietal and left temporal sensors (Figure 6(B)). Signi�cant di�erence was found between OA vs YA (t(140) =

-3.038, p = 0.003), OA vs ME ( t(140) = -2.2008, p = 0.03) and OA vs ML ( t(140) = -2.2252, p = 0.029). Older

adults showed higher Theta power (M = 0.56 ± 0.04) than younger adults (M= 0.32 ± 0.02) (t(140) = 2.4733, p

= 0.023) . Signi�cant age e�ect was also observed with increase in theta power (𝛽1 = 0.0050947, R2= 0.363, p =

0.022) (Figure 6(A)), which was mainly contributed by the temporal sensors. In addition, aging was also

associated with an increase in Beta Power (𝛽1 = 0.002496, R2= 0.70, p = 0.0001) (Figure 6(A)). Spatial

topographies showed Central and frontal sensors to be contributing to this age-related increase in global beta

power (Figure 6(B)). Categorical analysis revealed signi�cant di�erences in Beta power between the YA vs OA
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(t(140) = -4.3693, p = 0.00004), YA vs ME (t(140) = -3.0103, p < 0.003), and YA vs ML (t(140) = -4.4158, p =

0.00003). Extended Fig. 6-1 shows the sensor-wise distribution of frequency speci�c power as a function of

age.

Increase in Beta bandwidth with age

Bandwidth re�ects the spread of power in the respective frequency range, which for the Beta band was found to

be increased across the adult lifespan (𝛽1 = 0.040345, R2= 0.58 p = 0.001) (Figure 7(A)). Signi�cant group-wise

di�erence was also seen between YA vs OA (t(140) = -3.1586, p = 0.0024), YA vs ME(t(140) = -1.9843, p =

0.049), suggesting that as we age, the Beta power tends to spread more across frequency range. This increase was

mainly observed over left temporal and central sensors (Figure 7(B)). Bandwidth for Alpha and Theta

frequency band did not di�er across age groups (Extended �g. 7-1). For sensor topography refer to Extended

�g. 7-2.

3. Band-Ratios measures of  periodic features withage

Band ratio measures have been argued to be a marker of various cognitive measures in healthy adults as well as in

pathological conditions (Trammell et al., 2017; Kamiński et al., 2011; Schutter et al., 2005) which also get

a�ected by 1/f noise. We investigated how these Global band ratios change with age after e�ectively removing

the background 1/f noise. We looked at Theta/Alpha (𝜃/𝛼), Theta/Beta (𝜃/𝛽) and Alpha/Beta (𝛼/𝛽) Band

ratios, where the ratio of all periodic features (PW, CF, BW) was analyzed for each frequency band. For all band

ratio measures, we calculated correlations between the spectral features of each oscillation-band and age. Here

we showed the global change (averaged across all sensors) in the band ratio measures across the lifespan.

For the Central frequency ratio, we found 𝛼/𝛽 ratio to vary non-linearly (quadratic) with age (𝛽1 = -0.0059138,

R2=0.61 p = 0.005), whereby �rst decreases for middle age and subsequently an increase for older age
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participants suggesting an overall U-shaped response of 𝛼/𝛽 ratio through lifespan (Figure 8(B)). This

age-associated nonlinear change was mostly observed in frontal and parietal sensors (Figure 8(A)). For age

categories, we found a signi�cant di�erence between OA vs ME (t(134) = 2.38, p = 0.018), OA vs ML ( t(134) =

3.19, p = 0.0018), YA vs ME (t(138) = 3.30, p = 0.0012) and YA vs ML (t(138) = 4.09, p = 0.00007). No

signi�cant di�erence was found between the categorical age groups for 𝜃/𝛼 and 𝜃/𝛽 peak ratios.

Power Ratio of 𝜃/𝛼 was found to be positively correlated with age (𝛽1 = 0.0057613, R2= 0.40, p = 0.02) whereas

𝛼/𝛽 power ratio was negatively correlated with age (𝛽1 = -0.018116, R2= 0.85, p = 0.000001) (Figure 8(B)).

Signi�cant Categorical di�erence was found for 𝜃/𝛼 power ratio between YA vs OA (t(136) = 4.9615, p =

0.000002), YA vs ME (t(138) = 2.75, p = 0.0067), YA vs ML (t(138) = 4.92, p = 0.000002), ME vs OA (t(134) =

2.24, p = 0.02) No signi�cant correlation was found for 𝜃/𝛽 power ratios with age (R2= 0.2, p = 0.1). For 𝛼/𝛽

power ratio, signi�cant categorical di�erence was found between YA vs OA (t(76) = -4.6, p = 0.00001), ME vs

OA (t(59) = -3.33, p = 0.0015), and ML vs OA (t(62) = -2.46, p = 0.01). No signi�cant di�erence was found

between the categorical age groups for 𝜃/𝛽 power ratio.

Bandwidth ratio of 𝜃/𝛽 and 𝜃/𝛼 was found to be negatively correlated with age (Extended �g. 8-3,4).

Categorical analysis revealed di�erences between the YA vs OA (t(80) = 2.21, p = 0.029) for 𝜃/𝛽 bandwidth

ratio. No signi�cant di�erence was found between the categorical age group for 𝛼/𝛽 bandwidth ratio.
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Table3: E�ect of  Age on Periodic and Aperiodic Features

E�ect Response Variable F-value Coe�cient 𝛽1 R2 p-value

AGE

Aperiodic Features

1/f  Slope 26 +0.0034901 0.584 0.003262

1/f  O�set 5.35 -0.0033423 0.308 0.0894

Periodic Features

Power

Theta 6.82 +0.0050947 0.363 0.0227

Alpha 36.3 -0.0059263 0.751 0.0000599

Beta 28.7 +0.002496 0.705 0.000172

Central Frequency

Theta 0.577 +0.0029928 0.0459 0.462

Alpha 7.32 -0.010234 0.41 0.0205

Beta 10.3 -0.024068 0.462 0.00751

Bandwidth

Theta 2.15 -0.0062634 0.15 0.168

Alpha 5.05 +0.001472 0.3 0.056

Beta 17 +0.040345 0.58 0.00141

After getting the normative pattern of true oscillatory changes across age, �nally, we tested our hypothesis by

carrying out regression analysis whereby keeping 1/f noise, periodic features as an explanatory variable and

behavioural measures as response variable (see methods). A detailed Regression table is provided in the

supplementary data. All correlations were performed after regressing the ag.
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We �rst analysed the behavioural responses of the same participants in the visual short term memory task to

replicate the well-established cognitive decline with age. Grouping of participants in the age groups and bins

were done similarly.

4. Behavioral Results: Age-Related Cognitive declinere�ected in Performance

Precision: As expected Precision becomes worse with memory load and age. Overall Precision was high for the

set size 1 (61.1% SEM 2%) as compared to set size 2 (48.7% SEM 1.9%), 3 (39.6% SEM 1%) and 4 (39% SEM

0.7%). Continuous analysis revealed signi�cant decrease in precision with age in both low and high load

conditions (Low load, r = -0.85, p <0.01, High load, r = -0.61, p < 0.05) (Figure 9 (A), Extended �g. 9-1).

Categorical analysis between the groups revealed signi�cant di�erences in the mean of YA vs OA (YA = 0.48 ±

0.008, OA = 0.30 ± 0.005, p < 0.0001), YA vs ME (YA = 0.48 ± 0.008, ME = 0.45 ± 0.007, p < 0.001) , YA vs

ML (YA = 0.48 ± 0.008, ML = 0.43 ± 0.007, p < 0.0001), and ME vs OA (ME = 0.45 ± 0.007, OA = 0.30 ±

0.005, p < 0.0001) groups. Within group analysis also revealed signi�cant increase in Precision with increase in

memory load (Extended �gure 9-2)

VSTM capacity (k): VSTM capacity was found to decrease with age (Low load (r) = -0.81 p<0.001, High load

(r) = -0.87, p <0.001) (Figure 9(B)). Categorical analysis between the group revealed signi�cant di�erence

between YA vs OA (YA = 1.84 ± 0.01, OA = 1.66 ± 0.02, p < 0.0001), YA vs ML (YA = 1.84 ± 0.01, ML = 1.79

± 0.01, p = 0.004), ME vs OA (ME = 1.83 ± 0.01, OA = 1.66 ± 0.02, p < 0.0001), and ML vs OA (ML = 1.79 ±

0.01, OA = 1.66 ± 0.02, p < 0.001).

Mean Uncertainty: Subjective Uncertainty was higher in set 4 (29.7 ± 1) as compared to set size 1 (11.8 ±

0.39), 2 (15.6 ± 0.5) and 3 (20.7 ± 0.67). After performing regression and correlation analysis, we found that

subjective uncertainty signi�cantly decreases with age in low load condition (Low load (r) = -0.56, p <0.05)
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(Figure 9(C)). Suggesting that Older adults tend to be more con�dent about their erroneous answers when the

load is less. Categorical analysis revealed signi�cant di�erences in the mean of YA vs OA (YA = 18.5 ± 0.97, OA

= 14 ± 1, p < 0.001), YA vs ME (YA = 18.5 ± 0.97, ME = 16.07 ± 0.95, p = 0.02), YA vs ML (YA = 18.5 ± 0.97,

ML = 14.85 ± 1.05, p < 0.001), and ME vs OA (ME = 16.07 ± 0.95, OA = 14 ± 1, p = 0.003). Within group

analysis also revealed signi�cant increase in subjective uncertainty with increase in memory load (Extended

�gure 9-3)

Reaction Time: Overall Reaction time was higher for the set size 4 (910.2 ± 21.6 ms) as compared to set size 1

(878.7 ± 19.9 ms), 2 (870.4 ± 19.9 ms) and 3 (882.6 ± 21.4 ms) but increases signi�cantly with age (Low load (r)

= +0.57, p <0.05, High load (r) = +0.56, p <0.05) (Figure 9(D)). Group analysis also revealed signi�cant

di�erence between YA vs OA ( YA = 668 ± 35.4, OA = 1009 ± 38.9, p < 0.00001), YA vs ME ( YA = 668 ± 35.4,

ME = 828.8 ± 41.5, p = 0.002), YA vs ML ( YA = 668 ± 35.4, ML = 886 ± 33.4, p < 0.0001), ME vs ML (ME =

828.8 ± 41.5, ML = 886 ± 33.4, p = 0.03), ME vs OA ( ME = 828.8 ± 41.5, OA = 1009 ± 38.9, p < 0.001), ML

vs OA ( ML = 886 ± 33.4, OA = 1009 ± 38.9, p = 0.05).

5. Aperiodic 1/f  slope: Predictive of  all measuresof  VSTM

We then assessed whether the VSTM performance was impacted by 1/f slope. As hypothesised, RS Aperiodic

1/f noise was found to be predictive of decreased precision (Low Load: r = -0.74, p = 0.002, High Load: r =

-0.48, p = 0.08), memory capacity (Low Load: r = -0.68, p = 0.0007, High Load: r =+0.82, p = 0.0003), Mean

Uncertainty (Low load: r = -0.58, p =0.03, High Load: r = -0.6, p = 0.02) and increased Reaction Time (Low

load: r = +0.56, p = 0.00005, High load: r = +0.57, p = 0.00005) in Visual Short term memory task (Figure 10).

However, we didn’t �nd any correlation between 1/f o�set and behavioural measures. As aperiodic 1/f noise
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mediated a global e�ect on the VSTM performance, we further wanted to investigate how di�erent oscillatory

components mediate changes in the speci�c behaviour measures in VSTM performance through lifespan.

6. Precision increases with increase in Alpha power and 𝛼/𝛽 power ratio

Precision was found to be positively correlated with the alpha power for both low (𝛽1 = 0.28077, R2 = 0.425, p =

0.0115) and high (𝛽1 = 0.17617, R2 = 0.38, p = 0.0186) load condition (Figure 11(A)). 𝛼/𝛽 Power ratio was also

found to be a signi�cant predictor of precision in low (𝛽1 = 0.11906, R2 = 0.69, p = 0.0002) and high load (𝛽1 =

0.063459, R2 = 0.4, p = 0.008) conditions across lifespan (Figure 11(B)).

7. Speed of  Processing predicted by Alpha speed

Speed of Alpha is often related to the speed of processing which is generally measured as reaction time. As we

observed that speed of alpha decreases and RT increases with age, we wanted to investigate if this decrease in

alpha speed a�ected the speed of processing in older adults. Alpha Speed signi�cantly predicted the speed of

processing for both low (𝛽1 = -340.82, R2 = 0.43, p = 0.0108) and high (𝛽1= -352.41, R2 = 0.39, p = 0.0158) load

conditions (Figure 11(C)).

8. VSTM Capacity predicted by Theta power and 𝜃/𝛼power ratio

We found a signi�cant negative correlation of VSTM capacity with theta power (Low Load: r = -0.729, p =

0.004, High Load: r = -0.679, p = 0.01) and 𝜃/𝛼 power ratio (Low Load: r = -0.64, p = 0.01, High Load: r =

-0.75, p = 0.001), suggesting that these two play an important role in storing items in working memory.

Regression analysis also revealed a signi�cant role of Theta power and 𝜃/𝛼 power ratio in predicting VSTM

capacity in low (Theta Power: 𝛽1 = -0.63163, R2 = 0.53, p = 0.0046, 𝜃/𝛼: 𝛽1= -1.5827, R2 = 0.569, p = 0.002)

and High load conditions (Theta Power: 𝛽1 = -1.8862, R2 = 0.46, p = 0.011, 𝜃/𝛼: 𝛽1 = -0.35435, R2 = 0.42, p =

0.01) (Figure 11(D & E))
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DISCUSSION

We investigate the resting-state temporal dynamics (oscillatory and non-oscillatory) and how these dynamical

changes a�ect the cognitive and metacognitive aspects of visual short-term memory across the adult lifespan in a

large cohort consisting of 280 participants. Most of the studies in aging literature have associated task-related

oscillatory di�erences with the behavioural responses (Clark et al., 2004; Rondina et al., 2019; Proskovec et al.,

2016; Cummins et al., 2007; Tóth et al., 2015). As the resting-state serves as a baseline/control for the

task-related changes, it is important to characterise the dynamics in the baseline state. Consistent with the

�ndings of Mitchell et al., 2018, we found that aging is associated with decreased Precision, memory capacity,

subjective uncertainty (only in low condition) and increased reaction time in both low and high load conditions

of VSTM task.

Power spectral density of the electrical activity follows the power-law distribution (1/f) which represents

broadband scale-free activity of the brain (He, 2014; He et al., 2010). Most of the studies have used narrowband

power analysis that presumes that spectral power implies oscillatory power, without precisely separating the 1/f

aperiodic activity which in itself is dynamic and it impacts the oscillatory power which can lead to

misinterpretation of the results. We approached this problem by applying a parameterization model (Voytek et

al., 2020) which considers power spectrum as the combination of oscillatory peaks characterised by their Central

Frequency, Power, Bandwidth measures, and aperiodic 1/f noise characterised by slope and o�set. Extended

Fig. 3-5 shows the relation between 1/f slope and dominant periodic features, indicating the interdependence

of these two components and the necessity to detangle these. This 1/f slope index for the noise in the brain.

Aging is associated with an increase in cortical neural noise, where studies have previously used RT as a proxy for

the neural noise (e.g., Creemer & Zeef, 1987; Salthouse & Lichty, 1985; Welford, 1981). Speci�cally, Voytek and

colleagues had suggested that �attening of PSD slopes might be a hallmark of age-related cognitive decline. In

support of the Neural noise hypothesis of aging, our results show that 1/f slope of the MEG spectral power
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increases with age (less negative), which is suggestive of increased unsynchronised neuronal activity (Hong and

Rebec, 2012; Podvalny et al., 2015). Additionally, the increase in 1/f slope follows a monotonic non-linear

relationship with age indicating that the rate of change in unsynchronised neural activity is not constant across

adult lifespan. We observe some deviation from the normal trend for both 1/f slope and o�set in age-group

60-80, which might be due to the observed increased variance in the older group. This increase in 1/f slope

(increase in the local excitation/inhibition ratio), accounts for the reduction in signal to noise ratio, which in

turn disrupts the �delity of communication between the neurons and therefore it has been shown to be

predictive of performance in working memory tasks (Voytek et al., 2015), N400 lexical prediction (Dave et al.,

2017) and in grammar learning (Cross et al., 2020). Most importantly, we show that the RS cortical 1/f slope is

predictive of cognitive performance along with the metacognitive aspect which is indirectly measured by the

subjective uncertainty in visual short term memory.

Besides, aperiodic features were found to not only vary across subjects (more for elderly) but also across di�erent

sensors indicating substantial variability and idiosyncrasy. Though 1/f slope shows spatial heterogeneity in the

young group, such as being less negative in the anterior sensors compared to the posterior sensors, older

participants display a more homogenous distribution of less negative 1/f slope values. This global increase in

noise leads to reduction of signal-to-noise ratio which would a�ect the information processing. Along with

consideration of previous studies where 1/f slope is found to be predictive of measures in di�erent modalities or

domains, our results seem to suggest that age-related increase in neuronal noise a�ects global information

processing which is also re�ected in poorer cognitive performance of the older participants. The broadband

o�set shows no signi�cant deviation with age, but signi�cant between-group di�erences were observed.

In oscillatory dynamics, we observe a signi�cant decline in peak alpha frequency (PAF) with age as shown by

previous study (Sahoo et al. 2020), however how PAF relates to di�erent aspects of behavioural responses in

VSTM was not quanti�ed systematically. This decrease in peak alpha frequency was not found to be localised to
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speci�c sensors, rather a global signi�cant decrease was observed (see Fig. 5(B)). The speed of alpha is often

associated with the speed of information processing therefore, higher alpha speed is needed for optimal

performance in cognitive tasks (Surwillo et al., 1961) and determine the temporal resolution of visual perception

(Samaha et al., 2015). Fig. 11(C) shows that the reaction time of the participants is well predicted by global

alpha speed. Hence, Higher the speed of alpha, fast is the processing speed, lesser reaction time for younger

adults. The relevance of Theta CF in determining memory capacity in a task is well known in the literature. A

study by Moran et al.. 2010 shows that both slow and fast theta frequencies correlated to the high memory

capacity, distributed across di�erent networks. In the context of aging, we observe that theta CF slightly

increases for older subjects as compared to younger adults which may itself a�ect the storing capacity. There are

studies which have observed an increase in RS theta power in older adults (Klimesch et al., 1999 for review; Klass

et al., 1995) others have reported theta power decrease in resting as well as in the task with age (Vlahou et al.,

2014, Babiloni et al., 2006, Cummins et al., 2007, Leirer et al., 2011). However, we found an increase in theta

power with age, which signi�cantly predicted the VSTM capacity (Fig. 6(A), 11(E)) along with 𝜃/𝛼 power ratio

(TAR) (Fig.8) which also signi�cantly increases with age. Few studies including the study by Trammell et al.,

2017 which found decreased performance in RM correlated with increased TAR in old adults. Though we

found substantial variability in the presence of theta power in participants. For instance, in young groups, the

theta was not observed over frontal and left temporal sensors, whereas in older participants the theta power was

observed only over temporal sensors.

One of the theories to explain decreased capacity is from the perspective of the orientation of Attention, the

inability to ignore irrelevant items in older subjects. Recent literature suggests that Alpha plays an active

inhibitory role and inhibiting the task-irrelevant information is re�ected by increased alpha power. As aging is

characterized by attentional di�culties, in particular, a reduced capability to inhibit irrelevant information. We

found that alpha power decreases with age, particularly over occipito-parietal sensors (Fig. 6) which signi�cantly
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predicts the precision (Fig. 11(A)). It plays a crucial role in suppressing irrelevant information, therefore, not

being able to ignore distractions might be one of the reasons for low VSTM capacity in older adults. Though

study by Vaden et al., 2012 demonstrated that older people do not use alpha power suppression to inhibit

distractor’s information.

We observed an increase in Beta power with age which is well reported in the literature, generally associated with

the movement-related activity (Ishii et al.,2017; Sahoo et al., 2020) but we also observed a signi�cant decrease in

beta peak frequency with age (generally found in depression and other psychological disorders’ patients in

open-eye condition; Roohi-Azizi et al., 2017). Particularly, the change was more localised to the central-parietal

sensors. Only Beta bandwidth was found to increase with age which indicates that variability of beta frequency

becomes more or it spreads out more. This increase was mostly observed in the central and temporal sensors.

A study by Gri�ths et al., 2019 suggested that task-induced decrease in 𝛼/𝛽 power is a proxy for reductions in

noise correlations and rather, decreased 𝛼/𝛽 power provides a favourable (i.e., reduced noise) condition in which

another mechanism can allow the signal representation in a task. Though the time-scale in our study is di�erent

compared to them, our result shows that a decrease in 𝛼/𝛽 power is a signi�cant predictor of precision (Fig. 11

(B)). After regressing out the age factor, the increase in 1/f slope is negatively correlated with the 𝛼/𝛽 power

which suggests that 𝛼/𝛽 cannot serve as a proxy for noise (Extended �g. 9-4). This increase in 1/f slope might

be the reason for the decrease in 𝛼/𝛽 power, which in turn decreases the precision.

Our results suggest that the age-associated global change in noisy baseline a�ects the global information

processing and link to cognitive decline in the performance of old elderly in a short-term working memory task.

Speci�cally, an increase in slope with age a�ects the speed of information processing, cognitive capacity,

precision and metacognitive awareness (all behavioural measures used in this study). In contrast, oscillatory
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features of di�erent frequency bands which are crucially impacted by the baseline shift in the global noisy

background relate to more local processing and selective behavioural measures in VSTM task. On that account,

global increase in noise (indexed by 1/f slope) seems to impact distributed processes of cognition whereas

oscillatory features mediate localised processing, involved in a particular cognitive task (Figure 12).

Conclusively, we suggest that the di�erences we observe in the task-related functional changes (across age

groups) are relative to their baseline. RS dynamics, for instance the power of oscillation, with any incoming

visual stimuli will change relative from its power baseline and with age, these baseline gets shifted, which are

re�ected in the cognitive performance. Hence, the di�erences that we observe in the ‘task-related functional

changes’ across di�erent age groups might be due to the change in the relative spectral features’ baseline with

age.

An important limitation of our study is that we have only tested our hypothesis in VSTM task, therefore,

further investigation is needed relating the RS 1/f noise with the performance in di�erent cognitive tasks and

also how these patterns change from their respective baseline when the task is being performed. Another

limitation was posed by the Cam-CAN dataset, because of the presence of harmonics of lower frequencies in

higher frequencies, we were not able to systematically analyse the e�ect of 1/f noise on gamma-band. Lastly, we

still don’t know which sources are responsible for this 1/f baseline shift and can be considered for future work,

where source reconstruction and applying the model on the source level spectrum might give more clarity about

the sources. Despite these limitations, our study characterises the periodic and aperiodic temporal dynamics of

the sensor-level neural activity across the adult lifespan with a large cohort and reasoned how the shifted 1/f

noise baseline a�ects cognition.
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Figure Legends

Figure 1. Experimental design of  the colour recalltask

Example trial, with memory load of 4 items. (Data were taken from CamCAN repository; Adapted from

Mitchell et al., (2018)).

Figure 2. Data processing and analyses pipeline

Figure 3. Parameterization using FOOOF Model

(A) Power Spectrum of all age-groups after removing the 1/f aperiodic component (B) & (C) FOOOF Model

�t for Young and Old Adults.

Figure 4. Aperiodic 1/f  Slope and O�set

(A) Left: 1/f slope as a function of age. Right: 1/f slope for four age groups. (B) Left: 1/f O�set as a function of

age. Right: 1/f O�set for four age groups. ‘r’ represents the correlation value. The dashed line represents a linear

regression �t. Error bar denotes SEM. (C)(D) Aperiodic 1/f slope and 1/f o�set spatial topography for Young

(YA) and Old adults (OA). Clusters of sensors with signi�cant positive and negative di�erences in 1/f slope and

1/f o�set between the OA and YA group are represented with black and white dots, respectively.

Figure 5. Alpha and Beta peak frequency as a f unction of  Age

(A) Top: PAF as a function of age. Bottom: Beta peak frequency with age. ‘r’ represents the correlation

coe�cient. The dashed line represents a linear regression �t. Error bar denotes SEM. (B) Top: Spatial

Topography for PAF and Beta peak frequency for Young (YA) and Old adults (OA). Clusters of sensors with

negative di�erences which contribute to the decrease are represented as white dots.

Figure 6. Parameterised Global Power as a Function of  Age

(A) Increase in Theta and Beta power whereas a decrease in Alpha power with Age. Errorbar represents SEM.

(B) Spatial Power topography of Theta, Alpha and Beta for young (YA) and old adults (OA). Clusters of sensors

with signi�cant positive and negative di�erences between the OA and YA group are represented with black and

white dots, respectively.
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Figure 7. Global frequency-speci�c Bandwidth with Age

(A) Bar graph for each age group, representing bandwidth for each frequency band. (B) Spatial topography of

Beta BW for young (YA) and old adults (OA). Clusters of sensors with signi�cant positive and negative

di�erences between the OA and YA group are represented with black and white dots, respectively.

Figure 8. Spatial topography of  band-ratio measuresas a f unction of  age

(A) Spatial topography of Alpha/Beta peak frequency ratio (𝛼/𝛽 CF) (top), Alpha/Beta power ratio (𝛼/𝛽 PW)

(centre) and Theta/Alpha power ratio (𝜃/𝛼) (bottom) for young (YA) and old adults (OA). (B) Regression �t

model for each of the aforementioned ratio measures keeping age as an explanatory variable. Error bar represents

SEM. R2 represents goodness of �t and ‘r’ represents the correlation coe�cient.

Figure 9. E�ect of  Memory load and Age on VSTM.

VSTM measure (A) Precision (B) Reaction time (C) VSTM capacity (k) (D) Mean Uncertainty as a function of

age. Low load and high load indicate set size 2 and 4 respectively. The dashed line represents the linear regression

�t. Error bar represents the SEM for each age bin. Asterisks indicate signi�cance.

Figure 10. Aperiodic 1/f  slope mediating VSTM performance.

Linear regression model for VSTM measure (A) Precision (B) Reaction time (C) VSTM capacity (k) (D) Mean

uncertainty as a response variable and aperiodic 1/f slope as an explanatory variable, after regressing out the age

e�ect. The dashed line represents linear regression �r. Error bar represents SEM. Low load and high load

indicates set size 2 and 4 respectively. ‘r’ is Pearson's coe�cient.

Figure 11. VSTM measures predicted by di�erent oscillatory features and 1/f  o�set.

(A) & (B) Precision predicted by global Alpha power and 𝛼/𝛽 Power Ratio. (C) Speed of Processing (RT) well

predicted by global alpha speed (PAF). (D) & (E) VSTM capacity predicted by global theta power and 𝜃/𝛼

Power Ratio. Age is regressed out. Low load and high load indicate set size 2 and 4 respectively. The dashed line

represents the regression line. Errorbar represents SEM. ‘r’ corresponds to Pearson's coe�cient.

Figure 12. Aperiodic 1/f  activity a�ects global processingand oscillatory features.

Aperiodic 1/f slope increases globally which can be observed in performance in di�erent cognitive tasks (a�ects

global processing). It also signi�cantly a�ects oscillatory features which are more task-speci�c.
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Figure 3-2

Figure 2 Power Spectrum in log-log space-3Figure 3-2
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(A)

(B)

Figure 5-1 Dominant frequency (A) and respective power (B) for YA and OA

YA OA

Figure 5-1
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6-1

6-1 Frequency specific power as a functionof age across different sensors.
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Figure 7-1 Frequency specific bandwidth of different age groups
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(A)
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Figure -27

Spatial topography of Theta Bandwidth(A) and Alpha Bandwidth (B)
 for YA and OA

Figure 7-2
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YA OA

Figure 8-1

Figure 8-1 (A) Theta/Alpha peak frequency ratio and (B) Theta/Beta peak freqeuncy ratio for YA
      and OA
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Figure 8-2

Figure 8-2 Theta/Beta PW ratio as a function of age
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Figure 8-3

Figure 8-3 Theta/Beta BW as a function of age Figure 8-3
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Figure 8-4 Theta/Alpha BW as a function of age
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Figure 9-1 VSTM measures as a function of age.

Particiapnts with same age were grouped togther (dots), size of the dot represents the
SEM of the group. Shaded area is the 95% confidence interval.
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Figure 9-2

Precision across age groups and set sizeFigure 9-2.
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Uncertainty across groups and set sizeFigure -39
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Response Variable

Age

77 

F-value Beta 1 p-value R2

Table 8-1

Table 8-1: Regression table for global frequency band-ratios with Age. F-value, Beta 
coe�cient, Goodness of �t and signi�cance of the model is reported.

Explanatory Variable

𝛼/𝛽 PW 

𝜃/𝛼 PW 

𝜃/𝛽 BW 

𝛼/𝛽 CF 

7.2 

5.31 

8.7 

-0.018116 

-0.005913 

-0.001542

+0.00576

1.44e-06 

0.0054 

0.03 

0.02 

0.86 

0.62 

0.3 

0.39 
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Response Variable

Age

k (capacity) 

Load (Set-size)Behavioral Measure

 4 

 

 4 

 4 

RT 

d (uncertainty)

 2 

 2 

 2 

 2 

 4 
Precision

36.2
 
30.2
 
5.2
 
3.89
 
3.9
 
4.89
 
1.85
 
30.2 

F-value

-0.02274
 
-0.00372
 
+4.5738
 
+4.09
 
+-0.17
 
-0.10297
 
-0.00867
 
-0.0018
 
 

Beta 1 p-value

6.02e -05

 
0.00014
 
4.00e-02

 
5.00e-03

 
0.05
 
0.04
 
0.02
 
1.38e-04

 

R2

0.75
 
0.7
 
0.3
 
0.26
 
0.25
 
0.29
 
0.39
 
0.7 

Table 9-1

Table 9-1: Regression table for VSTM measures with Age. F-value, Beta coe�cient, Goodness
of �t and signi�cance of the model is reported.

Explanatory Variable
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Response Variable

Aperiodic 1/f
Slope

k (capacity) 

Load (Set-size)Behavioral Measure

 4 

 4 

 4 

RT 

d (uncertainty)

 2 

 2 

 2 

 2 

 4 
Precision

25.9

2.98

10.6

9.59

0.25

5.5

1.52

36.9 

F-value

-6.2486

-0.75038

+2666.3

+2336.3

-46.1

-48.817

-0.10677

-0.44753

Beta 1 p-value

0.0003

0.112

0.0076

0.0102

0.02

0.0388

0.24

5.52e-05

R2

0.702

0.2

0.49

0.466

0.35

0.33

0.11

0.75

Table 10-1

Table 10-1: Regression table for VSTM measures with aperiodic slope. F-value, Beta coe�cient,
Goodness of �t and signi�cance of the model is reported.

Explanatory Variable
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Response Variable

Aperiodic 1/f
O�set

k (capacity) 

Load (Set-size)Behavioral Measure

 4 

 4 

 4 

RT 

d (uncertainty)

 2 

 2 

 2 

 2 

4
Precision

2.06

1.53

8.26

10.1

0.168

0.559

5.2e-05

0.658 

F-value

+2.3507

+0.4515

-1979.2

-1880.9

-14.374

-14.762

-0.0009

-0.1406

Beta 1 p-value

0.179

0.241

0.01

0.008

0.69

0.47

0.99

0.52

R2

0.158

0.122

0.429

0.47

0.015

0.04

4.7e-06

0.05 

Table 10-2

Table 10-2: Regression table for VSTM measures with Aperiodic 1/f o�set. F-value, Beta 
coe�cient, Goodness of �t and signi�cance of the model is reported.

Explanatory Variable
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Response Variable

Alpha CF RT 

Load (Set-size)Behavioral Measure

 4 

 4 

 4 

Precision 

k(capacity)

 2 

 2 

 2 

7.89

9.08

7.4

8.89

9.46

12.5 

F-value

-352.41

-340.82

+0.1761

+0.2807

-1.8862

-0.63163

Beta 1 p-value

0.0158

0.0108

0.0186

0.0115

0.0106

0.0046

R2

0.39

0.43

0.38

0.42

0.46

0.53 

Table 11-1

Table 11-1: Regression table for speci�c oscillatory features with VSTM measures. F-value, 
Beta coe�cient, Goodness of �t and signi�cance of the model is reported.

Explanatory Variable

Alpha PW

Theta PW
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Response Variable

𝛼/𝛽 CF

k (capacity) 

Load (Set-size)Behavioral Measure

 4 

 4 

 4 

RT 

d (uncertainty)

 2 

 2 

 2 

 2 

 4 
Precision

3.09

0.63

0.8

1.96

0.58

0.2

6.57

6.33 

F-value

-6.3816

+0.6699

-1510.3

-2071.3

-53.371

+20.287

-0.7578

+25.304

Beta 1 p-value

0.1

0.44

0.38

0.18

0.46

0.61

0.02

0.01

R2

0.2

0.05

0.06

0.14

0.04

0.02

0.35

0.53

Table 11-2

Table 11-2: Regression table for              with VSTM measures. F-value, Beta coe�cient, 
Goodness of �t and signi�cance of the model is reported.

Explanatory Variable

𝛼/𝛽 CF
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Response Variable

𝛼/𝛽 PW

k (capacity) 

Load (Set-size)Behavioral Measure

 4 

 4 

 4 

RT 

d (uncertainty)

 2 

 2 

 2 

 2 

 4 
Precision

15.6

0.12

5.96

3.18

1.98

5.06

9.69

27.3 

F-value

+0.7898

-0.0219

-255.71

-188.68

+6.9368

+5.6266

+0.0634

+0.1191

Beta 1 p-value

0.06

0.7

0.6

0.09

0.18

0.055

0.008

0.0002

R2

0.56

0.01

0.33

0.21

0.14

0.3

0.4

0.69

Table 11-3

Table 11-3: Regression table for              with VSTM measures. F-value, Beta coe�cient, 
Goodness of �t and signi�cance of the model is reported.

Explanatory Variable

𝛼/𝛽 PW
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Response Variable

k (capacity) 

Load (Set-size)Behavioral Measure

 4 

 4 

 4 

RT 

d (uncertainty)

 2 

 2 

 2 

 2 

 4 
Precision

14.5

7.96

1.25

2.04

0.25

0.26

0.02

0.15 

F-value

-1.5827

-0.3543

+371.2

+397.1

+9.321

-6.3127

+0.013

-0.0436

Beta 1 p-value

0.002

0.01

0.288

0.181

0.652

0.66

0.878

0.86

R2

0.57

0.42

0.10

0.16

0.01

0.01

0.002

0.02

Table 11-4

Table 11-4: Regression table for                with VSTM measures. F-value, Beta coe�cient, 
Goodness of �t and signi�cance of the model is reported.

Explanatory Variable

𝜃/𝛼 PW

𝜃/𝛼 PW
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