
Resilience through diversity: Loss of neuronal heterogeneity in

epileptogenic human tissue impairs network resilience to sudden

changes in synchrony

Scott Rich1,*, Homeira Moradi Chameh1, Jeremie Lefebvre1,2,3,†, and Taufik A

Valiante1,4,5,6,7,†

1Krembil Research Institute, University Health Network (UHN), Division of Clinical and

Computational Neuroscience, Toronto, Ontario, Canada

2University of Ottawa, Department of Biology, Ottawa, Ontario, Canada

3University of Toronto, Department of Mathematics, Toronto, Ontario, Canada

4University of Toronto, Institute of Biomedical Engineering, Toronto, ON, Canada

5University of Toronto, Electrical and Computer Engineering, Toronto, ON, Canada

6University of Toronto, Institute of Medical Science, Toronto, ON, Canada

7University of Toronto, Division of Neurosurgery, Department of Surgery, Toronto, ON,

Canada

*Corresponding Author: scott.rich@uhnresearch.ca

†These authors share senior authorship of this work.

October 19, 2021

1

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 21, 2021. ; https://doi.org/10.1101/2021.03.02.433627doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.02.433627
http://creativecommons.org/licenses/by-nc-nd/4.0/


Abstract1

A myriad of pathological changes associated with epilepsy can be recast as decreases in cell and circuit2

heterogeneity. We thus propose recontextualizing epileptogenesis as a process where reduction in cellular3

heterogeneity renders neural circuits less resilient to seizure. By comparing patch clamp recordings4

from human layer 5 (L5) cortical pyramidal neurons from epileptogenic and non-epileptogenic tissue, we5

demonstrate significantly decreased biophysical heterogeneity in seizure generating areas. Implemented6

computationally, this decreased heterogeneity renders model neural circuits prone to sudden transitions7

into synchronous states with increased firing activity, paralleling ictogenesis. This computational work8

also explains the surprising finding of significantly decreased excitability in the population activation9

functions of neurons from epileptogenic tissue. Finally, mathematical analyses reveal a unique bifurcation10

structure arising only with low heterogeneity and associated with seizure-like dynamics. Taken together,11

this work provides experimental, computational, and mathematical support for the theory that ictogenic12

dynamics accompany a reduction in biophysical heterogeneity.13

Keywords— Epilepsy | Seizure | Neuronal heterogeneity | Computational neuroscience | Neuronal14

electrophysiology15

Introduction16

Epilepsy, the most common serious neurological disorder in the world (Reynolds, 2002), is characterized by17

the brain’s proclivity for seizures, which exhibit highly correlated electrophysiological activity and elevated18

neuronal spiking (Jiruska et al., 2013). While the etiologies that predispose the brain to epilepsy are myriad19

(Jasper, 2012), the dynamics appear to be relatively conserved (Jirsa et al., 2014; Saggio et al., 2020),20

suggesting a small palette of candidate routes to the seizure state. One potential route to ictogenesis is21

disruption of excitatory/inhibitory balance (EIB) - a possible “final common pathway” for various epileptogenic22

etiologies motivating decades of research into epilepto- and ictogenesis (Dehghani et al., 2016; Žiburkus et al.,23

2013). A disrupted EIB can impair the resilience of neural circuits to correlated inputs (Renart et al., 2010), a24

paramount characteristic of ictogenesis. In addition to EIB, biophysical heterogeneity also provides resilience25

to correlated inputs (Mishra & Narayanan, 2019). Thus, EIB can be considered a synaptic mechanism for26

input decorrelation, while biophysical heterogeneity contributes to decorrelation post-synaptically.27

Cellular heterogeneity is the norm in biological systems (Altschuler & Wu, 2010; Marder & Goaillard,28

2006). In the brain, experimental and theoretical work has demonstrated that such heterogeneity expands29

the informational content of neural circuits, in part by reducing correlated neuronal activity (Padmanabhan30

& Urban, 2010; Tripathy et al., 2013). Since heightened levels of firing and firing rate correlations hallmark31

seizures (Jirsa et al., 2014; Zhang et al., 2011), we hypothesize that epilepsy may be likened, in part, to32
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pathological reductions in biological heterogeneity which impair decorrelation, and thus circuit resilience33

to information poor (Trevelyan et al., 2013), high-firing (Jiruska et al., 2013), and highly-correlated states34

(Zhang et al., 2011).35

A number of pathological changes accompanying epileptogenesis can be recast as decreases in biological36

heterogeneity. Losses of specific cell-types homogenize neural populations (Cossart et al., 2001; Cobos et al.,37

2005), down- or upregulation of ion channels homogenize biophysical properties (Arnold et al., 2019; Klaassen38

et al., 2006; Albertson et al., 2011), and synaptic sprouting homogenizes neural inputs (Sutula & Dudek,39

2007). This recontextualizes epileptogenesis as a process associated with the progressive loss of biophysical40

heterogeneity.41

To explore this hypothesis we combine electrophysiological recordings from human cortical tissue, compu-42

tational modeling, and mathematical analysis to detail the existence and consequences of one reduction in43

biological heterogeneity in epilepsy: the decrease of intrinsic neuronal heterogeneity. We first provide experi-44

mental evidence for decreased biophysical heterogeneity in neurons within brain regions that generate seizures45

(epileptogenic zone) when compared to non-epileptogenic regions. This data constrains an exploration of the46

effects of heterogeneity in neural excitability on simulated brain circuits. Using a cortical excitatory-inhibitory47

(E-I) spiking neural network, we show that networks with neuronal heterogeneity mirroring epileptogenic48

tissue are more vulnerable to sudden shifts from an asynchronous to a synchronous state with clear parallels49

to seizure onset. Networks with neuronal heterogeneity mirroring non-epileptogenic tissue are more resilient50

to such transitions. These differing heterogeneity levels also underlie significant, yet counter-intuitive, differ-51

ences in neural activation functions (i.e., frequency-current or FI curves) measured inside and outside the52

epileptogenic zone. Using mean-field analysis, we show that differences in the vulnerability to these sudden53

transitions and activation functions are both consequences of varying neuronal heterogeneities. Viewed54

together, our experimental, computational, and mathematical results strongly support the hypothesis that55

biophysical heterogeneity enhances the dynamical resilience of neural networks while explaining how reduced56

diversity can predispose circuits to seizure-like dynamics.57

Results58

Intrinsic biophysical heterogeneity is reduced in human epileptogenic cortex59

In search of experimental evidence for reduced biophysical heterogeneity in epileptogenic regions, we utilized60

the rare access to live human cortical tissue obtained during resective surgery. Whole-cell current clamp61

recordings characterized the passive and active properties of layer 5 (L5) cortical pyramidal cells from these62
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samples, a cell type we have shown to display notable biophysical heterogeneity (Moradi Chameh et al.,63

2021). Biophysical properties of neurons from epileptogenic frontal lobe cortex were contrasted to frontal lobe64

neurons of patients with no previous history of seizures undergoing tumor resection. Additionally, we obtained65

recordings from neurons in non-epileptogenic middle temporal gyrus (MTG) from patients with mesial66

temporal sclerosis, which is the overlying cortex routinely removed to approach deep temporal structures.67

The MTG is a well-characterized part of the human brain, representing a common anatomical region from68

which non-epileptogenic brain tissue has been studied electrophysiologically and transcriptomically (Hodge69

et al., 2019; Moradi Chameh et al., 2021; Beaulieu-Laroche et al., 2018; Kalmbach et al., 2021), and thus our70

primary source of non-epileptogenic neurons. We note that each of these studies classify these neurons as71

indicative of “seemingly normal” human neurons independent of the patients’ epilepsy diagnoses (i.e., a best72

case control given limitations in obtaining human tissue).73

Our analysis concentrated on two characterizations of cellular excitability. The first was the distance to74

threshold (DTT) measured as the difference between the resting membrane potential (RMP) and threshold75

voltage (see Supplementary Figure S1 for these and other electrophysiological details). Whole-cell recordings76

revealed less DTT variability (smaller coefficient of variation (CV); p=0.04; two sample coefficient of variation77

test) in neurons from epileptogenic frontal lobe (n=13, CV=20.3%) as compared to non-epileptogenic MTG78

(n=77, CV=37.1%). A significant difference (smaller CV; p=0.03) was also seen when comparing epileptogenic79

frontal lobe to non-epileptogenic frontal lobe (n=12, CV=40.8%). Meanwhile, the CVs were not significantly80

different when comparing non-epileptogenic MTG and non-epileptogenic frontal lobe (p=0.7). These features81

are more easily appreciated from the Gaussian fits of this data presented in Figure 1(b); all three data sets82

were deemed normal after passing both the Shapiro-Wilk and D’Agostino & Pearson omnibus normality tests83

with alpha=0.05. These results imply that the decrease in biophysical heterogeneity observed in epileptogenic84

cortex was not confounded by sampling from the temporal versus frontal lobe.85

While our non-epileptogenic MTG population is larger, this is unavoidable given the availability of human86

cortical tissue and the additional efforts required to confirm the tissue’s epileptogenic nature (see Discussion).87

Statistical tests accounting for unequal population sizes were used. Additionally, the significant difference88

between the standard deviations (SDs) of the DTTs in non-epileptogenic MTG and epileptogenic frontal89

lobe (p=0.03, Cohen’s d effect size=0.5; F-test; SD=7.8 mV in non-epileptogenic MTG and SD=4.4 mV in90

epileptogenic frontal lobe) that is implemented in our models has a “moderate” effect size.91

Our second quantification of cellular excitability was the FI curve (i.e., activation function), which captures92

the firing rate (F) as function of input current (I). The activation function of the population of neurons93

from the epileptogenic zone displayed qualitative and quantitative differences compared to neurons from94

both non-epileptogenic MTG and frontal lobe (Figure 1(c)). Surprisingly, firing threshold was higher in95
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Figure 1. In vitro human tissue recordings reveal significantly different electrophysiological
heterogeneity between epileptogenic and non-epileptogenic populations. (a): The coefficient of variation
(CV) in the distance to threshold (DTT) is significantly larger in both the temporal, non-epileptogenic (i.e.,
non-epileptogenic MTG; n=77) and frontal, tumor (i.e., non-epileptogenic frontal lobe; n=12) populations compared
to the frontal, epileptogenic (i.e., epileptogenic frontal lobe; n=13) population (p=0.04 to temporal, non-epileptogenic,
p=0.03 to frontal, tumor; two sample coefficient of variation test). The CV measure is implemented considering the
significantly reduced mean DTT in frontal, tumor data compared to the other two populations (p=0.01 for both
comparisons; non-parametric Mann-Whitney test). We compare the frontal, epileptogenic and temporal,
non-epileptogenic populations computationally given their similar mean DTT (p=0.7). Plotted bars indicate mean ±
standard deviation (SD). (b): An alternative visualization of the DTT distributions via fit Gaussian probability
density functions. All three data sets were deemed normal after passing both the Shapiro-Wilk and D’Agostino &
Pearson omnibus normality test with alpha=0.05. (c): Neurons from non-epileptogenic populations show similar,
linear activation functions (i.e., FI curves). Firing frequency is significantly lower in the frontal, epileptogenic
population for a 200 pA injection compared to the temporal, non-epileptogenic (p=0.009; two-way ANOVA-Tukey’s
multiple comparison test) and frontal, tumor (p=0.03) populations, as well as for a 250 pA injection compared to the
temporal, non-epileptogenic (p=0.002) and frontal, tumor (p=0.02) populations. Plotted bars indicate mean ±
standard error measure (SEM). (d): All three populations show a similar spike frequency adaptation ratio (see details
in Methods), with the only significant difference being between the means from the frontal, tumor and temporal,
non-epileptogenic populations (p=0.01; One-Way ANOVA post hoc with Dunn’s multiple comparison test). Plotted
bars indicate mean ± SD. (e): Example cell voltage responses following depolarizing current injections (50-250 pA)
from all three populations, as used to calculate the FI curve (colors denote population as in previous panels).

the epileptogenic zone compared to both non-epileptogenic populations. Additionally, firing rates were96

significantly lower in the epileptogenic zone (p=0.03 when comparing to non-epileptogenic frontal lobe at97

5

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 21, 2021. ; https://doi.org/10.1101/2021.03.02.433627doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.02.433627
http://creativecommons.org/licenses/by-nc-nd/4.0/


200 pA, p=0.02 when comparing to non-epileptogenic frontal lobe at 250 pA, p=0.009 when comparing98

to non-epileptogenic MTG at 200 pA, and p=0.002 when comparing to non-epileptogenic MTG at 25099

pA; two-way ANOVA-Tukey’s multiple comparison test), indicating larger inputs are required to induce100

high-frequency repetitive firing in individual neurons from epileptogenic tissue. This non-linear behavior is in101

strong contrast to the activation functions measured in non-epileptogenic zones, characterized by both higher102

and more linear changes in firing rates. All three populations show a similar spike frequency adaptation ratio103

(Figure 1(d)), including no significant difference between epileptogenic frontal lobe and non-epileptogenic104

MTG (the regions focused on in our modeling), indicating that differences in the FI curve are not due to105

differing adaptation rates. Example firing traces from each population (in response to each of the current steps106

used in FI curve generation; note that the spike frequency adaptation ratio is calculated from one of these107

steps, chosen as described in the Methods for each individual neuron) are found in Figure 1(e). This increased108

excitability of the non-epileptogenic populations appears contradictory to the understanding of seizure as a109

hyperactive brain state, although some prior studies have hinted at this phenomenon (Colder et al., 1996;110

Schwartzkroin et al., 1983); additionally, the significantly increased first-spike latency in our epileptogenic111

population (see Supplementary Figure S1(c)) is additional evidence for the decreased single-cell excitability112

of neurons in this population. We further investigate this in the context of biophysical heterogeneity below.113

Spiking E-I neural networks with epileptogenic levels of excitatory heterogeneity114

are more vulnerable to sudden changes in synchrony115

Given these confirmatory experimental results, we next explored the effects of biophysical heterogeneity on116

the transition to a synchronous state akin to the transition to seizure (Zhang et al., 2011). We developed a117

spiking network model of a cortical microcircuit comprised of recurrently connected excitatory and inhibitory118

neurons (see details in Methods), motivated in part by the long history of seizure modeling (Kramer et al.,119

2005; Jirsa et al., 2014) and previous models of decorrelated activity in the cortex (Vogels & Abbott, 2009;120

Renart et al., 2010; Ostojic, 2014). Our choice of model parameters (see details in Methods) positioned the121

system near a tipping point at which synchronous activity might arise (Jadi & Sejnowski, 2014a,b; Neske122

et al., 2015; Rich et al., 2020b) in order to determine the effects of cellular heterogeneity on this potential123

transition.124

We subjected these networks to a slowly linearly increasing external drive to the excitatory cells. This125

allowed us to observe the dynamics and stability of the asynchronous state, known to be the physiological126

state of the cortex (Vogels & Abbott, 2009; Renart et al., 2010; Ostojic, 2014), by determining how vulnerable127

the network is to a bifurcation forcing the system into a state of increased synchrony and firing. A biological128
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analogue for this paradigm would be an examination of whether induced hyper-excitability might drive the129

onset of seizure-like activity in vitro, although such perturbations can more easily be performed continuously130

(i.e., our linearly increasing external drive) in silico.131

To facilitate implementing experimentally-derived heterogeneities in our model, we compared epileptogenic132

frontal lobe with non-epileptogenic MTG given their similar mean DTT values (p=0.7, non-parametric133

Mann-Whitney test; mean=21.2 mV for non-epileptogenic MTG and mean=21.7 mV for epileptogenic frontal134

lobe). These populations display significantly different SDs in their DTT values (reported above). Given the135

definition of our neuron model (rheobases sampled from a normal distribution with with mean 0, see details136

in Methods), we implement differing heterogeneities by sampling rheobase values for our neural populations137

from Gaussian distributions with these varying SDs. In this model, the term rheobase refers to the inflexion138

point of the model neuron activation function (see Methods). Heterogeneity in this mathematically-defined139

rheobase is the in silico analogue of heterogeneity in the DTT (i.e., the distribution of rheobases in Figure140

2(c-d) corresponds to a horizontal shift to a mean of 0 of the DTT distributions in Figure 1(b)).141

The rheobase heterogeneity was parameterized by the SD σe for excitatory neurons and σi for inhibitory142

neurons (see diagrams in Figure 2(a-b)). This results in diversity in the neurons’ activation functions and143

aligns the variability in their excitabilities with that measured experimentally. We refer to such rheobase144

heterogeneity simply as heterogeneity in the remainder of the text. Models with epileptogenic (high σe = 7.8145

mV, Figure 2(e)) and non-epileptogenic (low σe = 4.4 mV, Figure 2(f)) excitatory heterogeneity with146

identical, moderate inhibitory heterogeneity (σi = 10.0 mV) exhibit distinct behaviors. With low excitatory147

heterogeneity, a sharp increase in excitatory synchrony associated with increased firing rates is observed. In148

contrast, when the excitatory heterogeneity was high, both synchrony and firing rates scaled linearly with149

input amplitude.150

We further investigated the respective roles of excitatory versus inhibitory heterogeneity in these sudden151

transitions. With non-epileptogenic excitatory heterogeneity (high σe), increases in excitatory synchrony,152

excitatory firing rates, and inhibitory firing rates were all largely linear regardless of whether σi was low153

(Figure 3(a)) or high (Figure 3(b)). Conversely, with excitatory heterogeneity reflective of epileptogenic154

cortex (low σe), synchronous transitions were observed for both low (Figure 3(c)) and high (Figure 3(d))155

levels of σi. This transition is of notably higher amplitude when σi is low, indicative of differing underlying156

dynamical structures.157
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Figure 2. Experimentally observed decreases in heterogeneity amongst excitatory cells promote
ictogenic-like transitions in E-I spiking neural network models. (a-b): Schematic representation of model
spiking E-I networks, with pyramidal neurons represented as triangles and interneurons as circles. Blue neurons
represent non-epileptogenic (i.e. high) levels of heterogeneity (see also the variable neuron sizes) while red neurons
represent epileptogenic (i.e. low) levels of heterogeneity (see also the similar neuron sizes). This color schema is
maintained in the remaining figures. Here, the inhibitory (black neurons) heterogeneity is set at a moderate value
amongst the range studied (σi = 10.0 mV), while σe = 7.8 mV in panel (a) and σe = 4.4 mV in panel (b). (c-d):
Visualizations of the distribution of model rheobases, with the solid curve (red or blue for excitatory neurons, black
for inhibitory neurons) illustrating the Gaussian function and the corresponding histogram illustrating the example
random distribution underlying the simulations in this figure. (e-f): Example simulations with a linearly increasing
excitatory drive. Background: raster plot of network activity, with each circle representing the firing of an action
potential of the associated neuron (excitatory neurons below horizontal line, inhibitory neurons above). Foreground:
quantifications of network activity taken over 100 ms sliding time windows, with the excitatory synchrony quantified
by the Synchrony Measure in blue or red (left axis), as well as excitatory (black) and inhibitory (grey) population
firing rates (right axis). Bottom: drive (I(t)) to the excitatory population.

Dynamical differences in networks with varying levels of heterogeneity are ex-158

plained by their distinct mathematical structures159

To gain deeper insight into the effect of heterogeneity at a potential transition to synchrony, we derived160

and analyzed mathematically the mean-field equations associated with our network model (see Methods).161

Specifically, we calculated and classified the fixed points of mean-field equations for different values of σe162

and σi for the range of drives studied in the spiking networks. The fixed point(s) of the mean-field (for163

the excitatory population activity, Ue) are plotted in the second row of each panel in Figure 4. These164

values correspond to population averages of the (unitless) membrane potential analogue taken across the165

individual units in our spiking networks (uj). We then performed linear stability analysis for those fixed166

points, extracting eigenvalues which determine the fixed points’ stability, and how it might change as input167
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Figure 3. Effects of varied inhibitory heterogeneity on sudden transitions into synchrony in E-I
spiking neural network models. Schematics and single simulation visualizations following the conventions of
Figure 2 (with inhibitory heterogeneity reflected by darker shaded blue and red neurons), now shown for four
combinations of excitatory and inhibitory heterogeneities: σe = 7.8 mV and σi = 2.5 mV in panel (a), σe = 7.8 mV
and σi = 16.75 mV in panel (b), σe = 4.4 mV and σi = 2.5 mV in panel (c), and σe = 4.4 mV and σi = 16.75 mV in
panel (d). Relative sizes of σe and σi represent the relative heterogeneity levels. Transitions into high levels of
excitatory synchrony are seen in panel (c) and (d), with the transition in panel (c) yielding a notably higher level of
synchrony (highlighted by the grey box) and occurring much more abruptly. Meanwhile, changes in the dynamics of
panels (a) and (b) are largely linear, with the excitatory synchrony consistently lower when both excitatory and
inhibitory heterogeneities are at their highest in panel (b).

drive is varied. The dampening rate represents the speed at which the system is either repelled from or returns168

to its fixed point(s) and thus classifies their stability (i.e., the real components of eigenvalues associated with169

each fixed point). The dampening rate is plotted in the row below the fixed points, followed by the frequency170

associated with fixed points with imaginary eigenvalues (i.e., the imaginary components of the eigenvalues).171

These mean-field analyses confirm that both excitatory and inhibitory heterogeneity have notable impacts172

on changes in network dynamics analogous to seizure-onset. In the top row of each panel in Figure 4 we173

present quantifications of our spiking network dynamics as in Figure 3, but averaged over 100 independent174

simulations. In the presence of high heterogeneity (whenever σe and/or σi are large, i.e., Figure 4(a), (b),175

and (d)), increased drive results in a smooth and approximately linear increase in both mean activity and176

synchrony. The mean-field analyses of the associated systems reveal a single fixed point, whose value increases177

monotonically with drive. Oscillation frequency is low, indicative of slow-wave activity.178

The subtle differences in the spiking network dynamics in these scenarios are reflected in differences in the179

mean-field analyses. In Figure 4(d) a supercritical Hopf bifurcation (Chow & Hale, 2012) at a high level of180

drive (the stable fixed point becomes unstable, giving rise to a stable limit cycle) is associated with a steeper181

increase in synchrony. The reverse bifurcation is observed in Figure 4(a) (the unstable fixed point becomes182
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stable) and is associated with a slower increase in synchrony, with the synchrony levels being preserved183

following this bifurcation due to the noise in the spiking networks allowing for the presence of quasi-cycles184

(Boland et al., 2008). Meanwhile, the fixed point in Figure 4(b) is always stable, reflective of the more185

constant but shallow increase in synchrony in the spiking network.186

In contrast to these cases, spiking networks with low heterogeneity (low σe and σi, Figure 4(c)) exhibit187

sudden increases in mean activity and synchrony. The associated mean-field system displays multistability: it188

possesses multiple fixed points. As the input drive increases, two of these fixed points coalesce and disappear189

via a saddle-node bifurcation (Chow & Hale, 2012). The system’s mean activity is thus suddenly drawn190

towards a preexisting large-amplitude limit cycle. This transition occurs at a drive corresponding with the191

sudden increase in synchrony and mean activity seen in the spiking network. In the mean-field system, the192

frequency of resulting oscillations are faster compared to the high heterogeneity scenarios, further emphasizing193

the uniqueness of the dynamical system with low heterogeneity.194

We note that the more notable inter-trial variability in Figure 4(d) (as illustrated by the fainter ± SD195

curves) results from the variable (yet gradual) onset of increased synchrony, in contrast to the transition in196

Figure 4(c) which reliably occurs at a specific drive. The different timings of the onset of synchrony in each197

independent simulation yield oscillations at different relative phases, which explains why oscillations are not198

observed in our averaged firing rate measures displayed in Figure 4 (notably, such oscillations are subtle even199

in the single simulation visualizations of Figure 3 given the 100 ms sliding time window); rather, the presence200

of oscillatory activity is demarcated by a notable increase in the mean Synchrony Measure.201

We also emphasize that, in our mathematical analyses, we focus on characterizing the system’s fixed202

points and inferring from them the presence of oscillatory behavior associated with limit cycles. Directly203

identifying such limit cycles is a mathematically arduous process (Savov & Todorov, 2000) unnecessary for204

these analyses, where our primary interest is differentiating the mathematical structure of these four exemplar205

networks. However, considering the behavior of our spiking networks remains “bounded” (i.e., consistent206

oscillatory activity is associated with unstable fixed points with imaginary eigenvalues; see Supplementary207

Figure S2(b)), we can confidently infer that such limit cycles exist, as is typical when a bifurcation yields an208

unstable fixed point.209

To facilitate the comparison of our spiking networks with our mean-field calculations, we developed a210

Bifurcation Measure (see Methods) quantifying the tendency for sudden (but persistent) changes in the211

activity of the spiking network. Higher values of this measure indicate the presence of a more abrupt increase212

in the quantification of interest as the drive increases. Given the more subtle qualitative difference in the213

firing rates in our spiking networks, we applied the Bifurcation Measure to the excitatory firing rate (Be) for214

the four combinations of σe and σi examined in Figure 4. This revealed more sudden changes with low σe and215
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σi (Be=0.1050) as opposed to any other scenario (high σe, low σi, Be=0.0416; high σe, high σi, Be=0.0148;216

low σe, high σi, Be=0.0333) where the transition is smoother. This analysis indicates that the dynamical217

transition present in Figure 4(c) is not only unique in the magnitude of the synchronous onset, but also in218

an associated sudden increase in firing rates.219

Since the seizure state is typified both by increased synchrony and firing rates (Jiruska et al., 2013; Zhang220

et al., 2011), this analysis confirms that the sharp transition in these quantities only observed in spiking221

models with low heterogeneity is driven by a saddle-node bifurcation (Figure 4(c)). These results echo other222

seizure modeling studies showcasing that ictogenic transitions can arise driven by mathematical bifurcations,223

and specifically the observation that saddle-node bifurcations underlie abrupt seizure-onset dynamics (Kramer224

et al., 2005; Jirsa et al., 2014; Saggio et al., 2020). As a corollary, high heterogeneity improves network225

resilience to sudden changes in synchrony by preventing multistability and fostering gradual changes in226

network firing rate and oscillatory behavior.227

Asymmetric effects of excitatory and inhibitory heterogeneity228

Figure 4 highlights distinct effects of excitatory versus inhibitory heterogeneity on the onset of synchrony229

in spiking networks and the structure of mean-field systems (see the differences between Figure 4(a) and230

(c)). To clarify these effects we explored a larger parameter space of σe and σi, as shown in Supplementary231

Figure S2. For each heterogeneity combination we applied the Bifurcation Measure to excitatory synchrony232

(B, hereafter referred to simply as the Bifurcation Measure; see details in Methods), which quantifies the233

abruptness of increased network synchrony in response to a changing network drive. This exploration confirms234

the asymmetric effect of excitatory and inhibitory heterogeneity on these sudden transitions, with a moderate235

value of B for low σe and high σi but a minimal value of B for high σe and low σi, comporting with patterns236

observed in previous computational literature (Mejias & Longtin, 2014).237

Similar asymmetry is seen in our spiking network dynamics (B in Supplementary Figure S2(a) and the238

Synchrony Measure S in Supplementary Figure S2(b)) and our mean-field systems (the bolded regimes of239

networks exhibiting multi-stability in Supplementary Figure S2(a) networks exhibiting an unstable fixed240

point in Supplementary Figure S2(b)). We show an example visualization of the fixed points and their241

classifications in Supplementary Figure S3. Supplementary Figure S4 shows the details of the determination242

of fixed point stability in Supplementary Figure S2(b).243

We further used the Bifurcation Measure to test whether the asymmetric effects of excitatory and inhibitory244

heterogeneity are generalizable and confirm our system’s robustness. In Supplementary Figure S5 we show245

the pattern followed by B is robust to changes in connectivity density. In the four exemplar cases highlighted246

11

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 21, 2021. ; https://doi.org/10.1101/2021.03.02.433627doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.02.433627
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 4. Effects of heterogeneity on spiking network dynamics is explained by stability analysis of
mean-field equations. Panels correspond to heterogeneity levels studied in Figure 3. Top row: measures of spiking
network dynamics (as seen in Figures 2 and 3) averaged over 100 simulations (dark curve=mean, lighter curve=± one
SD). Remaining rows: results of stability analysis on mean-field equations corresponding with these networks
visualized via the fixed point of mean excitatory activity (top), and the dampening rate and oscillatory frequency
associated with each fixed point. Green and gold coloring are used to differentiate the three distinct fixed points in
panel c, while the stability of fixed points is color coded (purple=unstable, i.e., positive dampening rate; black=stable,
i.e., negative dampening rate). Notably, only in panel (c), where both heterogeneity levels are low, do we see multiple
fixed points and a saddle-node bifurcation that occurs at a value of the drive corresponding with the sudden
transition in spiking networks (highlighted by the grey box).

in Figures 3 and 4 the dynamics are robust for reasonable changes to the primary parameters dictating our247

network topology, as shown in Supplementary Figure S6, and similar robustness in the bifurcation structure248
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of the associated mean-field systems is shown in Supplementary Figure S7.249

This analysis shows that notable decreases in B occur at higher values of σi than they do for σe, a result250

which has important implications for our understanding of the potentially differing roles of excitatory and251

inhibitory heterogeneity in seizure resilience (see Discussion).252

Differences in population averaged activation functions explained by differences253

in neuronal heterogeneity254

Finally, we return to the counter-intuitive differences in activation functions measured experimentally. As255

noted previously, the population of neurons from epileptogenic tissue exhibited qualitatively and quantitatively256

different activation functions via non-linear and hypo-active firing responses (Figure 1(c)).257

To understand if heterogeneity accounts for these observations, we computed analytically the averaged258

activation functions of the excitatory populations in our model networks. In Figure 5(a), the experimentally259

derived firing frequencies from epileptogenic frontal lobe and non-epileptogenic MTG are plotted alongside260

activation functions of our model populations. For low heterogeneity, the model population’s activation261

function captured both the non-linear and low firing rate responses measured experimentally for neurons262

in the epileptogenic zone. The increased excitability and linearity seen experimentally in non-epileptogenic263

tissue was captured by the averaged activation function for our more heterogeneous model population. This264

comparison is appropriate considering the FI curve data from Figure 1(c) is averaged over the populations of265

interest, and is thus analogous to the population activation function of our model neurons.266

To quantitatively support this correspondence, we found the values of σe that best fit our experimental267

data using a non-linear least squares method (see details in Methods). The data from epileptogenic frontal268

lobe was best fit by an activation function (see Equation 12) with σe = 5.0 mV (r2=0.94), while the data269

from non-epileptogenic MTG was best fit by an activation function with σe = 7.8 mV (r2=0.98). That the270

best-fit values closely match the experimentally-observed heterogeneity values means the features of our271

epileptogenic (resp. non-epileptogenic) activation curves are captured by neural populations with low (resp.272

high) heterogeneity.273

This somewhat counter-intuitive result is explained by the linearizing effect that increased heterogeneity,274

and noise more generally, has on input-output response functions (Mejias & Longtin, 2014; Lefebvre et al.,275

2015). This effect is illustrated in Figure 5(b). The bolded sigmoids represent the averaged activity of276

the entire population of heterogeneous neurons alongside individual activation functions (fainter sigmoids).277

Increased (resp. decreased) variability dampens (resp. sharpens) the averaged response curve for the non-278

epileptogenic (resp. epileptogenic) setting. Such variability-induced linearization raises the excitability at279
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Figure 5. Differing levels of neuronal heterogeneity explain population activation function
differences observed experimentally between epileptogenic and non-epileptogenic cortex. (a):
Experimentally observed firing frequencies plotted against input current (left and bottom axes, mean ± SEM) for
epileptogenic frontal lobe (red) and non-epileptogenic MTG (blue) tissue (as shown previously in Figure 1(c)),
visualized against an analogous measure of the relationship between population activity (firing probability) and drive
(membrane potential analogue) in our neuron models (right and top axes, details in Methods). The shape of the curve
for the heterogeneity value derived from epileptogenic tissue experimentally (red, σe = 4.4) qualitatively matches the
experimental data, and a best fit (light red, σe = 5.03, r2=0.94) is obtained with a similarly low heterogeneity value.
In contrast, the curve associated with the heterogeneity value derived from non-epileptogenic tissue experimentally
(blue, σe = 7.8) closely matches the experimental data from non-epileptogenic tissue and is nearly identical to the best
fit (light blue, σe = 7.77, r2=.98). (b): A visualization of the entirety of the sigmoidal input-output relationship for
our neuron models, with the regime compared to experimental data in panel (a) in a black box. Fainter curves
represent input-output relationships for individual neurons, either epileptogenic (red) or non-epileptogenic (blue): the
wider variability in the blue curves yields the flatter sigmoid representing the population activation function for our
non-epileptogenic heterogeneity value, and vice-versa for the red curves associated with the epileptogenic
heterogeneity value.

low input values, corresponding with the dynamics highlighted in Figure 5(a). Figure 5 illustrates that our280

model predicts significant differences in the activation function between epileptogenic and non-epileptogenic281

tissue, and that heterogeneity, or lack thereof, can explain counter-intuitive neuronal responses. However,282

these differences are not necessarily reflected in network dynamics, as illustrated by the similar network firing283

rates in Figure 4(a) and (c) at high levels of drive. In the context of seizure, this implies that excessive284

synchronization of a neural population need not be exclusively associated with increased excitability as285

represented by a lower firing threshold or higher firing rate of the population of isolated neurons.286

Discussion287

In this work, we propose that neuronal heterogeneity serves an important role in generating resilience to288

ictogenesis, and correspondingly that its loss may be a “final common pathway” for a number of etiologies289

associated with epilepsy. We explored this hypothesis using in vitro electrophysiological characterization of290

human cortical tissue from epileptogenic and non-epileptogenic areas, which revealed significant differences in291

DTT (a key determinant of neuronal excitability) heterogeneity in the pathological and non-pathological292
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settings. The ability to perform experiments on tissue from human subjects diagnosed with epilepsy makes293

these results particularly relevant to the human condition. We then implemented these experimentally294

observed heterogeneities in in silico spiking neural networks. Our explorations show that networks with high295

heterogeneity, similar to the physiological setting, exhibit a more stable asynchronously firing state that is296

resilient to sudden transitions into a more active and synchronous state. Differing heterogeneity levels also297

explained the significant differences in the experimentally-obtained population activation functions between298

epileptogenic and non-epileptogenic tissue. Finally, using mathematical analysis we show that differences in299

the bifurcation structure of analogous mean-field systems provide a theoretical explanation for dynamical300

differences in spiking networks. Viewed jointly, these three avenues of investigation provide strong evidence301

that reduction in biophysical heterogeneity exists in epileptogenic tissue, can yield dynamical changes with302

parallels to seizure onset, and that there are theoretical principles underlying these differences.303

Computational studies have established the role played by heterogeneity in reducing synchronous activity304

in the context of physiological gamma rhythms (Börgers & Kopell, 2003, 2005; Börgers et al., 2012). Other305

investigations have implemented heterogeneity in more varied neural parameters (Yim et al., 2013) and306

identified asymmetric effects of excitatory and inhibitory heterogeneities on network dynamics (Mejias &307

Longtin, 2012, 2014). Our study complements and extends the understanding of the role of biophysical308

heterogeneity in neural networks to human epilepsy by: 1) using experimentally derived heterogeneities of309

the DTT in non-epileptogenic and epileptogenic surgical specimens, which when implemented in silico are310

dynamically relevant; 2) exploring the effects of heterogeneity on the transition to synchrony, the hallmark of311

seizure onset; 3) detailing the differing extents to which inhibitory and excitatory heterogeneity contribute312

to circuit resilience to synchronous transitions. Our mathematical analysis further builds on this work to313

provide a theoretical undergird for these observed dynamics.314

The asymmetric effect of excitatory and inhibitory heterogeneities supports predictions regarding inhibitory315

heterogeneity’s role in ictogenesis. Supplementary Figure S2(a) shows that the sudden onset of synchrony316

is more likely to arise for moderate values of σi than σe. The physiological heterogeneity of the entire317

inhibitory population is likely to be larger than for the excitatory population (Cossart, 2011), driven in part318

by the diverse subpopulations of interneurons (Huang & Paul, 2019). Thus, our work makes two interesting319

predictions: first, a moderate loss of heterogeneity amongst inhibitory interneurons might be sufficient to make320

a system vulnerable to ictogenesis; second, the preservation of inhibitory heterogeneity may provide a bulwark321

against ictogenesis even if excitatory heterogeneity is pathologically reduced as observed experimentally. Of322

note is that, in this work, changes in heterogeneity are “symmetric” (i.e., increased heterogeneity yields323

a similar increase in both hyper- and hypo-active neurons). A subject of future investigation is whether324

increasing the heterogeneity of the system “asymmetrically” (i.e., by only adding hyper- or hypo-active325
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neurons) would yield similar effects.326

The loss of inhibitory cell types (Cobos et al., 2005; Cossart et al., 2001) or unique firing patterns of327

inhibitory cells (Gavrilovici et al., 2012) previously shown to be associated with epilepsy can be thought of as328

a loss of inhibitory heterogeneity. These studies tend to contextualize the epileptogenic effect of these changes329

as driven by a deficit in GABAergic signalling, either due to the loss of inhibitory cells (Cobos et al., 2005) (or,330

in the case of Cossart et al. (2001), the loss of specifically dendritic targeting inhibitory signaling) or to fewer331

action potentials generated by inhibitory cells (Gavrilovici et al., 2012). We present a potential additional332

route to the seizure state under such conditions, where the loss of inhibitory neuronal heterogeneity promotes333

ictogenesis, which could serve to reconcile these studies’ sometimes conflicting observations regarding the loss334

of interneurons.335

How might the decreased population excitability through homogenization of neuronal excitability we336

observed be reconciled with the perspective of epilepsy as a disorder of hyper-excitability? Our findings337

suggest that within the epileptogenic zone, interictal hypometabolism (Niu et al., 2021) and manifestations338

of “hyper-excitability,” such as inter-ictally recorded high-frequency oscillations (HFOs) and inter-ictal339

spikes (IIDs) (Frauscher et al., 2017; Jiruska et al., 2017), can coexist. In essence, our findings suggest340

that the observed hypometabolism may arise in part from cellular homogenization that reduces population341

excitability (see Figure 1(c) and 5(b)) - since metabolism is tightly linked to maintaining ionic gradients342

and thus firing rates - while simultaneously facilitating the emergence of synchronous activities (Figure 4(c))343

such as HFOs, IIDs and seizures. In addition, our work also hints at a process of “disinhibition through344

neural homogenization” - decreased population excitability in inhibitory populations through homogenization,345

together with our observation that sudden transitions occurred for more moderate values of σi, indicates346

suppression in overall inhibition. Such disinhibition may further explain the hypometabolism observed347

interictally given that interneuronal spiking appears to contribute more to brain metabolism than pyramidal348

cells (Ackermann et al., 1984). While conjectural, further studies using targeted patching of interneurons in349

both human and chronic rodent models are warranted to answer these questions, and characterize what, if350

any, homogenization occurs in interneuronal populations during epileptogenesis and epilepsy.351

While our results include lower neuronal counts from the frontal lobe, this represents a less common352

source of human cortical tissue than non-epileptogenic MTG. For this reason, we use the population of353

non-epileptogenic frontal lobe neurons (obtained during tumor resection) only as evidence that heterogeneity354

levels are not confounded by comparison between the temporal and frontal lobes, and limit our modeling355

work to comparing non-epileptogenic MTG and epileptogenic frontal lobe. The factor limiting the sample size356

of epileptogenic neurons was the necessity to confirm the epileptogenicity of the resected cortex using using357

electrocorticography (ECoG), making this data set highly selective. Although one might obtain a greater358
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sample by comparing non-epileptogenic MTG to epileptogenic mesial temporal structures (i.e., subiculum,359

parahippocampal gyrus, hippocampus) this would represent comparison between the allocortex and neocortex360

which would add a further confound. Alternatively, obtaining non-epileptogenic medial temporal lobe361

(MTL) cortex is exceedingly rare. With these important limitations in the access to human cortical tissue362

considered, our comparison between epileptogenic frontal lobe, non-epileptogenic (tumor) frontal lobe, and363

non-epileptogenic MTG represent a best-case comparison of the biophysical properties of epileptogenic and364

non-epileptogenic human tissue while reasonably controlling for confounds introduced by the differing brain365

regions, and our computational and mathematical explorations using this data maximize the conclusions that366

can be drawn despite the limitations imposed by the human setting.367

Our model networks, while analogous to E-I microcircuits commonly used in computational investigations368

of cortical activity (Renart et al., 2010; Ostojic, 2014; Vogels & Abbott, 2009), are simplified from the369

biophysical reality and must be considered with these limitations in mind; indeed, such models cannot370

reasonably capture the full richness and complexity of seizure dynamics and do not include multiple inhibitory371

populations (Huang & Paul, 2019). However, this simplifying choice facilitates findings that have their372

foundation in fundamental mathematical principles and are not especially reliant on biophysical intricacies373

such as network topology (see the confirmation of the robustness of our models in Supplementary Figures374

S6 and S7). This increases the likelihood that these predictions are generalizable. Potential future work375

involves the use of more biophysically detailed human inspired neuron and network models, allowing for376

the implementation and study of additional types of heterogeneity (including multiple, diverse inhibitory377

populations) and/or the study of model seizures. Such studies will be facilitated by our recent development378

of a biophysically-detailed computational model of a human L5 cortical pyramidal neuron (Rich et al., 2021),379

allowing them to be more directly applicable to potential clinical applications for the treatment of human380

epilepsy. In this vein, while we do not model seizures per se in this work, the two most common types of seizure381

onsets observed in intracranial recordings are the low-voltage fast (Lee et al., 2000) and hyper-synchronous382

onsets (Velascol et al., 1999). Both reflect a sudden transition from a desynchronized state to a synchronous383

oscillation, albeit of differing frequencies. Given the ubiquity of such onsets, our modeling of the transition to384

synchrony is likely to be broadly relevant to epilepsy.385

Lastly, one might wonder what neurobiological processes render an epileptogenic neuronal population less386

biophysically diverse. While under physiological conditions channel densities are regulated within neurons to387

obtain target electrical behaviors (Marder, 2011), it remains speculative as to what processes might lead to388

pathological homogenization of neuronal populations. However, modeling suggests that biological diversity389

may be a function of input diversity, and thus “homogenizing the input received by a population of neurons390

should lead the population to be less diverse” (Tripathy et al., 2013). Although requiring further exploration,391
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it is possible that the information-poor, synchronous post-synaptic barrages accompanying seizure (Trevelyan392

et al., 2013) represent such a homogenized input, reducing a circuit’s resilience to synchronous transitions393

and promoting epileptogenesis by reducing biophysical heterogeneity.394
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Materials and Methods408

Experiment: Human brain slice preparation409

All procedures on human tissue were performed in accordance with the Declaration of Helsinki and approved410

by the University Health Network Research Ethics board. Patients underwent a standardized temporal or411

frontal lobectomy (Fallah et al., 2012) under general anesthesia using volatile anesthetics for seizure treatment412

(Beaulieu-Laroche et al., 2018). Tissue was obtained from patients diagnosed with temporal or frontal lobe413

epilepsy who provided written consent. Tissue from temporal lobe was obtained from 22 patients, age ranging414

between 21 to 63 years (mean age ± SEM: 37.8 ± 2.9). The resected temporal lobe tissue displayed no415

structural or functional abnormalities in preoperative MRI and was deemed “healthy” tissue considering it is416
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located outside of the epileptogenic zone. Tissue from frontal lobe was obtained from five patients, age ranging417

between 23-36 years (mean age ± SEM: 30.2 ± 2.4), and was deemed “epileptogenic” tissue as confirmed418

using electrocorticography (ECoG), making this data set highly selective. Tissue from non-epileptogenic419

frontal lobe obtained during tumor resection was obtained from two patients, ages 37 and 58 years, and was420

also considered “non-epileptogenic”.421

After surgical resection, the cortical tissue block was instantaneously submerged in ice-cold (∼4◦C) cutting422

solution that was continuously bubbled with 95% O2-5% CO2 containing (in mM): sucrose 248, KCl 2,423

MgSO4.7H2O 3, CaCl2.2H2O 1, NaHCO3 26, NaH2PO4.H2O 1.25, and D-glucose 10. The osmolarity was424

adjusted to 300-305 mOsm. The human tissue samples were transported (5-10 min) from Toronto Western425

Hospital (TWH) to the laboratory for further slice processing. Transverse brain slices (400 µm) were obtained426

using a vibratome (Leica 1200 V) perpendicular to the pial surface to ensure that pyramidal cell dendrites were427

minimally truncated (Beaulieu-Laroche et al., 2018; Kalmbach et al., 2018) in the same cutting solution as428

used for transport. The total duration, including slicing and transportation, was kept to a maximum of 20-30429

minutes. After sectioning, the slices were incubated for 30 min at 34◦C in standard artificial cerebrospinal430

fluid (aCSF) (in mM): NaCl 123, KCl 4, CaCl2.2H2O 1, MgSO4.7H2O 1, NaHCO3 26, NaH2PO4.H2O 1.2,431

and D-glucose 10. The pH was 7.40 and after incubation the slice was held for at least for 60 min at room432

temperature. aCSF in both incubation and recording chambers were continuously bubbled with carbogen gas433

(95% O2-5% CO2) and had an osmolarity of 300-305 mOsm.434

Experiment: Electrophysiological recordings and intrinsic physiology feature435

analysis436

Slices were transferred to a recording chamber mounted on a fixed-stage upright microscope (Axioskop 2437

FS MOT; Carl Zeiss, Germany). Recordings were performed from the soma of pyramidal neurons at 32-34◦438

in recording aCSF continually perfused at 4 ml/min. Cortical neurons were visualized using an IR-CCD439

camera (IR-1000, MTI, USA) with a 40x water immersion objective lens. Using the IR-DIC microscope, the440

boundary between layer 1 (L1) and 2 (L2) was easily distinguishable in terms of cell density. Below L2, the441

sparser area of neurons (L3) was followed by a tight band of densely packed layer 4 (L4) neurons, with a442

decrease in cell density indicating layer 5 (L5) (Moradi Chameh et al., 2021; Kalmbach et al., 2021).443

Patch pipettes (3-6 MΩ resistance) were pulled from standard borosilicate glass pipettes (thin-wall444

borosilicate tubes with filaments, World Precision Instruments, Sarasota, FL, USA) using a vertical puller445

(PC-10, Narishige). Pipettes were filled with intracellular solution containing (in mM): K-gluconate 135;446

NaCl 10; HEPES 10; MgCl2 1; Na2ATP 2; GTP 0.3, pH adjusted with KOH to 7.4 (290–309 mOsm).447
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Whole-cell patch-clamp recordings were obtained using a Multiclamp 700A amplifier, Axopatch 200B448

amplifier, pClamp 9.2 and pClamp 10.6 data acquisition software (Axon instruments, Molecular Devices,449

USA). Electrical signals were digitized at 20 kHz using a 1320X digitizer. The access resistance was monitored450

throughout the recording (typically between 8-25 MΩ), and neurons were discarded if the access resistance451

was >25 MΩ. The liquid junction potential was calculated to be -10.8 mV and was not corrected.452

Electrophysiological data were analyzed off-line using Clampfit 10.7, Python and MATLAB (MATLAB,453

2019). Electrophysiological features were calculated from responses elicitepd by 600 ms square current steps454

as previously described (Moradi Chameh et al., 2021). Briefly, the resting membrane potential (RMP) was455

measured after breaking into the cell (IC=0). The firing threshold was determined following depolarizing456

current injections between 50 to 250 pA with 50 pA step size for 600 ms; the threshold was calculated by finding457

the voltage value corresponding with a value of
dV

dt
that was 5% of the average maximal

dV

dt
across all action458

potentials elicited by the input current that first yielded action potential firing. The distance to threshold459

presented in this paper was calculated as the difference between the RMP and threshold. The average FI curve460

(i.e., activation function) was generated by calculating the instantaneous frequency at each spike for each of461

the depolarizing current injections (50-250 pA, step size 50 pA, 600 ms) and averaging over the population.462

Spike frequency adaptation ratio was calculated from the first current injection that yielded at least four463

spikes, and is defined as the mean of the ratio of subsequent inter-spike intervals. This could not be quantified464

in every neuron if sufficient spiking was not elicited by the current-clamp protocol. This analysis utilizes the465

IPFX package made available through the Allen Institute (https://github.com/AllenInstitute/ipfx),466

as used by Berg et al. (2021) amongst others.467

Plotting of experimental data was performed using GraphPad Prism 6 (GraphPad software, Inc, CA,468

USA). The non-parametric Mann-Whitney test was used to determine statistical differences between the469

means of two groups. The F-test was used to compare standard deviation (SD) between groups. The two470

sample coefficient of variation test was used to compare the coefficient of variance (CV) between groups.471

Normality of the data was tested with the Shapiro-Wilk and D’Agostino & Pearson omnibus normality tests472

with alpha=0.05. The one-way ANOVA post hoc with Dunn’s multiple comparison test was used to determine473

statistical significance in the spike frequency adaptation ratio. A standard threshold of p<0.05 is used to474

report statistically significant differences.475

Modeling: spiking neural network476

The cortical spiking neural network contains populations of recurrently connected excitatory and inhibitory477

neurons (Snyder & Miller, 2012; Stevens & Zador, 1996). The spiking response of those neurons obeys the478
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non-homogeneous Poisson process479

Yj → Poisson(f(uj , hj)) (1)

where Yj =
∑
l δ(t− tk) is a Poisson spike train with rate f(uj , hj).480

The firing rate of neuron j is determined by the non-linear sigmoidal activation function f(uj , hj),481

f(uj , hj) =
1

1 + e−β(uj−hj)
(2)

where uj is the membrane potential analogue and hj represents the rheobase. The constant β = 4.8 scales482

the non-linear gain.483

Heterogeneity is implemented via the rheobases hj . The hj values are chosen by independently and484

randomly sampling a normal Gaussian distribution whose standard deviation is σe,i if neuron j is excitatory485

(e) or inhibitory (i). The values of σi and σe are varied throughout these explorations between a minimum486

value of 2.5 mV and a maximum value of 16.75 mV. The heterogeneity parameters for the model have a direct487

parallel with the heterogeneity in the distance to threshold (DTT) measured experimentally, with β chosen488

so that the experimentally observed heterogeneity values and the heterogeneity parameters implemented in489

the model are within the same range (compare Figure 1(b) and Figure 2(c-d)).490

The membrane potential analogue uj is defined by491

duj
dt

= αx
(
−uj(t) + Synexj + Synixj + Ix + I(t)

)
+
√

2αxDXj (3)

The variable αx represents the time constant depending upon whether the neuron j is excitatory (x = e, αe = 10492

ms) or inhibitory (x = i, αi = 5 ms). The differential time scales are implemented given the different membrane493

time constants between cortical pyramidal neurons and parvalbumin positive (PV) interneurons (Neske et al.,494

2015).495

Synexj and Synixj are the synaptic inputs to the cell j (from the excitatory and inhibitory populations,496

respectively), dependent upon whether cell j is excitatory (x = e) or inhibitory (x = i). Our cortical model497

is built of 800 excitatory and 200 inhibitory neurons (Traub et al., 1997; Rich et al., 2017, 2018). The498

connectivity density for each connection type (E-E, E-I, I-E, and I-I) is varied uniformly via a parameter p.499

In this study, p = 1 is used (i.e., all-to-all connectivity) with the exception of in Supplementary Figure S5.500

The synaptic strengths are represented by wxy where x, y = e, i depending upon whether the pre-synaptic cell501

(x) and the post-synaptic cell (y) are excitatory or inhibitory. In our model, wee = 100.000, wei = 187.500,502

wie = −293.750, and wii = −8.125. Negative signs represent inhibitory signalling, while positive signs503

represent excitatory signalling. These values are chosen to place the network near a tipping point between504
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asynchronous and synchronous firing based on mathematical analysis and previous modeling work (Rich505

et al., 2020b), and scaled relative to the values of β.506

The post-synaptic inputs Synexj and Synixj are given by507

Synexj =
1

800

800∑
k=1,k 6=j

ckj
wex
p
Yk(t−∆t) (4)

508

Synixj =
1

200

200∑
k=1,k 6=j

ckj
wix
p
Yk(t−∆t) (5)

where x = e, i and Yk is a Poisson spike train given by Yk =
∑
l δ(t− tl). The connectivity scheme excludes509

auto-synapses. ckj represents the connectivity: if neuron k synapses onto neuron j, ckj = 1, and otherwise510

ckj = 0. The synaptic weights are scaled by the connectivity density p so that the net input signal to each511

neuron is not affected by the number of connections.512

Equation 3 includes three non-synaptic inputs to the neuron: Ix, I(t), and and
√

2αxDXj . The variable513

Xj is a spatially independent Gaussian white noise process. The value of noise intensity was chosen so that514

the noise-induced fluctuations are commensurate with endogenous dynamics of the network. Ix represents a515

bias current whose value depends on whether the neuron is excitatory (x = e) or inhibitory (x = i), imparting516

a differential baseline spiking rate to these distinct populations. Here, Ii = −31.250, ensuring that inhibitory517

neurons will typically require excitatory input to fire, matching biophysical intuition. Ie = −15.625 is based518

on previous literature (Jadi & Sejnowski, 2014a,b; Neske et al., 2015; Rich et al., 2020b) to position the519

system near the transition between asynchronous and synchronous firing.520

I(t) implements time-varying external input only applied to the excitatory population (this is simply521

referred to as the “drive” to the system in Figures 2, 3 and 4). In this work, this term is used primarily522

to study the response of the spiking network to a linear ramp excitatory input that occurs at a time scale523

much slower than the dynamics of individual neurons: to yield the ramp current used throughout the study524

I(t) simply varies linearly between 0 and 31.25 over a 2500 ms simulation (for computational efficiency, the525

simulation length is limited to 2048 ms for the heatmaps displayed in Supplementary Figures S2 and S5).526

In Supplementary Figure S2(b), where we characterize the dynamics of the network with constant input,527

I(t) = 15.625 uniformly.528

The final probability of a Poisson neuron j firing at time t depends upon the effect of these various529

elements on uj :530

ρj = 1− e−f(uj(t),hj)dt (6)
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Parameter values531

Parameter values summarized in Table 1 below are analogous to those used in previous work on oscillatory532

cortical networks (Jadi & Sejnowski, 2014a,b; Neske et al., 2015; Rich et al., 2020b) with the scaling of our533

chosen β accounted for.534

Table 1. Key model parameters.

Parameter Value
Number of excitatory neurons 800
Number of inhibitory neurons 200
Excitatory time constant, αe 10 ms
Inhibitory time constant, αi 5 ms

Non-linear gain of activation function, β 4.8
Variance of noisy input, D 3.906
Excitatory bias current, Ie -15.625
Inhibitory bias current, Ii -31.250

External input, I(t) Variable
Excitatory-excitatory synaptic strength, wee 100.000
Excitatory-inhibitory synaptic strength, wei 187.500
Inhibitory-inhibitory synaptic strength, wii -8.125
Inhibitory-excitatory synaptic strength, wie -293.750

Excitatory heterogeneity, σe Variable
Inhibitory heterogeneity, σi Variable

rheobase, h Variable
Connectivity density, p Variable

Time step, ∆t 1 ms

Numerics535

All sampling from standard normal Gaussian distributions is done via the Box-Mueller algorithm (Golder &536

Settle, 1976). Equations are integrated using the Euler-Maruyama method. In our simulations, ∆t = 0.1,537

scaled so that each time step ∆t represents 1 ms.538

The excitatory network synchrony (i.e. Synchrony Measure) and excitatory and inhibitory firing rates are539

calculated over sliding 100 ms time windows in Figures 2, 3 and 4. To preserve symmetry and ensure initial540

transients do not skew the data, our first window begins at t = 100.541

The Synchrony Measure is an adaptation of a commonly used measure developed by Golomb and Rinzel542

(Golomb & Rinzel, 1993, 1994) to quantify the degree of coincident spiking in a network as utilized in our543

previous studies (Rich et al., 2016, 2017, 2018, 2020a). Briefly, the measure involves convolving a very narrow544

Gaussian function with the time of each action potential for every cell to generate functions Vi(t). The545

population averaged voltage V (t) is then defined as V (t) =
1

N

N∑
i=1

Vi(t), where N is the number of cells in the546

network. The overall variance of the population averaged voltage Var(V ) and the variance of an individual547
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neuron’s voltage Var(Vi) is defined as548

Var(V ) =< V (t)2 > − < V (t) >2 (7)

and549

Var(Vi) =< Vi(t)
2 > − < Vi(t) >

2 (8)

where < · > indicates time averaging over the interval for which the measure is taken. The Synchrony550

Measure S is then defined as551

S =
Var(V )

1

N

∑N
i=1 Var(Vi)

(9)

The value S = 0 indicates completely asynchronous firing, while S = 1 corresponds to fully synchronous552

network activity. Intermediate values represent intermediate degrees of synchronous firing.553

In the case of sliding time bins, this measure is taken by only considering spikes falling into the time554

window of interest. In Figure 4 we present averages of S over 100 independent realizations, and if a particular555

run yields a “NaN” result for S at a given time step (indicating no spikes in the associated window), we556

eliminate that value from the average for that time point (this increases the variability of these values since557

there are less to average over; thus, this is reflected in an increased range of the ± STD curves). In contrast,558

in Supplementary Figure S2(b) we generate a single value the Synchrony Measure (or the other measures of559

interest) over the last 1000 ms of the simulation. Supplementary Figure S2(b) displays this measure averaged560

over five independent simulations.561

Supplementary Figure S2 includes the presentation of our Bifurcation Measure B. This quantifies the562

presence of sudden and significant changes in the Synchrony Measure over time. First, we take the Synchrony563

Measure time series for each independent run (i.e., as presented in Figure 3), and use the smooth function in564

MATLAB(MATLAB, 2019) with a 500 step window, generating a new time series from this moving average565

filter. This low-pass filter serves to account for fluctuations arising when, for example, a particular 100566

ms window includes more or less activity than average. We denote this filtered time-series Ss. Second, we567

calculate the difference quotient
δSs
δI

, where I is the value of the external drive (plotted against time in568

Figure 3), at each step in the time series. Finally, we take the variance of the values of
δSs
δI

using the var569

function in MATLAB (MATLAB, 2019): networks in which the Synchrony Measure changes in a consistently570

linear fashion will have a tight distribution of
δSs
δI

around the average slope (see, for example, Figure 3(b)),571

and thus a low variance; in contrast, networks in which the Synchrony Measure undergoes abrupt transitions572
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will yield a multi-modal distribution of
δSs
δI

, with each mode corresponding to different linear sections of Ss,573

and thus the variance of these values will be notably higher (see, for example, Figure 3(c)). The plotted574

value of B represents an average over the B values calculated for each independent network instantiation.575

We note that when we calculate the “firing rate Bifurcation Measure” Be in reference to the four scenarios576

in Figure 4, we simply replicate the above steps on the firing rate time series rather than the Synchrony577

Measure time series.578

We emphasize that the Bifurcation Measure is appropriate for identifying the dynamics of interest in579

this work given that the related quantifications increase largely monotonically in response to increased drive,580

especially once these time series are “smoothed” prior to the application of this measure. The smoothed581

Synchrony Measure and firing rates do not display any discontinuous behaviors in our experimental paradigms582

that might confound this measure.583

Analysis of FI curves584

In Figure 5, we compare activation functions derived from experimental data with model analogues (i.e., the585

function F described below in Equation 12). In Figure 5(b) we show examples of F with epileptogenic and586

non-epileptogenic levels of heterogeneity alongside samples of the function f (Equation 2) randomly chosen587

based on the differing heterogeneity levels.588

In Figure 5(a), we confirm the correspondence between the F functions and the experimental data by589

determining the value of σe best fitting this data. This process involved three steps: first, we qualitatively590

determined the portion of the F curves most likely to fit this data as that in −11.875 ≤ Ue ≤ −6.25; second,591

both the x (Ue, [-11.875 -6.25]) and y (probability of firing, [0.003585 .2118]) variables were re-scaled to match592

the ranges exhibited by the x (input current, pA, [50 250]) and y (firing frequency, Hz, [0 24]) variables in the593

experimental data; finally, a fit was calculated using MATLAB’s (MATLAB, 2019) Curve Fitting application.594

This process used a non-linear least squares method, with r2 > .93 for both fits (see details in Results).595

Additional scaling was performed for plotting so that the two x- and y-axes in Figure 5 remain consistent.596

Modeling: Mean-field reduction597

Following previous work (Hutt et al., 2016; Stefanescu et al., 2012; Hutt et al., 2020; Rich et al., 2020b;598

Lefebvre et al., 2015; Hutt et al., 2020) we perform a mean-field reduction of the spiking network in Equation599

3. We assume that the firing rate of cells is sufficiently high to make use of the diffusion approximation600
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(Gluss, 1967), yielding601

α−1
e

dUe
dt

= −Ue + weeF (Ue, σe) + wieF (Ui, σi) + Ie (10)

α−1
i

dUi
dt

= −Ui + wiiF (Ui, σi) + weiF (Ue, σie) + Ii (11)

where Ue,i =
∑Ne,i

j=1 u
j
e,i represents the mean activity of the excitatory or inhibitory population, respectively.602

The function F represents the average activation function conditioned upon the value of σe,i via the603

convolution604

F (Ue,i, σe,i) =

∫ ∞
−∞

f(Ue,i + v, 0)ρ(v, σe,i)dv (12)

where ρ(v, σe,i) = N(0, σ2
e,i) (Lefebvre et al., 2015; Hutt et al., 2018, 2016).605

Linear stability analysis of the mean-field equations606

Fixed points Ūe,i of the mean-field equations satisfy607

0 = −Ūe + weeF (Ūe, σe) + wieF (Ūi, σi) + Ie (13)

0 = −Ūi + wiiF (Ūi, σi) + weiF (Ūe, σie) + Ii (14)

Linearizing about the steady state values of Ūe,i yields the system608

A

δŪe
δŪi

 =

−1 + weeαeR
e wieαiR

i

weiαeR
e −1 + wiiαiR

i


δŪe
δŪi

 (15)

with Re,i = R(Ūe, Ūi) =
∫

Ω(v)
f ′[Ūe,i + v, 0]ρ(v, σe,i)dv. The system’s stability is given by the eigenvalues of609

the Jacobian A. Define610

B = trace(A) = −
(
−2 + (weeαe)R

e + (wiiαi)R
i
)

(16)
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C = det(A) = (−1 + (weeαe)R
e)
(
−1 + (wiiαi)R

i
)

−
(
(wieαi)R

i
)

((weiαe)R
e) (17)

Eigenvalues of A are thus given by611

λ± =
−B ±

√
B2 − 4C

2
(18)

Bifurcation analysis with varying excitatory input612

We investigate bifurcation properties as a function of Ie. In Supplementary Figure S2(a), multi-stability, as613

denoted by the bold border, is determined by testing for the presence of multiple fixed points at Ie ranging614

from -15.625:0.625:-6.250, a range encompassing the range for multi-stability shown in Figure 4 (noting615

Ie = Ie + I(t)).616

Code Accessibility617

The code generating the primary figures is available at https://github.com/Valiantelab/LostNeuralHeterogeneity.618

Additional code used is available upon request to the authors.619
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Supplementary Figures620

Supplementary Figure S1. Details from electrophysiological recordings. (a): Distribution of resting
membrane potentials (RMP) in our three neuronal populations. None of the distributions are deemed normal after
failing the D’Agostino and Pearson omnibus, Shapiro-Wilk, and Kolmogorof-Smirnov normality tests with alpha=0.05.
Mean RMP is significantly increased in the frontal, tumor (n=12) population compared to both the frontal,
epileptogenic (n=13; p=0.003; Non-parameteric Mann-Whitney test) and temporal, non-epileptogenic (n=77;
p=0.002) populations. Coefficient of variation (CV) of these populations is significantly increased in the temporal,
non-epileptogenic population compared to the frontal, tumor population (p=0.03; two sample coefficient of variation
test). Plotted bars indicate mean ± standard deviation (SD). (b): Distribution of threshold voltages in our three
neuronal populations. All three distributions are deemed normal after passing the Kolmogorof-Smirnov normality test
with alpha=0.05. No significant differences between mean threshold voltages were observed (unpaired t test with
Welch’s correction). The CV of the threshold voltage in the frontal, epileptogenic population was significantly lower
than in the temporal, non-epileptogenic population (p=0.04) and than in the frontal, tumor population (p=0.04).
Plotted bars indicate mean ± SD. (c) Distribution of first-spike latencies (time between stimulus application and first
spike) in our three neuronal populations. None of the distributions are deemed normal. Mean latency is significantly
lower in the temporal, non-epileptogenic population compared to the frontal, epileptogenic population (p=0.03;
Non-parametric Mann-Whitney test), and mean latency is significantly lower in the frontal, tumor population
compared to both the frontal, epileptogenic (p=0.0045) and temporal, non-epileptogenic (p=0.02) populations.
Plotted bars indicate mean ± SD. (d) Distribution of rheobases (minimal input current required to elicit first spike)
in our three neuronal populations. None of the distributions are deemed normal. The mean rheobase of the temporal,
non-epileptogenic population is significantly lower compared to the frontal, epileptogenic population (p=0.045;
Non-parametric Mann-Whitney test). Plotted bars indicate mean ± SD. (e) Distribution of input resistances in our
three neuronal populations. All three distributions are deemed normal after passing the D’Agostino and Pearson
omnibus, Shapiro-Wilk, and Kolmogorof-Smirnov normality tests with alpha=0.05. Mean input resistance of the
frontal, tumor population is significantly lower compared to the temporal, non-epileptogenic population (p=0.02;
Unpaired t-test with Welch’s correction). Plotted bars indicate mean ± SD.
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Supplementary Figure S2. Exploration of a larger σe and σi parameter space highlights the
asymmetric effects of excitatory and inhibitory heterogeneity on sudden transitions into synchrony.
(a): Visualization quantifying the tendency for spiking networks to undergo a sudden and notable increase in
excitatory synchrony over time, when subjected to a linearly increasing input as in Figures 2, 3, and 4 (but over 2048
as opposed to 2500 ms), via the Bifurcation Measure B. Results are shown averaged over 10 independent simulations.
Bolded region demarcates networks whose mean-field analogues exhibit any multi-stability from those that do not
(remainder of heatmap). (b): Dynamics of spiking networks with a constant external input (I(t) = 15.625) where
either synchronous or asynchronous activity can arise. The excitatory synchrony is quantified via the Synchrony
Measure taken over the final 1000 ms of a 2048 ms simulation, and the presented value is averaged over five
independent simulations. The bolded region demarcates networks whose mean-field analogues have an unstable
oscillator from those that have a stable oscillator (remainder of heatmap) as their lone fixed point when I(t) = 15.625.
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Supplementary Figure S3. Fixed points and eigenvalues of mean-field equations for I(t) = 3.125. (a):
The mean-field system with this I(t) value can yield multiple fixed points: we calculate their eigenvalues, sort them by
their classifications, and visualize these eigenvalues via heatmaps. In this example, we see that multiple fixed points
arise only when both σe and σi are low (i.e. the bottom-left of the heatmap). (b-e): Fixed points are determined by
finding the intersections of the Ue and Ui nullclines, visualized for the corners of our heatmap (top-left in panel (b),
top-right in panel (c), bottom-left in panel (d), and bottom-right in panel (e)). Multiple fixed points correspond
with multiple intersections of these curves, as seen exclusively in panel (d).

30

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 21, 2021. ; https://doi.org/10.1101/2021.03.02.433627doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.02.433627
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Figure S4. Fixed points and eigenvalues of mean-field equations for I(t) = 15.625. (a):
As all mean-field systems in our parameter space yield a single fixed point when I(t) = 15.625, we visualize the Ue

and Ui coordinates of this fixed point using a heatmap. (b): Each fixed point has imaginary eigenvalues, which we
visualize by plotting the real and imaginary components of the eigenvalue associated with the fixed point in a heatmap.
(c-f): Fixed points are determined by finding the intersections of the Ue and Ui nullclines, visualized for the corners
of our heatmap (top-left in panel (c), top-right in panel (d), bottom-left in panel (e), and bottom-right in panel (f)).
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Supplementary Figure S5. Dynamics of spiking networks are robust to more sparse connectivity
paradigms. Bifurcation Measure B pattern over our parameter space remains similar with p = 0.25 (panel (a)),
p = 0.50 (panel (b)), and p = 0.75 (panel (c)), when compared to the case of p = 1.00 seen in Figure S2(a). In each
case the “asymmetry” in the effects of σe and σi is preserved. Heatmaps present results averaged over ten
independent simulations.
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Supplementary Figure S6. Network dynamics are robust to a range of parameters. (a-d):
Examination of changes to network dynamics, as quantified via the Bifurcation Measure, caused by varying a single
synaptic weight (wie in (a), wii in (b), wei in (c), and wee in (d)) or the baseline inhibitory drive (Ii in (e)).
Vertical grey bar represents the default value as given in Table 1. Values of high/low heterogeneity correspond with
those used in exemplar networks in Figures 3 and 4. The Bifurcation Measure is always highest when both σe and σi

are low (red trace), and the other traces (each representing a scenario where at least one of σe or σi is high) rarely
exceed the default Bifurcation Measure of the low σe and σi case (approximately 3x10−4). This indicates “sudden
transitions” into synchronous dynamics on the magnitude of that seen in Figure 3(c) and Figure 4(c) occur
preferentially in the case of both low σe and σi, even for variations of these parameters. The preserved relationship
between the four scenarios represented by the different traces (low σe and low σi always yielding the highest
bifurcation measure, followed by low σe and high σi, followed then by very similar values in both high σe scenarios) is
further evidence of the robustness of the patterns observed in the results of Figures 3 and 4. Each data point
represents an average over 10 independent simulations.
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Supplementary Figure S7. Bifurcation structures are robust to a range of parameters. To confirm the
robustness of our spiking network dynamics implies similar robustness in our mean-field systems, we performed
bifurcation analyses similar to those in Figure 4 (but with less numerical precision due to computational constraints).
Similarly to Supplementary Figure S6 we varied the parameters individually, and showcase examples at high and low
extremes for each parameter that clearly preserve the unique bifurcation structure seen in Figure 4(c). This is done
for wei in (a-b), wee in (c-d), wie in (e-f), wii in (g-h), and Ii in (i-j).
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