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1 Abstract

2 A myriad of pathological changes associated with epilepsy can be recast as decreases in cell and circuit
3 heterogeneity. We thus propose recontextualizing epileptogenesis as a process where reduction in cellular
4 heterogeneity renders neural circuits less resilient to seizure. By comparing patch clamp recordings
5 from human layer 5 (L5) cortical pyramidal neurons from epileptogenic and non-epileptogenic tissue, we
6 demonstrate significantly decreased biophysical heterogeneity in seizure generating areas. Implemented
7 computationally, this decreased heterogeneity renders model neural circuits prone to sudden transitions
8 into synchronous states with increased firing activity, paralleling ictogenesis. This computational work
9 also explains the surprising finding of significantly decreased excitability in the population activation
10 functions of neurons from epileptogenic tissue. Finally, mathematical analyses reveal a unique bifurcation
1 structure arising only with low heterogeneity and associated with seizure-like dynamics. Taken together,
12 this work provides experimental, computational, and mathematical support for the theory that ictogenic
13 dynamics accompany a reduction in biophysical heterogeneity.

14 Keywords— Epilepsy | Seizure | Neuronal heterogeneity | Computational neuroscience | Neuronal

15 electrophysiology

s Introduction

17 Epilepsy, the most common serious neurological disorder in the world (Reynolds, 2002), is characterized by

18 the brain’s proclivity for seizures, which exhibit highly correlated electrophysiological activity and elevated

v neuronal spiking (Jiruska et al. [2013). While the etiologies that predispose the brain to epilepsy are myriad

w0 (Jasper| [2012)), the dynamics appear to be relatively conserved (Jirsa et al. [2014} Saggio et all [2020),

a1 suggesting a small palette of candidate routes to the seizure state. One potential route to ictogenesis is

» disruption of excitatory/inhibitory balance (EIB) - a possible “final common pathway” for various epileptogenic

s etiologies motivating decades of research into epilepto- and ictogenesis (Dehghani et al., 2016; Ziburkus et al.|

2 2013). A disrupted EIB can impair the resilience of neural circuits to correlated inputs (Renart et al., 2010), a

» paramount characteristic of ictogenesis. In addition to EIB, biophysical heterogeneity also provides resilience

5 to correlated inputs (Mishra & Narayanan| 2019)). Thus, EIB can be considered a synaptic mechanism for

o7 input decorrelation, while biophysical heterogeneity contributes to decorrelation post-synaptically.

2 Cellular heterogeneity is the norm in biological systems (Altschuler & Wu, 2010; Marder & Goaillard,

2 |2006). In the brain, experimental and theoretical work has demonstrated that such heterogeneity expands
s the informational content of neural circuits, in part by reducing correlated neuronal activity (Padmanabhan

s & Urban| 2010; Tripathy et al. [2013). Since heightened levels of firing and firing rate correlations hallmark

2 seizures (Jirsa et al., [2014; Zhang et al. 2011), we hypothesize that epilepsy may be likened, in part, to
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33 pathological reductions in biological heterogeneity which impair decorrelation, and thus circuit resilience
s to information poor (Trevelyan et al., [2013)), high-firing (Jiruska et al., |2013]), and highly-correlated states
55 (Zhang et al.l [2011)).

36 A number of pathological changes accompanying epileptogenesis can be recast as decreases in biological
s heterogeneity. Losses of specific cell-types homogenize neural populations (Cossart et al., |2001; |Cobos et al.
s [2005)), down- or upregulation of ion channels homogenize biophysical properties (Arnold et al.| [2019; |Klaassen
s et al., |2006; Albertson et al., [2011), and synaptic sprouting homogenizes neural inputs (Sutula & Dudek,
w [2007). This recontextualizes epileptogenesis as a process associated with the progressive loss of biophysical
a1 heterogeneity.

2 To explore this hypothesis we combine electrophysiological recordings from human cortical tissue, compu-
.3 tational modeling, and mathematical analysis to detail the existence and consequences of one reduction in
a  biological heterogeneity in epilepsy: the decrease of intrinsic neuronal heterogeneity. We first provide experi-
s mental evidence for decreased biophysical heterogeneity in neurons within brain regions that generate seizures
s (epileptogenic zone) when compared to non-epileptogenic regions. This data constrains an exploration of the
ar  effects of heterogeneity in neural excitability on simulated brain circuits. Using a cortical excitatory-inhibitory
s (E-I) spiking neural network, we show that networks with neuronal heterogeneity mirroring epileptogenic
2 tissue are more vulnerable to sudden shifts from an asynchronous to a synchronous state with clear parallels
s to seizure onset. Networks with neuronal heterogeneity mirroring non-epileptogenic tissue are more resilient
s to such transitions. These differing heterogeneity levels also underlie significant, yet counter-intuitive, differ-
2 ences in neural activation functions (i.e., frequency-current or FI curves) measured inside and outside the
53 epileptogenic zone. Using mean-field analysis, we show that differences in the vulnerability to these sudden
s transitions and activation functions are both consequences of varying neuronal heterogeneities. Viewed
ss  together, our experimental, computational, and mathematical results strongly support the hypothesis that
s biophysical heterogeneity enhances the dynamical resilience of neural networks while explaining how reduced

57 diversity can predispose circuits to seizure-like dynamics.

» Results

» Intrinsic biophysical heterogeneity is reduced in human epileptogenic cortex

e In search of experimental evidence for reduced biophysical heterogeneity in epileptogenic regions, we utilized
e the rare access to live human cortical tissue obtained during resective surgery. Whole-cell current clamp

« recordings characterized the passive and active properties of layer 5 (L5) cortical pyramidal cells from these
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e samples, a cell type we have shown to display notable biophysical heterogeneity (Moradi Chameh et al.|
s 2021). Biophysical properties of neurons from epileptogenic frontal lobe cortex were contrasted to frontal lobe
e neurons of patients with no previous history of seizures undergoing tumor resection. Additionally, we obtained
s recordings from neurons in non-epileptogenic middle temporal gyrus (MTG) from patients with mesial
o7 temporal sclerosis, which is the overlying cortex routinely removed to approach deep temporal structures.
¢ The MTG is a well-characterized part of the human brain, representing a common anatomical region from
so  which non-epileptogenic brain tissue has been studied electrophysiologically and transcriptomically (Hodge
o jet al |2019; [Moradi Chameh et all 2021; Beaulieu-Laroche et al.| [2018; [Kalmbach et al., 2021)), and thus our
n  primary source of non-epileptogenic neurons. We note that each of these studies classify these neurons as
2 indicative of “seemingly normal” human neurons independent of the patients’ epilepsy diagnoses (i.e., a best
1z case control given limitations in obtaining human tissue).

7 Our analysis concentrated on two characterizations of cellular excitability. The first was the distance to
75 threshold (DTT) measured as the difference between the resting membrane potential (RMP) and threshold
7 voltage (see Supplementary Figure S1 for these and other electrophysiological details). Whole-cell recordings
7 revealed less DTT variability (smaller coefficient of variation (CV); p=0.04; two sample coefficient of variation
7 test) in neurons from epileptogenic frontal lobe (n=13, CV=20.3%) as compared to non-epileptogenic MTG
v (n=77, CV=37.1%). A significant difference (smaller CV; p=0.03) was also seen when comparing epileptogenic
s frontal lobe to non-epileptogenic frontal lobe (n=12, CV=40.8%). Meanwhile, the CVs were not significantly
s different when comparing non-epileptogenic MTG and non-epileptogenic frontal lobe (p=0.7). These features
& are more easily appreciated from the Gaussian fits of this data presented in Figure (b); all three data sets
e were deemed normal after passing both the Shapiro-Wilk and D’Agostino & Pearson omnibus normality tests
e with alpha=0.05. These results imply that the decrease in biophysical heterogeneity observed in epileptogenic
e cortex was not confounded by sampling from the temporal versus frontal lobe.

86 While our non-epileptogenic MTG population is larger, this is unavoidable given the availability of human
e cortical tissue and the additional efforts required to confirm the tissue’s epileptogenic nature (see Discussion).
e Statistical tests accounting for unequal population sizes were used. Additionally, the significant difference
s between the standard deviations (SDs) of the DTTs in non-epileptogenic MTG and epileptogenic frontal
w lobe (p=0.03, Cohen’s d effect size=0.5; F-test; SD=7.8 mV in non-epileptogenic MTG and SD=4.4 mV in
o epileptogenic frontal lobe) that is implemented in our models has a “moderate” effect size.

P Our second quantification of cellular excitability was the FI curve (i.e., activation function), which captures
e the firing rate (F) as function of input current (I). The activation function of the population of neurons
o from the epileptogenic zone displayed qualitative and quantitative differences compared to neurons from

s both non-epileptogenic MTG and frontal lobe (Figure (c)) Surprisingly, firing threshold was higher in
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Figure 1. In vitro human tissue recordings reveal significantly different electrophysiological
heterogeneity between epileptogenic and non-epileptogenic populations. (a): The coefficient of variation
(CV) in the distance to threshold (DTT) is significantly larger in both the temporal, non-epileptogenic (i.e.,
non-epileptogenic MTG; n=77) and frontal, tumor (i.e., non-epileptogenic frontal lobe; n=12) populations compared
to the frontal, epileptogenic (i.e., epileptogenic frontal lobe; n=13) population (p=0.04 to temporal, non-epileptogenic,
p=0.03 to frontal, tumor; two sample coefficient of variation test). The CV measure is implemented considering the
significantly reduced mean DTT in frontal, tumor data compared to the other two populations (p=0.01 for both
comparisons; non-parametric Mann-Whitney test). We compare the frontal, epileptogenic and temporal,
non-epileptogenic populations computationally given their similar mean DTT (p=0.7). Plotted bars indicate mean +
standard deviation (SD). (b): An alternative visualization of the DTT distributions via fit Gaussian probability
density functions. All three data sets were deemed normal after passing both the Shapiro-Wilk and D’Agostino &
Pearson omnibus normality test with alpha=0.05. (c): Neurons from non-epileptogenic populations show similar,
linear activation functions (i.e., FI curves). Firing frequency is significantly lower in the frontal, epileptogenic
population for a 200 pA injection compared to the temporal, non-epileptogenic (p=0.009; two-way ANOVA-Tukey’s
multiple comparison test) and frontal, tumor (p=0.03) populations, as well as for a 250 pA injection compared to the
temporal, non-epileptogenic (p=0.002) and frontal, tumor (p=0.02) populations. Plotted bars indicate mean +
standard error measure (SEM). (d): All three populations show a similar spike frequency adaptation ratio (see details
in Methods), with the only significant difference being between the means from the frontal, tumor and temporal,
non-epileptogenic populations (p=0.01; One-Way ANOVA post hoc with Dunn’s multiple comparison test). Plotted
bars indicate mean + SD. (e): Example cell voltage responses following depolarizing current injections (50-250 pA)
from all three populations, as used to calculate the FI curve (colors denote population as in previous panels).

o the epileptogenic zone compared to both non-epileptogenic populations. Additionally, firing rates were

o significantly lower in the epileptogenic zone (p=0.03 when comparing to non-epileptogenic frontal lobe at
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e 200 pA, p=0.02 when comparing to non-epileptogenic frontal lobe at 250 pA, p=0.009 when comparing
% to non-epileptogenic MTG at 200 pA, and p=0.002 when comparing to non-epileptogenic MTG at 250
w pA; two-way ANOVA-Tukey’s multiple comparison test), indicating larger inputs are required to induce
1w high-frequency repetitive firing in individual neurons from epileptogenic tissue. This non-linear behavior is in
102 strong contrast to the activation functions measured in non-epileptogenic zones, characterized by both higher
103 and more linear changes in firing rates. All three populations show a similar spike frequency adaptation ratio
e (Figure d)), including no significant difference between epileptogenic frontal lobe and non-epileptogenic
s MTG (the regions focused on in our modeling), indicating that differences in the FI curve are not due to
s differing adaptation rates. Example firing traces from each population (in response to each of the current steps
wz  used in FI curve generation; note that the spike frequency adaptation ratio is calculated from one of these
ws  steps, chosen as described in the Methods for each individual neuron) are found in Figure[I|(e). This increased
109 excitability of the non-epileptogenic populations appears contradictory to the understanding of seizure as a
1o hyperactive brain state, although some prior studies have hinted at this phenomenon (Colder et al., [1996;
m  Schwartzkroin et al., [1983); additionally, the significantly increased first-spike latency in our epileptogenic
12 population (see Supplementary Figure S1(c)) is additional evidence for the decreased single-cell excitability

u3  of neurons in this population. We further investigate this in the context of biophysical heterogeneity below.

s Spiking E-I neural networks with epileptogenic levels of excitatory heterogeneity

us are more vulnerable to sudden changes in synchrony

e Given these confirmatory experimental results, we next explored the effects of biophysical heterogeneity on
ur  the transition to a synchronous state akin to the transition to seizure (Zhang et al.| [2011)). We developed a
s spiking network model of a cortical microcircuit comprised of recurrently connected excitatory and inhibitory
uo  neurons (see details in Methods), motivated in part by the long history of seizure modeling (Kramer et al.|
120 [2005; |Jirsa et al., [2014) and previous models of decorrelated activity in the cortex (Vogels & Abbott), |2009;
21 [Renart et al., 20105 |Ostojicl 2014). Our choice of model parameters (see details in Methods) positioned the
122 system near a tipping point at which synchronous activity might arise (Jadi & Sejnowski, [2014alb; [Neske
123 et al., [2015; [Rich et al., 2020b)) in order to determine the effects of cellular heterogeneity on this potential
124 transition.

125 We subjected these networks to a slowly linearly increasing external drive to the excitatory cells. This
126 allowed us to observe the dynamics and stability of the asynchronous state, known to be the physiological
127 state of the cortex (Vogels & Abbott, [2009; Renart et al., 20105 |Ostojic, 2014)), by determining how vulnerable

18 the network is to a bifurcation forcing the system into a state of increased synchrony and firing. A biological
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129 analogue for this paradigm would be an examination of whether induced hyper-excitability might drive the
130 onset of seizure-like activity in wvitro, although such perturbations can more easily be performed continuously
w (i.e., our linearly increasing external drive) in silico.

13 To facilitate implementing experimentally-derived heterogeneities in our model, we compared epileptogenic
1 frontal lobe with non-epileptogenic MTG given their similar mean DTT values (p=0.7, non-parametric
13« Mann-Whitney test; mean=21.2 mV for non-epileptogenic MTG and mean=21.7 mV for epileptogenic frontal
s lobe). These populations display significantly different SDs in their DTT values (reported above). Given the
s definition of our neuron model (rheobases sampled from a normal distribution with with mean 0, see details
17 in Methods), we implement differing heterogeneities by sampling rheobase values for our neural populations
s from Gaussian distributions with these varying SDs. In this model, the term rheobase refers to the inflexion
130 point of the model neuron activation function (see Methods). Heterogeneity in this mathematically-defined
1o rheobase is the in silico analogue of heterogeneity in the DTT (i.e., the distribution of rheobases in Figure
w [2f(c-d) corresponds to a horizontal shift to a mean of 0 of the DTT distributions in Figure [[(b)).

122 The rheobase heterogeneity was parameterized by the SD o, for excitatory neurons and o; for inhibitory
13 neurons (see diagrams in Figure (a-b)). This results in diversity in the neurons’ activation functions and
s aligns the variability in their excitabilities with that measured experimentally. We refer to such rheobase
s heterogeneity simply as heterogeneity in the remainder of the text. Models with epileptogenic (high o, = 7.8
us mV, Figure [2(e)) and non-epileptogenic (low 0. = 4.4 mV, Figure (f)) excitatory heterogeneity with
w7 identical, moderate inhibitory heterogeneity (o; = 10.0 mV) exhibit distinct behaviors. With low excitatory
s heterogeneity, a sharp increase in excitatory synchrony associated with increased firing rates is observed. In
19 contrast, when the excitatory heterogeneity was high, both synchrony and firing rates scaled linearly with
10 input amplitude.

151 We further investigated the respective roles of excitatory versus inhibitory heterogeneity in these sudden
152 transitions. With non-epileptogenic excitatory heterogeneity (high o), increases in excitatory synchrony,
13 excitatory firing rates, and inhibitory firing rates were all largely linear regardless of whether o; was low
15 (Figure B(a)) or high (Figure B(b)). Conversely, with excitatory heterogeneity reflective of epileptogenic
155 cortex (low o), synchronous transitions were observed for both low (Figure [3(c)) and high (Figure [3(d))
16 levels of ¢;. This transition is of notably higher amplitude when o; is low, indicative of differing underlying

157 dynamical structures.
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Figure 2. Experimentally observed decreases in heterogeneity amongst excitatory cells promote
ictogenic-like transitions in E-I spiking neural network models. (a-b): Schematic representation of model
spiking E-I networks, with pyramidal neurons represented as triangles and interneurons as circles. Blue neurons
represent non-epileptogenic (i.e. high) levels of heterogeneity (see also the variable neuron sizes) while red neurons
represent epileptogenic (i.e. low) levels of heterogeneity (see also the similar neuron sizes). This color schema is
maintained in the remaining figures. Here, the inhibitory (black neurons) heterogeneity is set at a moderate value
amongst the range studied (o; = 10.0 mV), while . = 7.8 mV in panel (a) and 0. = 4.4 mV in panel (b). (c-d):
Visualizations of the distribution of model rheobases, with the solid curve (red or blue for excitatory neurons, black
for inhibitory neurons) illustrating the Gaussian function and the corresponding histogram illustrating the example
random distribution underlying the simulations in this figure. (e-f): Example simulations with a linearly increasing
excitatory drive. Background: raster plot of network activity, with each circle representing the firing of an action
potential of the associated neuron (excitatory neurons below horizontal line, inhibitory neurons above). Foreground:
quantifications of network activity taken over 100 ms sliding time windows, with the excitatory synchrony quantified
by the Synchrony Measure in blue or red (left axis), as well as excitatory (black) and inhibitory (grey) population
firing rates (right axis). Bottom: drive (I(t)) to the excitatory population.

Dynamical differences in networks with varying levels of heterogeneity are ex-

plained by their distinct mathematical structures

To gain deeper insight into the effect of heterogeneity at a potential transition to synchrony, we derived
and analyzed mathematically the mean-field equations associated with our network model (see Methods).
Specifically, we calculated and classified the fixed points of mean-field equations for different values of o,
and o; for the range of drives studied in the spiking networks. The fixed point(s) of the mean-field (for
the excitatory population activity, U.) are plotted in the second row of each panel in Figure These
values correspond to population averages of the (unitless) membrane potential analogue taken across the
individual units in our spiking networks (u;). We then performed linear stability analysis for those fixed

points, extracting eigenvalues which determine the fixed points’ stability, and how it might change as input
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Figure 3. Effects of varied inhibitory heterogeneity on sudden transitions into synchrony in E-I
spiking neural network models. Schematics and single simulation visualizations following the conventions of
Figure [2| (with inhibitory heterogeneity reflected by darker shaded blue and red neurons), now shown for four
combinations of excitatory and inhibitory heterogeneities: oo = 7.8 mV and o; = 2.5 mV in panel (a), . = 7.8 mV
and o; = 16.75 mV in panel (b), 0c = 4.4 mV and o; = 2.5 mV in panel (c), and o = 4.4 mV and o; = 16.75 mV in
panel (d). Relative sizes of o. and o; represent the relative heterogeneity levels. Transitions into high levels of
excitatory synchrony are seen in panel (c) and (d), with the transition in panel (¢) yielding a notably higher level of
synchrony (highlighted by the grey box) and occurring much more abruptly. Meanwhile, changes in the dynamics of
panels (a) and (b) are largely linear, with the excitatory synchrony consistently lower when both excitatory and
inhibitory heterogeneities are at their highest in panel (b).

drive is varied. The dampening rate represents the speed at which the system is either repelled from or returns
to its fixed point(s) and thus classifies their stability (i.e., the real components of eigenvalues associated with
each fixed point). The dampening rate is plotted in the row below the fixed points, followed by the frequency
associated with fixed points with imaginary eigenvalues (i.e., the imaginary components of the eigenvalues).

These mean-field analyses confirm that both excitatory and inhibitory heterogeneity have notable impacts
on changes in network dynamics analogous to seizure-onset. In the top row of each panel in Figure [i] we
present quantifications of our spiking network dynamics as in Figure |3 but averaged over 100 independent
simulations. In the presence of high heterogeneity (whenever o, and/or o; are large, i.e., Figure [d(a), (b),
and (d)), increased drive results in a smooth and approximately linear increase in both mean activity and
synchrony. The mean-field analyses of the associated systems reveal a single fixed point, whose value increases
monotonically with drive. Oscillation frequency is low, indicative of slow-wave activity.

The subtle differences in the spiking network dynamics in these scenarios are reflected in differences in the

mean-field analyses. In Figure [f(d) a supercritical Hopf bifurcation (Chow & Hale, [2012) at a high level of

drive (the stable fixed point becomes unstable, giving rise to a stable limit cycle) is associated with a steeper

increase in synchrony. The reverse bifurcation is observed in Figure (a) (the unstable fixed point becomes
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13 stable) and is associated with a slower increase in synchrony, with the synchrony levels being preserved
18« following this bifurcation due to the noise in the spiking networks allowing for the presence of quasi-cycles
15 (Boland et all |2008). Meanwhile, the fixed point in Figure b) is always stable, reflective of the more
16 constant but shallow increase in synchrony in the spiking network.

187 In contrast to these cases, spiking networks with low heterogeneity (low o. and o;, Figure (c)) exhibit
188 sudden increases in mean activity and synchrony. The associated mean-field system displays multistability: it
189 possesses multiple fixed points. As the input drive increases, two of these fixed points coalesce and disappear
10 via a saddle-node bifurcation (Chow & Halel 2012). The system’s mean activity is thus suddenly drawn
w1 towards a preexisting large-amplitude limit cycle. This transition occurs at a drive corresponding with the
12 sudden increase in synchrony and mean activity seen in the spiking network. In the mean-field system, the
103 frequency of resulting oscillations are faster compared to the high heterogeneity scenarios, further emphasizing
14 the uniqueness of the dynamical system with low heterogeneity.

195 We note that the more notable inter-trial variability in Figure [4{(d) (as illustrated by the fainter & SD
106 curves) results from the variable (yet gradual) onset of increased synchrony, in contrast to the transition in
17 Figure (c) which reliably occurs at a specific drive. The different timings of the onset of synchrony in each
s independent simulation yield oscillations at different relative phases, which explains why oscillations are not
100 observed in our averaged firing rate measures displayed in Figure [4| (notably, such oscillations are subtle even
20 in the single simulation visualizations of Figure 3| given the 100 ms sliding time window); rather, the presence
21 of oscillatory activity is demarcated by a notable increase in the mean Synchrony Measure.

202 We also emphasize that, in our mathematical analyses, we focus on characterizing the system’s fixed
203 points and inferring from them the presence of oscillatory behavior associated with limit cycles. Directly
204 identifying such limit cycles is a mathematically arduous process (Savov & Todorov}, 2000) unnecessary for
205 these analyses, where our primary interest is differentiating the mathematical structure of these four exemplar
26 networks. However, considering the behavior of our spiking networks remains “bounded” (i.e., consistent
207 oscillatory activity is associated with unstable fixed points with imaginary eigenvalues; see Supplementary
28 Figure S2(b)), we can confidently infer that such limit cycles exist, as is typical when a bifurcation yields an
200 unstable fixed point.

210 To facilitate the comparison of our spiking networks with our mean-field calculations, we developed a
au Bifurcation Measure (see Methods) quantifying the tendency for sudden (but persistent) changes in the
a2 activity of the spiking network. Higher values of this measure indicate the presence of a more abrupt increase
213 in the quantification of interest as the drive increases. Given the more subtle qualitative difference in the
2e firing rates in our spiking networks, we applied the Bifurcation Measure to the excitatory firing rate (B.) for

a5 the four combinations of o, and o; examined in Figure[dl This revealed more sudden changes with low o, and

10
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26 0; (B.=0.1050) as opposed to any other scenario (high o, low ¢;, B,=0.0416; high o., high ¢;, B.=0.0148;
v low o¢, high 0;, B.=0.0333) where the transition is smoother. This analysis indicates that the dynamical
xs  transition present in Figure (c) is not only unique in the magnitude of the synchronous onset, but also in
a0 an associated sudden increase in firing rates.

220 Since the seizure state is typified both by increased synchrony and firing rates (Jiruska et al.l 2013} Zhang
an et al., [2011), this analysis confirms that the sharp transition in these quantities only observed in spiking
2 models with low heterogeneity is driven by a saddle-node bifurcation (Figure [f(c)). These results echo other
23 seizure modeling studies showcasing that ictogenic transitions can arise driven by mathematical bifurcations,
24 and specifically the observation that saddle-node bifurcations underlie abrupt seizure-onset dynamics (Kramer
25 et al., 2005; [Jirsa et al.l |2014; [Saggio et al.l [2020]). As a corollary, high heterogeneity improves network
26 resilience to sudden changes in synchrony by preventing multistability and fostering gradual changes in

27 network firing rate and oscillatory behavior.

» Asymmetric effects of excitatory and inhibitory heterogeneity

29 Figure [] highlights distinct effects of excitatory versus inhibitory heterogeneity on the onset of synchrony
20 in spiking networks and the structure of mean-field systems (see the differences between Figure a) and
a (c)). To clarify these effects we explored a larger parameter space of o, and o;, as shown in Supplementary
2 Figure S2. For each heterogeneity combination we applied the Bifurcation Measure to excitatory synchrony
23 (B, hereafter referred to simply as the Bifurcation Measure; see details in Methods), which quantifies the
2 abruptness of increased network synchrony in response to a changing network drive. This exploration confirms
25 the asymmetric effect of excita<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>