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Abstract
Understanding how cells change their identity and behaviour in living systems is an important

question in many fields of biology. The problem of inferring cell trajectories from single-cell measure-
ments has been a major topic in the single-cell analysis community, with different methods developed
for equilibrium and non-equilibrium systems (e.g. haematopoeisis vs. embryonic development). We
show that optimal transport analysis, a technique originally designed for analysing time-courses, may
also be applied to infer cellular trajectories from a single snapshot of a population in equilibrium.
Therefore optimal transport provides a unified approach to inferring trajectories, applicable to both
stationary and non-stationary systems. Our method, StationaryOT, is mathematically motivated
in a natural way from the hypothesis of a Waddington’s epigenetic landscape. We implemented
StationaryOT as a software package and demonstrate its efficacy when applied to simulated data as
well as single-cell data from Arabidopsis thaliana root development.

1 Introduction
1.1 Background
Biological processes at the cellular level are driven by stochastic dynamics – cellular populations evolve
through time, driven by regulation at the cellular and tissue level and intrinsic noise arising from molec-
ular and thermal fluctuations. In the context of developmental biology, these processes have been classi-
cally described by Waddington’s metaphor of an epigenetic landscape [39], in which differentiating cells
can be thought of as evolving from regions of high differentiation potential into valleys corresponding
to differentiated cell types. In the last decade, this metaphor has evolved to be much more quantita-
tive [38, 29]. Modern high-throughput assays such as single-cell RNA sequencing (scRNA-seq) [15, 23],
scATAC-seq [4] and CyTOF [24] now allow the molecular states of thousands of single cells to be pro-
filed in a single experiment. With the ability to make these precision measurements of cell state, new
challenges emerge in analysing these new types of high-dimensional data.

Single-cell measurements are destructive in nature, so the state of any individual cell cannot be
observed at more than one instant. Therefore, information about the trajectories taken by cells over
time is lost and must instead be inferred from data. A large collection of trajectory inference methods
have been developed in recent years [38] to address this issue. These methods broadly fall into two
classes [20]: (1) methods that deal with a single stationary snapshot observed from a cellular population
at equilibrium [42, 37, 31], and (2) methods that deal with a time series of snapshots from an evolving
population [29, 36, 20].

Time-series experiments are a natural approach for observing biological systems where cellular pop-
ulations undergo dramatic, synchronous changes, such as in embryogenesis or stem-cell reprogramming
[33, 43, 29, 40, 21]. Trajectory inference methods for time series data primarily seek to infer cellular
transition events from snapshots of one timepoint to the next. On the other hand, development occurs
continuously and asynchronously in many biological systems such as haematopoiesis and spermatogene-
sis. These systems maintain a stationary population profile across various cell types and can be thought
of as being in dynamic equilibrium (i.e. steady state). Snapshots therefore capture cells from across the
full progression of cell states from undifferentiated to fully differentiated cells. Trajectory inference for
snapshots sampled from these steady-state systems seek to (a) infer the progression of cells in “devel-
opmental time” (commonly referred to as pseudotime) [37, 13], and (b) uncover bifurcation events or
“cellular decisions” occurring in the differentiation process [42, 41].

To date, the methods developed for these two different paradigms have remained largely distinct, with
time-course methods generally sharing little in common with methods designed for stationary systems.
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In this paper we show that optimal transport analysis, a technique originally designed for analysing
time-courses [29], may also be applied to infer cellular trajectories from a single snapshot of a population
in equilibrium. Therefore, optimal transport (OT) provides a unified approach to inferring trajectories,
applicable to both stationary and non-stationary systems.

Our approach is theoretically justified when the trajectories are driven by a potential landscape, as
in [41]. Moreover, it also allows for extensions to incorporate additional information such as estimates
of the vector field [16, 1]. When such information is available, we can recover certain aspects of non-
conservative dynamics such as oscillations.

1.2 Modelling assumptions
Development as drift-diffusion with birth-death We model cells as points in a space X , which
we take to be a representation of the space of possible cellular molecular states (for instance, in the case
of scRNA-seq data, X represents the space of gene expression profiles). Typically, we will take X = Rd.
We regard cells as evolving following a drift-diffusion process [41, 18, 3] described by the SDE

dXt = v(Xt)dt+ σ dBt. (1)

where Xt ∈ X is the state of a cell at time t, v is a vector field, the diffusivity σ2 captures the noise
level and dBt denotes the increments of a Brownian motion. In addition, cells are subject to division
and death events at exponential rates β(x) and δ(x) respectively, which may vary in spatial location in
X . That is, in an infinitesimal time interval dt, a cell Xt may divide with probability β(Xt) dt or die
with probability δ(Xt) dt.

Population-level model At the population level, the drift-diffusion process with birth and death can
be described by a population balance partial differential equation (PDE) [41, 9]

∂tρ(x, t) = −∇ · (v(x)ρ(x, t)) + σ2

2
∇2ρ(x, t) +R(x)ρ(x, t), (2)

Where ρ(x, t) is a continuous population density, and R is a spatially varying flux rate defined as R(x) =
β(x)− δ(x) that captures creation and destruction of cells due to birth and death, as well as entry and
exit from the system.

Sources and sinks In most developmental systems, cells eventually exit the observed system once they
have fully differentiated. For instance, terminally differentiated immune cells leave the haematopoietic
stem cell niche. This can be incorporated into the mathematical model by introducing a set of “sink
regions” X∅ ⊂ X where cells are removed at some rate once they enter [41]. Mathematically, this can
be treated in an identical way to cell death, and we incorporate it into the death rate δ(x) by setting
δ(x) > 0 whenever x ∈ X∅. This can then be interpreted that in time dt, a cell Xt located in the sink
region exits with probability δ(Xt) dt.

Observation model As we discussed in Section 1.1, many biological processes exist approximately in
an equilibrium or steady state. In this setting, a snapshot at a single instant in time will capture all
stages of cellular development in the system [41, 38], and relative proportions of various cell types remain
unchanged over time. Mathematically at the population level, this assumption amounts to demanding
that ∂tρ(x, t) = 0 in (2), that is, the population level cell density does not change. We will write ρeq(x) for
this steady-state solution. Experimental observation of such a system is therefore equivalent to sampling
a collection of N cellular states from the population, i.e.

X1, . . . , XN ∼ ρeq.

We may describe this finite sample as an empirical distribution ρ̂eq supported on the discrete space
X = {Xi}Ni=1,

ρ̂eq =
1

N

N∑
i=1

δXi . (3)
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1.3 Inference goal
Laws on paths The process introduced in Section 1.2 is a superposition of a birth-death process and a
drift-diffusion process (1). The drift-diffusion component (1) of this process governs the state dynamics
of individual cells, and can be related directly to the concept of a Waddington’s potential landscape.
Therefore, we seek to learn something about the drift-diffusion dynamics from observed snapshot data.
In the framework of stochastic differential equations which we employ, the process (1) (equipped also
with an initial condition) can be thought of as inducing a probability distribution over the space of
possible trajectories of cells, which we take to be the set of continuous paths in X parameterised by time,
i.e. Ω = C([0, 1],X ). As we also argue in [18], this law on paths is the natural object we seek to estimate
since it directly encodes the trajectories that cells may follow. Furthermore, the law on paths can be
obtained as the solution to a convex problem, so we do not have issues of multiple local minima which
may be the case if we attempt to recover the drift field v or potential landscape Ψ directly.

Identifiability For the sake of making inferences about the law on paths induced by (1), we must
necessarily have estimates of the flux rate R(x) and the noise level σ2. As noted by [41], when only a
single snapshot (i.e. ρ̂eq) is available, in general more than one drift field v can give rise to the same
steady-state density profile ρeq. To ensure uniqueness of the solution, we must restrict to the case where
the drift is given by the gradient of a scalar potential [41, 18], i.e. v = −∇Ψ.

1.4 Related work
Weinreb et al. [41] previously investigated this problem and noted that the drift was identifiable only
in gradient-driven systems. In addition, the authors presented population balance analysis (PBA), a
methodological framework for estimating the potential Ψ based on spectral graph theory. Although our
approach and that of [41] share a problem formulation and may indeed perform similarly, we note that
the theoretical foundations of the two approaches are fundamentally distinct – our method is based on
solving a convex optimisation problem for the transition probabilities, whilst PBA solves a system of
linear equations for the potential. As an optimisation-based method, optimal transport also allows for
incorporation of additional information such as velocity estimates.

Optimal transportation (OT) theory is a mathematical area of study concerned with optimally cou-
pling probability distributions [25] which has recently found diverse applications in statistics, machine
learning and computational geometry. Optimal transport has been applied to the problem of tracking
particle ensembles [12, 6], and to single-cell trajectory inference in the setting of time-series population
snapshots in [29]. Subsequent work has extended both methodology and theory in this direction, e.g.
[35, 18, 10, 27, 7]. However, these works focus on the setting where multiple snapshots are available over
a series of time-points. We show in this work that optimal transport can be applied in a natural way
to the case of a single stationary snapshot, further establishing optimal transport as a widely applicable
and robust framework for single-cell trajectory inference.

2 Results
Overview of results To motivate the mathematical framework for our method, we will consider first
the population-level setting of infinitely many cells (Section 2.1). We then reduce this to the discrete
setting where we deal with finite samples drawn from the steady state population (Section 2.3). We
name our method StationaryOT and implement it as a software package (see Software availability below
the Discussion). In Sections 2.6 and 2.7 we apply the method to simulated datasets sampled from drift-
diffusion processes in the setting of both potential-driven and non-conservative vector fields. In Section
2.8 we demonstrate an application to a stationary snapshot scRNA-seq dataset in Arabidopsis thaliana
root tip development. Finally in Section 2.9 we discuss approaches for applying StationaryOT to very
large datasets, showing that our method can scale to 1.1× 105 cells with runtimes of ∼1 hour.

Throughout this paper, we consider using either entropy-regularised (Section 2.2) or quadratically-
regularised optimal transport (Section 2.4) for the main step of the StationaryOT method. Although
entropy-regularised optimal transport is the one that arises naturally from the theoretical motivation,
we demonstrate in practice that using the quadratic regularisation generally leads to results that are
more robust and interpretable, as well as being more computationally favourable thanks to sparsity of
the recovered transition laws, without any substantial sacrifices to accuracy.
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2.1 Methodology: population level
At the steady state of the process (2), the population density profile is constant, i.e. ρ(·, t) = ρeq.
However, at the microscopic level, individual cells Xt continue to undergo drift-diffusion as described
by (1), as well as birth-death. Thus, observation of population profiles in the stationary setting do not
contain information about the dynamics of individual particles, unlike the non-stationary setting of time
series measurements [29, 18].

Suppose that we are able to observe a cell Xt from the stationary population at time t, and again at
time t+∆t (conditioned on not dividing, dying or exiting from the system in that time interval). Then
the joint distribution (Xt, Xt+∆t) would capture information about all possible transitions in cell state
over a time interval ∆t. The system is at a steady state and the dynamics are Markov, so knowledge of
the time-∆t evolution of the system captures the full law on paths that results from the drift-diffusion
component (1), at least at times {k∆t, k = 0, 1, . . .} by simply composing Markov transitions.

Since we may access densities but not track individual particles, we cannot measure the joint distri-
bution (Xt, Xt+∆t) directly. Therefore, we seek to infer it from observation of a single snapshot ρeq and
information about the birth-death rates as well as noise level. In the underlying process both birth-death
and drift-diffusion take place simultaneously, leading to complications in directly reasoning with prob-
ability laws. In order to simplify this, we approximate the evolution of the process by introducing an
artificial separation of the effects of growth and transport, inspired by operator splitting methods from
numerical analysis [14]. That is, we split the linear equation (2) into equations corresponding to growth
and transport in the densities ρG and ρT respectively:

∂ρG
∂t

= R(x)ρG(x, t), (4)

∂ρT
∂t

= −∇ · (v(x)ρT (x, t)) +
σ2

2
∇2ρT (x, t) (5)

where ρG(·, 0) = ρeq(·) and ρT (·, 0) = ρG(·,∆t). (6)

Then ρT (·,∆t) is a splitting approximation of the true steady-state solution ρ(·,∆t) = ρeq(·) of (2), and
the two coincide in the limit ∆t → 0 with approximation error of order O(∆t2) [14, Section 1.3], i.e.

ρT (x,∆t) = ρ(x,∆t) +O(∆t2), x ∈ X . (7)

We provide a conceptual illustration of this scheme in Figure 1. The solution of the growth step (4) can
be determined to be exactly

ρG(x,∆t) = ρ(x, 0)e∆tR(x) = ρ(x, 0)g(x)∆t.

ρ(·, 0) = ρeq

ρG(·,∆t)

ρT (·,∆t) = ρeq +O(∆t2)

A. ∂tρG = R(x)ρG(x, t), ρG(·, 0) = ρ(·, 0)
B. ∂tρT = −∇ · (v(x)ρT (x, t)) +

1
2
σ2

∇
2ρT (x, t), ρT (·, 0) = ρG(·,∆t)

Growth: A

Transport: B

X

X

X

Figure 1: Illustration of the splitting scheme for decomposing (2) into (4), (5).

It therefore remains for us to examine the effects due to transport in the equation (5). Since the overall
system (2) is assumed to be at steady state, composing the effects of growth and transport should yield
the initial density ρ(·, 0) = ρeq(·) up to the O(∆t2) error introduced by the splitting approximation. For
brevity, let us denote µ0 = ρT (·, 0) and µ1 = ρT (·,∆t) to be the distributions before and after transport.
Under the splitting approximation, our problem of estimating the joint law (Xt, Xt+∆t) conditional on no
birth or death events amounts to finding an appropriate coupling γ∆t of (µ0, µ1), i.e. a joint distribution
γ∆t on X 2 whose marginals agree with µ0 and µ1.
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2.2 Inference by optimal transport

x

Figure 2: Examples of possible couplings of two prescribed distributions (µ, ν)

By the previous construction, we seek to couple the distributions (µ0, µ1) in a way that approximates
the “true” underlying transition law (Xt, Xt+∆t). To be concise, we write

Π(µ0, µ1) =

{
π ∈ M+(X × X ) :

∫
π(dx, ·) = µ1,

∫
π(·, dy) = µ0

}
to denote the set of possible couplings between µ0 and µ1. As we show visually in Figure 2, for a set
of prescribed marginals there are in general many valid couplings. Indeed, for any µ, ν we may always
construct the independent coupling, µ⊗ν. Therefore, additional assumptions on the nature of the process
driving the evolution from µ0 to µ1 are needed if we desire a unique “best” coupling.

From the drift-diffusion splitting step (5), we know that the evolution from µ0 to µ1 is described by a
drift-diffusion equation (with no source term). At the level of individual particles, this is equivalent to the
stochastic differential equation (1). We note further that for ∆t small, the effect of the drift component
is O(∆t) and is therefore drowned out by the effect of the diffusion component which is O(

√
∆t). Thus,

for small ∆t, the setting which we approach is that of a diffusive evolution in time ∆t from µ0 to µ1,
and the most likely coupling γ∆t is unique and is characterised by an entropy minimisation principle
that is well known in the literature of optimal transport and large deviation theory [19]. Specifically, the
optimal coupling γ∆t is the minimiser of the so-called Schrödinger problem:

min
γ∆t∈Π(µ0,µ1)

H(γ∆t|Kσ2∆t). (8)

In the above, H(α|β) =
∫
dα log

(
dα
dβ

)
is the relative entropy between distributions, and Kσ2∆t is the

kernel

Kσ2∆t(x, y) = exp

(
− 1

2σ2∆t
∥x− y∥2

)
,

corresponding to the time-∆t evolution of a Brownian motion in X with diffusivity σ2.
The problem (8) is also known in the optimal transport literature as entropy-regularised optimal

transport [25], where the objective to be minimised is often written in the alternative form

min
γ∆t∈Π(µ0,µ1)

∫
C(x, y)dγ∆t(x, y) + εH(γ∆t|Leb) (9)
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where C(x, y) = 1
2∥x−y∥2 is a quadratic cost function, ε = σ2∆t is the entropy regularisation parameter

and Leb is the reference Lebesgue measure on X . Written in this way, (9) can be understood as a least
action principle, where the optimal γ∆t is roughly the one that minimises the expected action for moving
mass from µ0 to µ1, if the action is proportional to the squared distance moved. This can be noted from
Figure 2, where the coupling given by the solution of the Schrödinger problem results in trajectories that
bifurcate simply. On the other hand for the other couplings, we get “crossing” of trajectories which result
in a higher energetic cost. In the limiting case of vanishing noise where ε → 0, the entropy-regularised
optimal transport problem becomes what is known as the Monge-Kantorovich problem, or unregularised
optimal transport [25].

We conclude that the coupling γ∆t recovered by solving the entropy minimisation problem (8) for
couplings in Π(µ0, µ1) is an approximation to the true evolution of the process (1), corresponding to the
drift-diffusion step (5) of the splitting scheme.

2.3 Methodology: finite samples
Formulation of the discrete problem In practice, we have access to an empirical distribution ρ̂eq
(3) supported on the discrete set X that can be thought of as approximating the true continuous density
ρeq discussed previously. We also assume for each observed cell xi that we have an estimate of the
corresponding flux rate R̂i = R(xi) = β(xi) − δ(xi). In a practical biological setting, cell states which
are expected to divide or die should therefore have R̂i > 0 or R̂i < 0 respectively, and those states
which do neither should have R̂i = 0. In addition to division and death, terminally differentiated cells
expected to shortly exit the system may be regarded as representing sinks, and therefore assigned R̂i < 0.
The numerical values for flux rates may be estimated from cell-cycle signatures [29] or prior biological
knowledge [41].

In this discrete setting, the growth step (4) is local in space and thus its analogue can be directly
written for a chosen small value of ∆t to obtain µ0:

µ0(xi) = ρ̂eq(xi)e
∆tR̂i = ρ̂eq(xi)(1 + ∆tR̂i +O(∆t2)). (10)

Next, the effect of the transport step (5) is to rearrange mass via diffusion and drift so that we return to
the steady state distribution ρ̂eq. We cannot take µ1 to be ρ̂eq exactly, since a single step of the splitting
scheme introduced in (4) and (5) is only accurate up to O(∆t2). Therefore, a straightforward application
of the growth step (10) will result in a slight change in the total mass of the system. Additionally, in
practice we have only estimates R̂i of the true flux rates, further contributing to this effect. Consequently,
we must instead re-normalise µ1 so that it has the same mass as µ0:

µ1(xi) ∝ ρ̂eq. (11)

With µ0 and µ1 constructed in this way, we may compute the solution to the discrete Schrödinger
problem (8).

Choice of ε and ∆t The key parameters for the scheme we describe are ∆t, the time step introduced
in the growth splitting, and the regularisation parameter ε for entropy-regularised optimal transport. In
the theoretical framework of the Schrödinger problem, these parameters have a proportional relationship
ε = σ2∆t. The accuracy of the scheme should improve in the limit as ε → 0,∆t → 0 and ε = σ2∆t,
since the splitting approximation becomes exact. However, in practice where we have discrete samples
we find that allowing ε and ∆t to deviate from this relationship often leads to better results.

In the discrete setting, a key limitation is the value of ε, which controls the level of diffusion in the
reference process in the Schrödinger problem, and consequently influences the level of diffusion in the
inferred process. In practice when we are dealing with a limited number of samples in a potentially
high-dimensional space, taking ε too small may lead to an ill-conditioned problem. The reason for this is
that the distance between points in the set of samples X may be quite large compared to ε = σ2∆t. That
is, exp(−∥x−y∥2

2σ2∆t ) may be exceedingly small, resulting in a reference process that mixes extremely slowly.
On the other hand, if we pick a reasonably sized ε, strictly adhering to the proportionality relationship
may mean that the corresponding ∆t is too large for the splitting approximation to be a good one. In
practice, we have often found that it is helpful to take ∆t to be slightly smaller (and consequently ε
slightly larger) than what is expected in theory. We discuss this choice in practice further in Section 2.6.
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2.4 Quadratically regularised optimal transport
The entropy-regularised optimal transport problem (9) is well known for its probabilistic interpretation
and the existence of an efficient solution scheme by matrix scaling [25]. However, the use of entropic
regularisation results in a transport plan that necessarily has a dense support [2]. Recent contributions
to the optimal transport literature [22, 2] have highlighted that alternative choices of the regulariser may
yield other smooth approximations of the Monge-Kantorovich problem which exhibit desirable properties.
In particular, using a quadratic (L2) regulariser to form the problem

min
γ∈Π(µ0,µ1)

∫
C(x, y)dγ(x, y) + ε∥γ∥22 (12)

gives rise to what is known as the quadratically regularised optimal transport problem. As noted by [22, 2],
quadratically regularised OT has the property that transport plans are generally sparse in practice (in the
discrete case, transition probabilities are nonzero only on a sparse graph that spans the data), making it
a favourable choice for interpretability of transport plans as well as computational efficiency (see Section
2.9). In addition, in [2] the authors remark that the quadratically regularised problem may be less prone
to issues of numerical stability.

In practice, we may employ a quadratic regularisation in our scheme by substituting the solution of
(12) for the optimal coupling γ∆t instead of the entropy-regularised problem (8). As we demonstrate in
Sections 2.6 and 2.7, we find evidence that quadratic regularisation is more robust to parameter choices
and noise compared to entropy regularisation.

2.5 Extension to non-potential vector fields
Estimation of dynamics in the case where the underlying drift v does not arise from a potential gradient
requires additional information to be available, such as potentially noisy or partial estimates of the
velocity of cells [16, 1, 17]. Since at its core our method is based on solving a convex optimisation problem,
additional information such as velocity estimates can be incorporated into our estimation procedure in
a straightforward manner by modifying the cost matrix C. Indeed, suppose for each observed cell xi we
also have an estimate of its velocity vi. In the setting of velocity estimates derived from RNA velocity,
the orientation of velocity estimates is more biologically informative than the magnitude [35], and it is
therefore natural to incorporate velocity information in terms of cosine similarities [1, 17]. In our case,
we consider an overall cost function that is a linear combination of the standard squared Euclidean cost
Ceuc and a matrix of cosine similarities Cvelo, i.e.

C = λ1Ceuc + λ2Cvelo,

where

(Cvelo)ij =
1

2

(
1− ⟨xj − xi,vi⟩

∥xj − xi∥∥vi∥

)
. (13)

In practice, the weights λ1, λ2 would depend on the relative scales of Ceuc and Cvelo, as well as any cost
normalisation that is applied. We discuss the details of this in a simulated example in Section 2.7.

2.6 Simulated data – potential driven dynamics
Simulation setup and parameters We first consider a tri-stable system (1) in X = R10, with drift
term v taken to be the negative gradient of the potential

Ψ(x) = 2.5∥x− z0∥2∥x− z1∥2∥x− z2∥2, (14)

with wells {z0, z1, z2} located at

z0 = 1.05 [cos(π/6), sin(π/6), 0, . . . , 0]
⊤

z1 = 1.05 [cos(5π/6), sin(5π/6), 0, . . . , 0]
⊤
,

z1 = 1.05 [cos(π/2), sin(π/2), 0, . . . , 0]
⊤
.

We illustrate this potential landscape in Figure 3(a) in the first two dimensions of X . Simulated particles
are initially isotropically distributed around the origin following the law X0 ∼ 0.01N (0, I) at t = 0, where
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N (0, I) denotes the standard normal distribution in R10 with covariance I. Particles then evolve following
drift-diffusion dynamics with σ2 = 0.5. Whenever a particle falls in the vicinity of any of the potential
wells {z0, z1, z2}, it is removed with exponential rate 5. That is, in each time step dt, a particle located
in a sink region is removed with probability 5 dt. We defined the sink region for each potential well zi to
be a ball of radius r = 0.25 centred at zi.
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Figure 3: (a) Illustration of the potential Ψ in the first two dimensions of the space X . (b) Examples of
simulated particle trajectories X(i)

t following the drift-diffusion process. (c) Snapshot particles ρ̂eq shown
in the first two dimensions of X , with the value of R indicated. Source and sink regions correspond to
R > 0 and R < 0 respectively.

Exact sampling of snapshots from the steady state distribution ρeq of (2) would require the solution
of a high-dimensional PDE and is therefore computationally difficult. Instead, we obtain an approximate
snapshot of the system at its steady state by simulating N = 250 trajectories from start to finish using
the Euler-Maruyama method

Xt+τ = Xt − τ∇Ψ(Xt) + σ
√
τN (0, 1). (15)

For our simulations we employed a time step τ = 1 × 10−3, and from each trajectory {X(i)
t : 0 ≤ t ≤

T
(i)
final}, 1 ≤ i ≤ N we sampled a single particle state chosen at a random time chosen uniformly on

[0, T
(i)
final] to form the snapshot data ρ̂eq. This scheme was also the one used for obtaining snapshots in

[41].
Particles xi located in the sink regions were labelled as ‘sink’ sites and assigned flux rates Ri so

that the average sink flux rate was −5 and total flux rate for each well {z0, z1, z2} matched the ground
truth in proportion. Particles located in a ball of radius 0.25 of the origin were labelled as ‘source’ sites,
corresponding to locations xi with Ri > 0. Since we deal with finite samples, we assigned Ri uniformly
on source sites such that the equilibrium condition

∑
i Ri = 0 was satisfied.

We display some example trajectories in Figure 3(b), and illustrate the snapshot data ρ̂eq in Figure
3(c), where the values of Ri at source and sink sites are shown by colour.

Inferring dynamics using StationaryOT To apply StationaryOT, we chose a time step ∆t = 25τ =
2.5×10−2, noting that this is small compared to the average particle lifespan of 0.934 in this simulation.
We solved the StationaryOT problem using entropy-regularised optimal transport as described in Section
2.3, using a range of regularisation parameter values ε in 10−2.5−101. As we discuss in more detail later,
we found that ε = 0.026 best matched the ground truth in terms of average fate probability correlation
across the three lineages. For this choice of ε we computed a forward transition matrix P from the
optimal transport coupling γ∆t by row-normalising:

Pij =
(γ∆t)ij∑
j(γ∆t)ij

.

The matrix P therefore describes a time-∆t evolution of probability densities on the discrete set X . For
an initial distribution π0 supported on X , we can compute the evolution {π0P

k, k = 0, 1, 2, . . .} over steps
of length ∆t, which we take to be an estimate of the dynamics of the underlying drift-diffusion process.
In Figure 4 we show the inferred process for k = 1, 5, 10, 20 where we have taken π0 to be uniform on
the source sites.
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Figure 4: Evolution of the dynamics recovered by StationaryOT.

From the transition probabilities Pij we may compute fate probabilities for each of the three lineages
defined by the potential wells {z0, z1, z2}. (These are absorption probabilities of the Markov chain P
– see Section A for details). We summarise these fate probabilities in Figure 5, and find that the
correspondence between inferred and ground truth fate probabilities measured in terms of the Pearson
correlation is high (r ≈ 0.99). As another measure of the accuracy of the estimated dynamics, we
compute the mean-first passage time (MFPT) of each sampled point xj . This is the expected time at
which a Markov chain initialised at a randomly chosen source location xi reaches xj :

MFPT(xj) = Exi∼sources MFPT(xj |xi),

where MFPT(xj |xi) denotes the conditional MFPT for a particle starting at xi to hit state xj . Comparing
the MFPT estimates to the ground truth MFPT in Figure 6(a), we find that the correspondence is high
(r > 0.9).

1.0 0.5 0.0 0.5 1.0
dim 1

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

di
m

 2

z0z1

z2

Inferred fates

0.0 0.2 0.4 0.6 0.8 1.0
Estimated fate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 fa
te

r = 0.992
Well z0

0.0 0.2 0.4 0.6 0.8 1.0
Estimated fate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 fa
te

r = 0.989
Well z1

0.0 0.2 0.4 0.6 0.8 1.0
Estimated fate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 fa
te

r = 0.988
Well z2

Figure 5: Visualisation of estimated fate probabilities towards each of the wells {z0, z1, z2} on the snap-
shot coordinates, as well as correlation with ground truth fate probabilities.
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Figure 6: (a) Comparison of estimated MFPT to ground-truth MFPT. (b) Comparison of recovered
velocities to ground truth velocity.

Reconstructing the drift field v Since the transition probabilities encode the displacement law of
the underlying process over a time interval ∆t, we can also recover an estimate v̂ of the velocity field v
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by computing the expected time-∆t displacement of each cell:

v̂(xi) =
EP (X∆t −X0|X0 = xi)

∆t
.

In Figure 6(b) we show the estimated velocity field v̂ alongside the ground truth v, and we measure the
error by computing the mean cosine error between vector fields:

1

N

N∑
i=1

(1− cos∠(v(xi), v̂(xi))) ≈ 0.024.

We observe that the estimated field v̂ resembles the ground truth quite well near the potential wells
where particles are subjected to a relatively strong drift, but struggles near the origin where the true
velocity field has a small magnitude. Overall however, the cosine error is close to zero, indicating that
our recovered velocity field matches the ground truth field well.

Effect of the choice of regularisation parameter ε and flux rates R We next turn to investigating
the effects of the choice of the regularisation parameter ε on the quality of the recovered dynamics. To
quantitatively measure this, we choose to compute the average correlation r between estimated and
ground truth fate probabilities across the three lineages. We applied StationaryOT using both entropy
and quadratic regularisations, and let ε vary on a log-scale from 10−2.5−101 and 10−1−102 respectively.

As shown in Figure 7, in the case of entropy-regularised optimal transport we observe in both the
fate and velocity estimates that there is clearly a single optimal value of this parameter at ε = 0.026.
This is larger than the theoretically optimal value of σ2∆t = 0.0125, in keeping with our observations
discussed in Section 2.3. However, as we can see in Figure 7(a), StationaryOT with the theoretically
optimal value fares only slightly worse and is located close to the maximum. When ε is chosen too small
or too large, performance degrades. On the other hand, we find that performance when using a quadratic
regularisation is much less sensitive to the choice of ε, with the correlation over ε showing a much flatter
profile.

Since flux rates R are also parameters that need to be specified, we examine the sensitivity to varying
the flux rate in Figure 7. Here, we over- and underestimate the proportion of particles that leave the
system through the well z0 by up to 10 fold, and we observe that performance degrades moderately
in either case. We show results for entropic and quadratic regularisation where ε is chosen to be the
optimal values of 0.026 and 0.43 respectively, and note that both choices of regularisation behave virtually
identically.

(a) (b)

Figure 7: Summarised performance for (a) varying regularisation parameter ε for entropy and quadratic
regularisations and (b) misspecification of flux rates. In (a), the theoretically optimal value of ε is
indicated in red.

Laws on paths The stochastic differential equation (1) naturally induces a probability measure on
the space of continuous functions valued in X , from which one can sample cell trajectories. We discuss
this point of view at length in related work on the non-stationary case [18]. From this perspective,
we may treat the recovered process as inducing a law on discrete-time paths valued in X , and we
expect that a good estimate of the dynamics should correspond to a law on paths that is closer to
the ground truth law. To illustrate this, in Figure 8 we display 100 sample paths over 25 timesteps,
i.e. t ∈ {0,∆t, 2∆t, . . . , 24∆t}. We compare the ground truth to the StationaryOT output for both
entropic and quadratic OT for optimal and sub-optimal (taken as 10× the optimal value) choices of the
regularisation parameter ε. Visually, it is clear that StationaryOT using both entropic and quadratic
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OT produces very similar output resembling the ground truth when ε is chosen to be optimal. On the
other hand, when ε is chosen to be too large we observe a visible worsening of performance, with more
paths jumping between branches. As we also observed in terms of fate probabilities, the performance of
StationaryOT with quadratic regularisation appears to degrade more gracefully than entropic OT.

To provide a quantitative assessment of performance, the natural metric to use is the 2-Wasserstein
(W2) distance on the space of laws on paths, as we also argue in [18]. Since we work in the setting of
discrete time and space, we take the ground metric on X T to be the squared L2 distance:

∥f − g∥22 =
T∑

i=1

∥fi − gi∥22.

Using the W2 metric for laws on paths, we computed the error of each reconstruction relative to the
ground truth and display the results in Figure 8(b). Importantly, we note that since we are dealing
with finite samples, the expected W2 distance between independent collections of sample paths from
the same distribution will be nonzero. Thus, as done in [18] we compute a baseline error as the W2

distance between independent samplings of 250 paths from the ground truth. In Figure 8(b) we show the
average W2 error over 5 resamplings of 250 paths, from which we note that StationaryOT with entropic
or quadratic OT yields results that are close to the baseline in W2 error when ε was chosen to be optimal.
On the other hand, picking ε to be too large leads to a higher error for both methods, but with entropic
OT performing significantly worse than quadratic OT.
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Figure 8: (a) Collections of 100 sample paths from the ground truth process (1) as well as StationaryOT
outputs for both entropic and quadratic OT with optimal and sub-optimal ε. (b) W2 error on paths for
StationaryOT reconstructions, shown for 5 repeated samplings of 250 paths.

2.7 Simulated data – non-conservative dynamics
Now we consider the case where the drift v(x) is no longer the gradient of a potential landscape, i.e.
there is a curl component. In this case, the underlying process is no longer identifiable from only sampled
spatial locations [41, 18], and it is necessary to have additional velocity estimates in order to estimate
cellular trajectories.

Simulation setup and parameters To illustrate this, we consider a process with a drift field given
by the sum of a potential-driven term and a non-conservative vector field, i.e.

v(x) = −∇Ψ(x) + f(x). (16)
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Again, we work in X = R10 and we take

Ψ(x) = exp

(
−x2

1 + x2
2

h2

)
+

1

2
(x2

1 + x2
2) + 10

10∑
i=3

x2
i (17)

f(x1, x2) = 10 exp

(
−x2

1 + x2
2

h2

)[
cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
x1

x2

]
. (18)

We pick h = 0.5, controlling how rapidly the field f decays and the location of the potential well in Ψ. In
the first two dimensions of X , particles can be thought of as diffusing on a radially symmetric potential
field with a ring of wells located about the origin, and subject to a superimposed anticlockwise vector
field that decays away from the origin. We show a surface plot of Ψ(x) and a vector field plot of f(x) in
Figure 9(a).

1.5 1.0 0.5 0.0 0.5 1.0 1.5
dim 1

1.5

1.0

0.5

0.0

0.5

1.0

1.5

di
m

 2

Potential function 

1 0 1
dim 1

1.5

1.0

0.5

0.0

0.5

1.0

1.5

di
m

 2

Nonconservative field f

(a)

1.0 0.5 0.0 0.5 1.0
dim 1

1.25

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

di
m

 2

Sample trajectories

(b)

1.0 0.5 0.0 0.5 1.0
dim 1

1.25

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

di
m

 2

Snapshot

4

2

0

2

4

6

R

(c)

Figure 9: (a) Illustration of potential-driven (Ψ) and non-conservative (f) components of the overall drift
v. (b) Examples of simulated particle trajectories X(i)

t following the drift-diffusion process. (c) Snapshot
samples shown in the first two dimensions of X , with source (R > 0) and sink (R < 0) regions indicated.

We initialise particles following the initial distribution X0 ∼ 0.01N (0, 1) that are then subject to the
drift-diffusion process with diffusivity σ2 = 0.1. The minimum of the circular potential well is located
along a cylinder of radius 0.721 about the origin in the first two dimensions of X , and we treat all points
outside this cylinder as a sink region, in which particles are removed at exponential rate 5. We sample
500 particles from this process and designate cells found within a ball of radius 0.1 about the origin to
be source cells, and cells located in the sink region to be sink cells. Sink cells were assigned a flux rate
Ri = −5, and source cells were assigned uniformly so that

∑
i Ri = 0 as we did previously in Section

2.6. We illustrate in Figure 9(b) some example trajectories from this simulation, and in Figure 9(c) we
display the sampled snapshot ρ̂eq along with the flux rates.

StationaryOT with and without velocity data For each sampled cell xi, we obtain velocity es-
timates by evaluating the drift vector field v(xi) at its location. We then formed two cost matrices:
Ceuc, the matrix of squared Euclidean distances, and Cvelo the matrix of cosine similarities as defined in
(13). Both matrices were normalised to have unit mean. Note here that this normalisation is purely an
empirical choice, and no corresponding normalisation of the cost was performed in Section 2.6 because
of the theoretical motivation in the potential-driven case.

We constructed the optimal transport cost matrix to be a convex combination of the Euclidean and
velocity cost matrices:

C = (1− λ)Ceuc + λCvelo,

and we took λ = 0.25, 0, respectively corresponding to StationaryOT with and without velocity infor-
mation. Both entropic and quadratic OT were used to solve for couplings, with ε = 0.05 and ε = 0.5
respectively. Since the setting of this simulation is rotationally invariant in the first two dimensions, we
choose to summarise our results in terms of the absorption probabilities for cells entering the region

S = {xi : Θ(xi) ∈ [0, π/2] and Ri < 0},

i.e. the set of sink cells in the first quadrant in (x1, x2). As shown in Figure 10(a), the ground truth
fate probabilities clearly capture the rotational component of drift, with the set of cells fated towards S
forming a curled shape. We observe that StationaryOT with velocity data produces results qualitatively
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Figure 10: (a) Comparison of fate probabilities towards the sinks in the first quadrant. (b). Correlation
of estimated fate probabilities to ground truth fates with and without incorporation of velocity data.

capturing this effect, whilst neglecting velocity information leads to a symmetric fate profile that reflects
only the potential-driven component as expected. To quantitatively compare fates, we computed as
previously the Pearson correlation between the estimated fate probabilities and the ground truth. We
show this in Figure 10(b), from which we observe that StationaryOT with velocity data produces a
markedly improved fate correlation (r = 0.953) compared to StationaryOT without velocity data (r =
0.631).

Laws on paths As we have done in Section 2.6, we may examine sample paths from the ground
truth process as well as the estimates output by StationaryOT. We sample trajectories with the initial
condition

π0 = {xi : Θ(xi) ∈ (−π/6, π/6) and ∥xi∥ ∈ (0.25, 0.5)}.

We illustrate these in Figure 11 in the first two dimensions of X . Again, we observe that incorpo-
ration of velocity estimates yields results that clearly reflect the rotational trajectories in the ground
truth. On the other hand, without using velocity information, we observe sample paths consistent with
only the potential-driven component. Additionally, for either choice of regularisation we observe that
StationaryOT overestimates the rotational drift as cells settle into the potential well. This effect can
be attributed to the fact that the cosine similarity cost (13) depends only on the orientation of the
rotational field, and thus is unaware of its decay as cells drift towards the well. In this situation, we
can only expect to capture the rotational field qualitatively rather than quantitatively. We suggest that
possible remedies for this effect may include weighting entries of Cvelo by velocity magnitudes or using
an alternative velocity cost that is based on squared Euclidean distances.

Sensitivity to noise Finally, are interested in investigating the behaviour of StationaryOT when the
provided velocity estimates are subject to additive noise, that is

v̂(xi) = v0(xi) + CηN (0, I)

where C is a scale constant chosen such that v0/C has order 1, i.e. the noise term is on the same order
as the signal. We pick C = Exi

∥v0(xi)∥. We applied StationaryOT using both entropic and quadratic
OT for values of η ∈ [0, 2] and choices of regularisation ε chosen in the range 10−2 − 100 (logarithmic)
for entropic OT and 0.5− 10 (linear) for quadratic OT.
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Figure 11: Collections of 100 sample paths drawn from the ground truth process (1), as well as Station-
aryOT output with and without velocity estimates for both entropic and quadratic OT. We indicate the
initial condition π0 as dots.

For additional comparison, for each noise level η we also computed a transition matrix based solely
on cosine similarities of velocity estimates to k-nearest neighbour (k-NN) graph edges using the scVelo
package [1] in which the transition law for each cell xi is

P[X∆t = xj |X0 = xi] ∝ exp (k cos∠(xj − xi, vi)) , xj ∈ neighbours(xi). (19)

In the above, k is a scale parameter controlling the level of directedness in the resulting transition law,
with larger k corresponding to increased directedness in the transition law. We used k in the range
2.5− 25 and all other parameters were taken to be defaults.

In each case, performance was summarised as we did previously in terms of the fate correlation for
the set S. We show results summarised over 10 independent repeats in Figure 12 and we observe that, as
expected, performance degrades for all methods as the level of noise increases. However, StationaryOT
with either entropic or quadratic regularisation consistently produces more accurate fate estimates com-
pared to the scVelo method. We argue that this effect reflects the fact that StationaryOT is a global
method and solves for transition laws that best agree with the inputs across the dataset. On the other
hand, the scheme (19) is local in that the transition law for a single cell can be determined by only
considering a single velocity vector and a few neighbouring locations.

Additionally, for moderate levels of noise (η ∈ [0, 1]), we observe that the quadratic regularisation
outperforms the entropic regularisation. Roughly speaking, we suspect that this results from the fact
that the transition laws recovered by quadratic OT are concentrated on a sparse subset of cells, limiting
the effect that an error in any single velocity estimate can have on the overall Markov chain. On the
other hand, since entropic regularisation yields dense transition laws, errors can be propagated across
the full support of X .

In Figure 12(b) we examine the sensitivity of StationaryOT performance on the choice of the regu-
larisation ε. As we observed in the case of Section 2.6, the entropic regularisation appears to depend
strongly on the choice of ε whereas a quadratic regularisation behaves similarly across the values of ε
used.
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Figure 12: (a) Correlation of estimated fate probabilities to ground truth as a function of noise η. (b)
Sensitivity of entropic and quadratic regularisations to the choice of ε.

2.8 Arabidopsis thaliana root tip scRNA-seq data
Overview We now apply StationaryOT to the scRNA-seq atlas dataset generated by Shahan et al.
[30], which comprises of gene expression data from 1.1× 105 cells from the first 0.5 cm of the Arabidopsis
thaliana root tip. Stem cells occur close to the tip of the root and differentiate into ten distinct lineages
(see Figure 13), with cells becoming increasingly differentiated as they increase in distance from the stem
cells. Additionally, the terminal 0.5 cm of the root captures all tissue developmental zones, including the
root cap, meristem, elongation zone, and part of the maturation zone. While new cells are constantly
produced in the meristem, the bottom 0.5 cm is expected to be in equilibrium as cell division and
elongation push existing differentiated cells out of the 0.5 cm section of interest, preserving a constant
profile of cell types as illustrated in Figure 13a. We also show the root tip anatomy diagrammatically in
Figure 13b, indicating developmental zones and tissue types.

(a) (b)

Figure 13: (a) While individual cells divide (green), elongate (blue), and are displaced from the bottom
0.5 cm (red) as the root grows, cell populations remain in equilibrium. (b) The structure of the Ara-
bidopsis thaliana root tip by developmental zone (left) and lineage (right) (Illustrations modified from
the Plant Illustration repository [26]).

Application of StationaryOT For each cell xi, daily growth rates gi were estimated from imaging
data of the growing meristem over a week-long period [28]. Using these growth rates and the proportion
of cells expected to be actively dividing, we estimated that roughly 5% of the cells in each lineage would
be replaced in a 6-hour period (∆t = 0.25) and selected the 5% of most differentiated cells from each
lineage as sinks, as defined by pseudotime. For these sink cells we set gi = 0, i.e. they are completely
removed over the time interval. The remaining cells were set as sources, with Ri chosen to agree with
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the biological growth estimates, i.e. for each cell xi we take Ri such that exp(Ri) = gi.
We applied StationaryOT using both entropic and quadratic regularisations with parameters ε =

0.025C and ε = 2.5C respectively, where the scale factor C is taken as the mean value of the squared
Euclidean cost matrix C. We found our results to be robust to changes of a factor of two in the number
of sinks, the time step size, and ε. Due to computational limitations of the standard implementation of
the method, we applied StationaryOT to batches of 10,000 cells sampled from the full dataset, though
in Section 2.9 we demonstrate two methods to scale the analysis to the full atlas.

In Arabidopsis root development, cell lineage is fixed early in development [28]. Thus, for each cell xi

we may regard the lineage j corresponding to the largest fate probability, i.e. argmaxj pij as its putative
fate. We checked whether these putative fates matched the manually curated atlas annotation, and used
the magnitude of the corresponding fate probability, 0 ≤ pij ≤ 1, as a measure of the confidence of
prediction. StationaryOT with quadratic and entropic regularisation performed similarly in terms of the
percentage of cells where the putative fate matched the atlas annotation, matching 81% and 80% of cells
respectively (see Figure 15). Both regularisations also performed similarly in terms of the magnitudes
of the putative fates, with the entropic regularisation achieving an average of 69%, increasing from an
average of 40% for cells in the meristem to an average of 84% for cells in the maturation zone and
quadratic achieving an average of 65%, ranging from 38% in the meristem to 80% in the maturation
zone (see Figure 23).

Figure 14: Developmental zone (left) and lineage annotations (centre) shown on a UMAP embedding.
Putative fate probabilities from StationaryOT with entropic regularisation are visualised on the right,
where each cell is coloured by putative fate and its saturation based on the magnitude of that probability.
For over 80% of cells the putative fate matched the annotation, with the magnitude of the probability
increasing later in development.

Both choices of regularisation performed well on nine of the ten lineages, struggling only with mature
procambium cells, as shown in Figure 15. We believe this is due to an inconsistency between the
pseudotime and developmental zone annotations, where cells in the elongation zone received higher
pseudotimes than cells in the maturation zone, resulting in them being incorrectly set as terminal states
(See Figure 20). Both regularisations were robust to changes in parameters, where the percentage of cells
whose putative fate matched the annotation changed by no more than 2% when changing a parameter by
a factor of two. StationaryOT with quadratic regularisation was particularly robust, with performance
degrading by no more than 2% when multiple parameters were changed by up to a factor of five (See
Section B.3).

Comparison to PBA Since population balance analysis (PBA) [41] addresses the same problem as
StationaryOT (see Section 1.4), it is natural to evaluate its performance on the Arabidopsis root dataset.
We show results for 1% sinks, ∆t = 0.25 (6-hour time step), diffusivity D = 2.5, and k = 10 for the k-NN
graph. These parameters were found to yield the best results over a parameter sweep (see Section B.3).
PBA was on par with the StationaryOT methods, with 81% of putative fates matching the annotation,
compared to 80% and 81% for the StationaryOT analyses (See Figure 15). Average fate probabilities
were also similar, with PBA achieving an average of 64% compared to 65% and 69% for the StationaryOT
methods (see Figure 23). Given that PBA and StationaryOT are methodologically distinct, the fact that
they perform similarly is a strong indication that the results reflect the underlying biology, rather than
artefacts from the respective models.

In general however, we found PBA to be more sensitive to parameter values than StationaryOT.
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Figure 15: Proportion of cells where the maximum probability matches the annotation by developmental
zone and lineage.

Assigning 5% of cells in each lineage as sinks for a 6-hour time step (∆t = 0.25) is biologically motivated
in order to balance the number of cells created due to growth with the number of sinks. Using this sink
selection scheme, PBA was found to perform poorly for the columella lineage, incorrectly assigning all
columella cells a putative fate of lateral root cap. This lowered the overall percentage of putative fates
that matched the annotation to 72% (See Figure 19a). Only through an extensive parameter sweep did
we find the combination of parameters that resulted in columella cells receiving the correct putative fate.
We found PBA to be generally more sensitive to other parameter changes, matching 7% fewer cells to
the annotation when a single parameter was changed by a factor of two compared to only 2% for the
StationaryOT methods (See Section B.3). This may be of concern, since in many applications there may
not be sufficient prior biological knowledge to distinguish between good and bad parameter choices.

Comparison to CellRank CellRank is a trajectory inference method that uses both transcriptomic
similarity and RNA velocity data to estimate transition laws for cells [17]. The method consists of three
key steps: computing cell state transition probabilities, inferring macrostates from the resulting Markov
chain, and computing fate probabilities to these macrostates. For ease of comparison between other
methods discussed here, our summary will focus mostly on the computation of transition probabilities.

CellRank computes a transition matrix from a k-NN graph using a combination of transcriptomic
similarity and RNA velocity data. First, a k-NN graph is computed using cell transcriptomic similarities
and then symmetrised. Edge weights are assigned based on similarity estimates between neighbouring
cell states. The resulting graph is then converted into a matrix containing similarity estimates between
neighbours. For each cell, transition probabilities are calculated from RNA velocity data by considering
the correlation of the RNA velocity vector with displacement vectors corresponding to edges in the k-NN
graph. These correlations are used to create a categorical distribution on the neighbours of the cell, giving
transition probabilities. To better account for noise in the velocity data, the final transition probabilities
are taken to be a linear combination of velocity-based probabilities and similarity-based probabilities.

We applied CellRank to the same 10,000 cell subset of the Arabidopsis dataset used for the Sta-
tionaryOT and PBA analyses. Using the output transition matrix, we computed fate probabilities and
assigned putative fates as previously described. In terms of putative fates, we found that CellRank
matched 73% of cells to the atlas annotation, compared to 80% and 81% achieved by the StationaryOT
analyses. The main differences occurred in the lateral root cap and xylem tissues (see Figure 15). Cell-
Rank also had less confidence in fate prediction, having an average fate probability of 45% compared to
greater than 60% for all other methods. Finally, we note that CellRank uses a mixture of a directed
transition matrix derived from RNA velocity and an undirected transition matrix computed from ex-
pression similarity. Therefore, it is not applicable to settings where velocity information is unavailable,
such as scATAC-seq [4] and CyTOF [24] data, while StationaryOT and PBA can still be used.
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Figure 16: Fate probabilities for (a) both StationaryOT methods compared to the annotation and (b)
PBA and CellRank. The colour indicates the maximum fate probability (putative fate) of each cell and
the colour saturation shows the magnitude of the fate probability.

2.9 Computing fates for large datasets
The running time for StationaryOT depends on the number of cells, with the main computational
costs (in the case of the entropic regularisation) arising from (1) Sinkhorn iterations involving a series
of matrix-vector products, and (2) solving a system of linear equations to compute fate probabilities.
Computational cost therefore scales roughly quadratically in the number of cells (at least for a fixed
number of iterations) and we found that datasets of up to 104 cells could be processed directly using
a straightforward implementation of the method. In order to compute cell fates for datasets with very
large numbers of cells we propose two approaches.

Figure 17: Atlas annotation on the full dataset (1.1× 105 cells) shown in UMAP coordinates compared
to fate probabilities computed on the full dataset respectively using the subsampling approach (using en-
tropic regularisation for each subproblem) and memory-efficient GPU implementations of StationaryOT
with entropic and quadratic regularisations.

Repeated subsampling We first randomly partition the dataset of interest into k subsets of size ap-
proximately 104, or such that the computation time for StationaryOT is acceptable. Fates are computed
for each subset, and this procedure is repeated j times with repeated random partitioning. We then
average the computed fates on a cell-by-cell basis, to produce aggregated fate probabilities.

We applied this approach to the full 1.1× 105 cell atlas, partitioning it into 10 subsets and applying
StationaryOT separately to each subset. This was repeated 10 times to account for sampling error.
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Between the fates found directly for each subset and the consensus fates in the full atlas, 97% of cells
shared the same putative fate and the maximum fate values had a correlation of 0.96. Accounting for
all fate values, the correlation rose to 0.99.

Memory-efficient GPU implementation with KeOps For both entropic and quadratic regulari-
sations, algorithms for solution of the optimal transport minimisation problem can be implemented using
the KeOps library [5] so as to avoid storing all N×N matrices in memory. Along with GPU acceleration,
this allows StationaryOT to be applied directly to datasets with many more cells than can be handled
by the standard implementation due to memory constraints.

In the case of entropy-regularised optimal transport, the Sinkhorn algorithm can be implemented in
a straightforward manner so that the transport plan (a matrix of size N ×N) is parameterised in closed
form by two dual variables u and v (vectors each of length N) [25]. From here, one may construct a
linear system to solve for fate probabilities of the form Ax = b where A is again parameterised by the
dual variables (u, v) and thus not explicitly stored in memory. For quadratically-regularised optimal
transport, a similar representation of the problem in terms of dual variables holds. We provide an
implementation of the semi-smooth Newton method proposed in [22, Algorithm 2] that utilises the
KeOps library. As mentioned earlier in Section 2.4, quadratically regularised optimal transport has the
property that the transport plans (and hence the transition laws of cells) will be sparse. In addition
to being more interpretable, for large numbers of cells this means additional computational advantages,
especially in terms of directly storing the entries of the sparse transition matrix, and computing the fate
probabilities.

We applied StationaryOT to the full 1.1 × 105 cell Arabidopsis root dataset using the KeOps im-
plementation with GPU acceleration, using both entropic and quadratic regularisations. We used the
same parameter choices as used for the 10,000 cell subset in Section 2.8. We found that solution of the
optimal transport problem took roughly 15 and 20 minutes using entropic and quadratic regularisations
respectively. Computation of the fate probabilities for the entropic regularisation was significantly more
time-consuming than for the quadratic regularisation, taking approximately 10 minutes and 2 minutes
respectively. The difference in the runtimes reflects the fact that, compared to dense systems, sparse
systems of linear equations can be solved much more efficiently using iterative methods. We compared
the fates found for a 10,000 cell subset to the fates for StationaryOT with both entropic and quadratic
regularisation on the full atlas and found them to perform similarly. For both methods, 90% of cells
shared the same putative fate as the 10,000 subset and both had a 0.97 correlation for fate magnitudes
accounting for all fates. With the entropic regularisation, the putative fate values were slightly higher
correlated with the 10,000 cell subset, achieving a correlation of 0.92 compared to 0.87 for quadratic.
All computations for the full atlas dataset were done on a Google Colaboratory instance with a 16GB
NVIDIA Tesla V100 GPU.

3 Discussion
Summary of our contributions Optimal transport has been shown to be a widely applicable tool to
the problem of trajectory inference in the setting where multiple time points are available [29, 18, 35, 10,
27, 7]. We demonstrate that optimal transport can be applied in a natural way to the stationary setting,
where a single snapshot of a system at steady state is observed. The framework that we develop is
theoretically justified and is naturally motivated by the Waddington’s landscape analogy. Furthermore,
our scheme boils down to a convex optimisation problem for which there are efficient and well-known
methods of solution. The problem can also be generalised to incorporate additional information such
as estimates of velocity. Motivated by these observations, we have developed a computational method
which we call StationaryOT and show that it can scale to datasets of up to 105 cells.

We demonstrate the efficacy of this method both on both real and simulated data. We find that in
practice our method achieves similar performance to that of Population Balance Analysis (PBA) [41],
but StationaryOT appears to be less sensitive to parameter choices and is capable of handling additional
information such as velocity estimates. Since StationaryOT and PBA are methodologically distinct,
the observation that both methods yield similar conclusions is strong evidence that the outputs reflect
genuine biological signal, as opposed to artefacts of the methodology.

Overall, we have shown optimal transport to be a common framework for trajectory inference in
the setting of both stationary snapshots and non-stationary, time-series data. This provides a unifying
perspective for two problems that have traditionally been approached with separate methods.
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Prospects for future work In terms of future work, there are many potential avenues for extension
of the present work. One major direction is the development of generative models, which can extrapolate
information about the potential landscape beyond those cell states measured in experiment. We expect
that the optimal transport perspective will be important for this, both conceptually and practically.
Another relevant problem is that of examining the evolution of systems that are stationary on short
timescales but nonstationary on large timescales – for instance, developmental biological systems such
as haematopoiesis in humans are stationary on a fast timescale, but undergo changes on a slow timescale
as individuals age. Finally, one could incorporate lineage-tracing to improve trajectory inference, as we
have recently done in the non-stationary case [10].

Software availability
An implementation of the StationaryOT computational method is available as an open-source software
package at https://github.com/zsteve/StationaryOT.
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A Computation of fate probabilities and conditional MFPT
Fate probabilities As in the main text, we consider a discrete state space X = {xi}Ni=1 and take P
to be a matrix of transition probabilities. For brevity, let X∅ denote the set of sink states for which we
want to compute fate (absorption) probabilities. Then we compute fate probabilities via the fundamental
matrix as follows [34, Theorem 28]:

• Make all sink states absorbing, i.e. produce a modified transition matrix P̃ from P such that for
each sink xi ∈ X∅, we have

P̃ij = 1i=j .

• We reorder the rows and columns of P̃ to form the matrix[
Q R
0 I

]
, (20)

where Q corresponds to transitions between transient states and R corresponds to transitions from
transient states to sink states.

• We next compute the fundamental matrix of the absorbing Markov chain as

N = (I −Q)−1. (21)

• From the fundamental matrix, we compute B = NR. The entry Bij is the absorption probability
for sink j for a chain starting from state i, i.e.

Bij = P[X∞ = xj |X0 = xi].

Numerical considerations In practice we have found that the computation of fate probabilities can
sometimes suffer from numerical issues that result in the fate probability problem being ill-conditioned.
This typically appears to be the case for the quadratic regularisation when the regularisation parameter
ε is chosen to be small, resulting in a disconnected graph or degenerate transition laws for outlier cells
due to the sparsity of the resulting transport plan. In practice, one can always regularise transition
matrices before computing fate probabilities by mixing in a small undirected diffusion component, as is
done in [17], i.e.

P = (1− f)PstatOT + fPdiffusion,

where f is chosen to be small (e.g. f = 0.05), and Pdiffusion is a matrix of undirected transition proba-
bilities, etc.

(Pdiffusion)ij ∝ exp

(
−∥xi − xj∥2

h

)
,

and h is a user-specified bandwidth parameter.

Conditional MFPT The conditional mean first passage time (MFPT) from xi to xj is defined as

E[t|X0 = xi, Xt = xj ].

To compute the conditional MFPT, we follow the steps laid out in [41, Theory Supplement, Section 3.3].

Ground truth fate probabilities and ground truth simulation time In simulations, to compute
the ground truth fate probability of a state xi, we simulated 100 trajectories from start to finish, initialised
at xi when t = 0. The fate probability of xi to fate j was taken to be the proportion of simulated
trajectories terminating in fate j.

For the ground truth simulation time, we sampled 104 trajectories X
(i)
t from the underlying process.

For each trajectory, we also recorded the simulation time of each state and aggregated these into a
reference table. Then, for each sampled state xi ∈ X , we took the corresponding ground truth simulation
time ti to be the average simulation time of the 250 nearest points in the reference.
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B Root atlas application details
B.1 Data preprocessing
The Arabidopsis thaliana atlas contains 16 replicates that were preprocessed using the COPILOT pipeline
[30]. The replicates were integrated using the Seurat integration pipeline [30, 32]. The resulting atlas was
annotated by Shahan et al. with cell lineages and developmental zones using an ensemble of correlation
to published expression profiles, Index of Cell Identity scoring, and expression of known marker genes
[30, 8]. An ensemble pseudotime was also calculated from RNA velocity using scVelo and based on
transcriptional diversity using CytoTRACE [11, 1].

Growth rates were calculated from imaging data of the Arabidopsis meristem by averaging the division
time observed for all cells in a lineage and converting the division times to an average daily growth rate
[28]. In two cases, the imaging data grouped multiple lineages from our data into a single category. In
these cases, we used the average growth rate for all cells in that category for each lineage.

B.2 CellRank
Based on a parameter sweep, we chose k = 10 for the k-NN graph, 0.5 for the weight on the transcriptional
similarity kernel, and a softmax of 7.5 (See Figure 19c). Using these settings, CellRank was unable to
automatically detect all terminal and initial macrostates (see Figure 24). Therefore, macrostates were
assigned manually to the same sinks used for PBA and StationaryOT. Sources were defined to be all
cells in the stem cell niche and the putative quiescent centre.

B.3 Parameter variation
We chose the parameters shown in the main text by performing an initial parameter sweep around a
6-hour time step (∆t = 0.25) and 5% sinks. The number of sinks was chosen based on the 6-hour time
step, the growth rates, and the assumption that the root is in equilibrium so that that number of sinks
balanced with the number of cells that would be added by growth. We evaluated the runs based on
the percentage of putative fates that matched the annotation. To test the robustness of each method,
we tested a grid of parameters taking all combinations of changes of a factor of two and five in each
direction.

(a)

(b)

Figure 18: Parameter variation for StationaryOT with (a) entropic and (b) quadratic regularisation. The
value for each combination represents the percentage of putative fates matching the annotation. Blank
squares indicate runs where fates could not be calculated due to underflow or a singular coupling. The
run shown in the main text is indicated in blue.
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For StationaryOT with entropic regularisation and small values of ε, we added a small amount of
Gaussian noise to the coupling to avoid a few outlier cells remaining stationary. As shown in Figure
18a, the match to the annotation changed no more than 2% when changing a parameter by a factor of
two, but performance significantly degraded when multiple factors were off by a factor of two or more.
StationaryOT with quadratic regularisation was more robust to parameter changes, differing by no more
than 2% for a factor of two change in a single parameter and remaining within 2% for many combinations
where multiple parameters were off by a factor of five. When using quadratic regularisation with very
small values of ε, the coupling matrix becomes singular and we cannot calculate fate probabilities. When
using entropic regularisation for very small values of epsilon, the coupling could not be computed due to
underflow. For both of these issues, runs are shown as blank squares in Figure 18b.

Like StationaryOT, PBA has parameters for the number of sinks and time step. However, instead of
using a single regularisation parameter, PBA has both diffusivity (D) and number of neighbours in the
k-NN graph (k). To limit the number of runs to 256, D and k were fixed while the other three parameters
were varied (see Figure 19a-19b). We found that PBA was highly sensitive to the number of sinks in
addition to the total flux. Using our estimate that the root would stay in equilibrium when 5% of cells
were set as sinks for a 6-hour time step, around 70% of cells matched the annotation. Reducing the
number of sinks to 1% for a 6-hour interval increased the match to 80%. However, in many applications
the annotation would not be available to evaluate the runs, and the best combination of parameters
could be missed.

(a)

(b)

(c)

Figure 19: Parameter variation for PBA (a-b) and CellRank (c), evaluated by the percentage of cells
whose putative fate matched the annotation. For both PBA and CellRank, the graphs became discon-
nected when only two neighbours were used and thus fate probabilities could not be computed. The run
shown in the main text is indicated in blue.
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B.4 Supplemental figures

Procambium - Zone Annotation
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Figure 20: All four methods poorly matched the annotation for maturation procambium cells (see Figure
15). We believe this occurred due to a disagreement between the pseudotime and zone annotations, where
procambium cells in the elongation zone were given a higher pseudotime than those in the maturation
zone, resulting in cells from the elongation zone incorrectly being set as terminal states.
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Figure 21: Average fate probabilities matching the annotation by cell type and zone for both Station-
aryOT methods, PBA, and CellRank.
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Figure 23: Lineage annotation compared to cell fate probabilities for both StationaryOT methods, PBA,
and CellRank.
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Figure 24: Terminal states found using automatic detection functionality offered by the CellRank pack-
age, coloured by their corresponding lineage (right). No terminal states were identified for the phloem
and procambium lineages. Additionally, as is clear from pseudotime (left), some states that are inter-
mediate are miss-classified as terminal.
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