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Abstract 
 
We present BonZeb – a suite of modular Bonsai packages which allow high-resolution 
zebrafish tracking with dynamic visual feedback. Bonsai is an increasingly popular 
software platform that is accelerating the standardization of experimental protocols within 
the neurosciences due to its speed, flexibility, and minimal programming overhead. 
BonZeb can be implemented into novel and existing Bonsai workflows for online 
behavioral tracking and offline tracking with batch processing. We demonstrate that 
BonZeb can run a variety of experimental configurations used for gaining insights into the 
neural mechanisms of zebrafish behavior. BonZeb supports head-fixed closed-loop and 
free-swimming virtual open-loop assays as well as multi-animal tracking, optogenetic 
stimulation, and calcium imaging during behavior. The combined performance, ease of 
use and versatility of BonZeb opens new experimental avenues for researchers seeking 
high-resolution behavioral tracking of larval zebrafish.
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Introduction 1 
 2 
The ability to precisely track animal movements is vital to the goal of relating the activity of the 3 

nervous system to behavior. The combination of precision tracking with systems for behavioral 4 

feedback stimulus delivery can provide valuable insights into the relationship between sensory 5 

inputs and behavioral outputs1,2,3. Methods for high-resolution behavioral tracking and dynamic 6 

sensory feedback can be combined with methods for monitoring or manipulating neural circuit 7 

activity to allow researchers to explore the neural circuitry underlying sensorimotor behaviors. 8 

These assays can also increase the throughput of behavioral experiments through the rapid 9 

and repeatable delivery of stimuli, and allow researchers to probe the sensorimotor loop by 10 

controlling and perturbing sensory feedback4,5,6. 11 

 12 
Despite its significance, the use of behavioral feedback technology is not standard across 13 

laboratories investigating sensorimotor integration. A key challenge in developing behavioral 14 

feedback systems is synchronizing high-throughput devices. Relatively few software 15 

implementations have succeeded in addressing this synchronization problem and most rely on 16 

software configurations that require advanced levels of technical expertise. Bonsai, an open-17 

source visual programming language, has recently gained traction among the neuroscience 18 

community as a powerful programming language designed for the rapid acquisition and 19 

processing of multiple data streams7. Currently, there are no released Bonsai packages that 20 

allow for high-speed kinematic tracking of small model organisms, such as the larval zebrafish, 21 

while providing behavior based stimulus feedback. Here, we present BonZeb, an open-source, 22 

modular software package developed entirely in Bonsai for high-resolution zebrafish 23 

behavioral tracking with virtual open-loop and closed-loop visual stimulation. 24 

 25 
Results 26 
 27 
Overview 28 
 29 
BonZeb provides an open-source and approachable method to implement the functionalities of 30 

extant behavioral feedback systems. Furthermore, BonZeb supplies a range of novel utilities 31 

that extend Bonsai’s capabilities (Figure 1). We developed packages for high-speed video 32 

acquisition, presentation of a visual stimulus library, high-resolution behavioral tracking, and 33 

analysis. BonZeb inherits Bonsai’s reactive programming framework for processing 34 

synchronous and asynchronous data streams (Figure 2A). The reactive framework allows 35 

users to process incoming streams of data, regardless of whether the data are coming from a 36 
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finite source (e.g. a saved video) or continuous source (e.g. streaming from a camera). There 37 

are four major classifications of nodes – source nodes, transform nodes, sink nodes, and 38 

combinators – which generate or manipulate streams of data called observable sequences 39 

(Figure 2B). Figure 2B also provides a basic example of how BonZeb performs online 40 

behavioral tracking. An online manual for BonZeb provides details for running the presented 41 

packages as well as a knowledge base for the development of new complex tracking assays 42 

(https://github.com/ncguilbeault/BonZeb). 43 

 44 
Free-Swimming Behavior in Virtual Open-Loop 45 
 46 
BonZeb can visually evoke and capture the core behavioral repertoire of freely-swimming 47 

larval zebrafish using virtual open-loop assays4. To evoke predator avoidance visual escapes, 48 

larval zebrafish were presented from below with an exponentially expanding looming dot 49 

stimulus to either the left or right visual field at a 90o angle relative to the heading direction 50 

(Figure 3A). Similar to a previous study8, we found that fish stimulated with a looming dot in 51 

virtual open-loop produced escape responses characterized by a large initial turn away from 52 

the stimulus followed by high-frequency tail oscillations (Figure 3A, Figure 4A, Supplemental 53 

Video 1: https://git.io/JJABI, Supplemental Video 2 - 700 Hz acquisition:  https://git.io/JtMIo). 54 

These escape responses were easily identified from other non-escape responses, as the max 55 

initial heading angle was consistently greater than 50o and the max velocity exceeded 15 cm/s 56 

in all elicited escape responses (Figure 4A, bottom left). The max bending angle of the initial 57 

turn of the escape depended on the location of the looming stimulus such that the initial turn 58 

consistently oriented the fish away from the stimulus (left loom escapes, n = 5, M = 100.7, SD 59 

= 27.3, right loom escapes, n = 6, M = -115.3, SD = 33.4, two-tailed t-test: t10 = 10.47, p < 60 

0.001; Figure 4A, bottom right). 61 

 62 
Fish were stimulated to produce the optomotor response (OMR) under virtual open-loop 63 

conditions by continually updating the orientation of a drifting black and white grating. In our 64 

open-loop OMR assay, fish were presented with an OMR stimulus from below that was tuned 65 

to always drift in a constant direction relative to the heading angle (90o left or right). Consistent 66 

with previous studies5,9, we observed that fish continually produced turns and swims to follow 67 

the direction of optic flow (Figure 3B, Supplemental Video 3: https://git.io/JtMIi). Fish produced 68 

significantly more clockwise turns when stimulated with rightward OMR (n = 10, M = 3.8, SD = 69 

2.2) compared to when stimulated with leftward OMR (n = 10, M = -3.8, SD = 1.6, two-tailed t-70 
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test: t19 = 8.42, p < 0.001, Figure 4B). 71 

 72 
We also developed a novel virtual hunting assay where a small white spot is presented from 73 

below. Figure 3C shows an example of a behavioral sequence from a fish stimulated with a 74 

virtual dot moving back and forth along an arc of 120o positioned 5 mm away from the fish. 75 

This fish produced two J-turns when the stimulus was in a lateral position followed by two 76 

approach swims as the stimulus moved toward the frontal field. In this example, eye tracking 77 

was used to detect the characteristic eye convergence that is present in hunting larvae. 78 

Supplemental Video 4 (https://git.io/JtyBW) provides an example of a fish engaging in multiple 79 

hunting episodes using this stimulus paradigm. We also modified the stimulus such that the 80 

stimulus was fixed to one of the lateral extremes of the arc (60◦ left or right). When the prey 81 

stimulus was fixed to a lateral location in the fish’s visual field, fish often engaged in multiple J-82 

turns with rapid succession. Supplemental Video 5 (https://git.io/JtyBB) provides an example 83 

captured at a lower frame rate 168 Hz where a fish performs 6 consecutive J-turns in pursuit of 84 

the stimulus.  85 

 86 
To determine whether virtual prey stimuli presented in the lateral visual field evoked J-turns, 87 

bouts captured during virtual prey stimulation (n = 688) were clustered based on four 88 

kinematics parameters (bout integral, max bout amplitude, mean tail beat frequency, and bout 89 

standard deviation) using hierarchical clustering (Figure 4C). A maximum silhouette score was 90 

calculated at three clusters (silhouette score = 0.65). Three distinct clusters were detected that 91 

resemble the known kinematics of forward swims (n = 487), routine turns (n = 142), and J-92 

turns (n = 59; Figure 4D). We examined the location of the prey stimulus when J-turns were 93 

produced and observed that the location of the prey stimulus was not uniformly distributed, but 94 

highly skewed toward the lateral visual field (Figure 4E). Further decomposition of the J-turn 95 

cluster into left vs right J-turns revealed that left J-turns (n = 34, Figure 4E, top right) were 96 

produced when the prey was positioned in the far-left visual field whereas right J-turns (n = 25, 97 

Figure 4E, bottom right) were generated in response to prey stimuli located in the far-right 98 

visual field (two-tailed t-test: t58 = 3.72, p < 0.001; Figure 4E).  99 

 100 
Multi-Animal Tracking with Visual Stimulation 101 
 102 
We created a BonZeb protocol to track multiple fish during OMR stimulation. When the center 103 

of mass of the group crossed into the leftmost quarter of the arena, the direction of the OMR 104 

stimulus updated to move rightwards and vice versa when the center of mass entered the 105 
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rightmost quarter of the arena. Robust optomotor swimming back and forth across the arena 106 

was observed and real-time tracking resolved detailed tail kinematics across all individuals (n = 107 

12) (Figure 5A, Supplemental Video 6 provides another example: https://git.io/JtyBz). We also 108 

developed a multi-animal hunting assay where larvae (n = 6) were tracked while a group of 109 

moving virtual prey were projected from below. When presented with virtual prey, larvae 110 

performed characteristic J-turns and slow approach swims (Figure 5B). 111 

 112 
We found that fish-to-fish contact, especially at the edges of the arena, led to sporadic 113 

swapped identities and tracking errors. To help offset such errors, we automatically discarded 114 

regions of the dataset when larvae physically contact each other (Figure 5A, red shaded 115 

regions). We calculated the percentage of tracking data where no fish-to-fish contacts were 116 

detected and found that our method had reliably produced > 90% accuracy with group sizes 117 

ranging from 5 – 20 (Supplemental Figure 1C). We also sought to determine how the number 118 

of fish tracked (centroid and tail kinematics) affected performance. The time between 119 

successive tracked frames was normally distributed around the theoretical frame rate (3.01 120 

ms) for a single animal tracked (M = 3.03, SD = 0.58) and as the number of tracked fish 121 

increased, the average time between tracked frames also increased (group size = 5, M = 3.27, 122 

SD = 1.54; group size = 10, M = 3.39, SD = 2.1; group size = 15, M = 3.55, SD = 2.25; group 123 

size = 20, M = 3.49, SD = 2.77)(Supplemental Figure 1B). Additionally, as the number of fish 124 

increased, we observed a greater percentage of values in the range of 9 ms – 23 ms (group 125 

size = 1, 0.08%; group size = 5, 0.91%; group size = 10, 1.88%; group size = 15, 2.36%; group 126 

size = 20, 3.75%). 127 

 128 
One-Dimensional Closed-Loop Optomotor Swimming 129 
 130 
We implemented an experimental protocol that allowed us to present closed-loop optomotor 131 

gratings with varying feedback gain constants to head-fixed fish. This experimental design was 132 

previously developed to investigate how optomotor swimming adapts to altered visual 133 

feedback10. With our hardware configuration, the closed-loop round-trip stimulus delay 134 

averaged 64.1 ms with an average of 8.3 ms attributed to BonZeb processing and the 135 

remainder to stimulus delivery delays imposed by the projector (frame buffering and refresh 136 

rate) (Supplemental Figure 1A). Consistent with the previous study10, fish displayed stark 137 

behavioral differences between trials of different gain factors. Figure 6A shows representative 138 

examples of bouts from the same fish under low (0.5), medium (1.0), and high (1.5) gain 139 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 2, 2021. ; https://doi.org/10.1101/2021.03.02.433632doi: bioRxiv preprint 

https://git.io/JtyBz
https://doi.org/10.1101/2021.03.02.433632
http://creativecommons.org/licenses/by/4.0/


 5 

conditions. Most notably, bouts were more frequent, longer, and had greater tail beat 140 

frequency with low gain conditions compared to medium and high gain conditions (Figure 6B, 141 

Figure 6C, Supplemental Video 7: https://git.io/JtyB2). We found that fish produced a greater 142 

number of swim bouts in low gain, with bout numbers decreasing as the gain increased (n = 143 

16, one-way ANOVA: F2,45 = 20.76, p < 0.001; Figure 6C, far-left). Bout duration decreased as 144 

gain factor increased (n = 16, one-way ANOVA: F2,45 = 16.92, p < 0.001; Figure 6C, middle 145 

left). Fish displayed shorter inter-bout intervals in low gain compared to medium and high gain 146 

conditions (n = 16, one-way ANOVA: F2,45 = 29.5, p < 0.001; Figure 6C, middle right) and 147 

mean tail beat frequency decreased with increasing gain values (n = 16, one-way ANOVA: 148 

F2,45 = 13.09, p < 0.001; Figure 6C, far-right).  149 

 150 

Multi-Animal Two-Dimensional Closed-Loop Optomotor Swimming 151 
 152 
We designed a two-dimensional closed-loop assay which provided both forward-backward, as 153 

well as angular visual feedback to multiple head-fixed fish independently. This assay was 154 

inspired by a previous implementation of a two-dimensional closed-loop optomotor assay11.  155 

We found that fish consistently responded to gratings of different orientations by swimming in 156 

the direction of optic flow (Figure 7A). The orientation of the gratings converged towards the 157 

heading angle as trials progressed over 30 seconds (Figure 7B). The probability that the final 158 

stimulus orientation converged (P = 0.62) towards the heading angle was much greater than 159 

the probability that the orientation diverged (P = 0.28) or remained unchanged (P = 0.11). At 160 

larger orientations, fish tended to produce turns over forward swims, as indicated by the mean 161 

tail angle across swimming bouts. Bouts tended to transition from asymmetric turns in the 162 

direction of the stimulus orientation to symmetric forward swims as trials progressed and the 163 

orientation of the stimulus neared alignment with the heading angle (n = 4668, one-way 164 

ANOVA: F6,4661 = 224.01, p < 0.001; Figure 7C, left). The mean angular velocity of the 165 

stimulus showed a similar trend, albeit in the opposite direction, such that the angular velocity 166 

produced by swimming bouts at large stimulus orientations was larger and tended to align the 167 

stimulus orientation to the heading direction (n = 4668, one-way ANOVA: F6,4661 = 260.34, p < 168 

0.001; Figure 7C, right). Tail beat frequency was significantly different for stimulus orientations 169 

between -22.5o and 22.5o compared to all other stimulus orientations. Tail beat frequency 170 

increased as the orientation of the stimulus became aligned to the heading direction (n = 4668, 171 

one-way ANOVA: F6,4661 = 38.7, p < 0.001; Figure 7C, middle).   172 

 173 
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 174 
Multi-Animal Tracking with Optogenetic Stimulation 175 
 176 
To demonstrate how BonZeb can be used for high-throughput behavioral analysis with neural 177 

circuit manipulations, we developed a novel multi-animal optogenetic stimulation assay 178 

(Figure 8A). The setup allowed us to deliver stimulation to multiple fish simultaneously and 179 

track each fish’s trajectory over time (Figure 8B, Figure 8C). Experimental animals that 180 

expressed channelrhodosin-2 in glutamatergic neurons displayed a marked increase in 181 

locomotor activity during periods of optogenetic stimulation compared to control animals 182 

(Figure 8D). We averaged across 2-minute periods within an experiment, starting 30 seconds 183 

before and ending 30 seconds after each stimulation period, and found the mean 184 

instantaneous velocity of experimental animals to be greater than control animals during 185 

stimulation (Figure 8E). We examined the total distance travelled when stimulation was ON 186 

compared to when stimulation was OFF across the entire experiment for both experimental (n 187 

= 15) and control animals (n = 15). Using a mixed ANOVA, we found a significant effect for 188 

group (F1,28 = 27.42, p < 0.001), a significant effect for stimulation (F1,28 = 33.66, p < 0.001), 189 

and a significant interaction between group and stimulation (F1,28 = 45.84, p < 0.001). Pairwise 190 

comparisons using paired t-tests revealed that for the experimental animals, the total distance 191 

travelled for stimulation ON (M = 442.85, SD = 127.31) was significantly higher compared to 192 

stimulation OFF (M = 214.73, SD = 43.53; t14 = 6.44, p < 0.001), whereas the total distance 193 

travelled for the control animals during stimulation ON (M = 225.78, SD = 32.36) was 194 

significantly less than stimulation OFF (M = 243.37, SD = 21, t14 = 2.2, p = 0.045; Figure 8F). 195 

 196 
Closed-loop Visual Stimulation during Calcium Imaging 197 
 198 
To demonstrate how BonZeb can be used in combination with techniques for imaging neural 199 

activity, we implemented a one-dimensional closed-loop OMR assay during two-photon 200 

calcium imaging. We performed volumetric calcium imaging in the hindbrain (500 x 500 x 63 201 

µm) of a fish expressing GCaMP6f throughout the brain during OMR stimulation12. We imaged 202 

at 2.7 Hz using an objective piezo and resonant scanning (9 z-planes, 7 µm spacing). OMR 203 

stimulation was presented to one side of the fish using a projector (Figure 9A). We found that 204 

fish consistently produced swims when forward moving gratings were presented (Figure 9B). 205 

We used an automated ROI extraction method, based on the CaImAn analysis package13, to 206 

find 25 neuronal ROIs in the hindbrain for each imaged z-plane recorded (Figure 9C). We 207 

observed an increase in neuronal activity across planes during swim bouts, in agreement with 208 
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previous studies where hindbrain activity was shown to be highly correlated with 209 

swimming5,14,15 (Figure 9D). 210 

Discussion 211 
 212 
Behavioral tracking systems for larval zebrafish have previously been developed using both 213 

commercial and open-source programming languages. ZebraZoom, written in MATLAB, 214 

provides methods for high-speed tracking and behavioral classification16. Additionally, the 215 

open-source Python program Stytra performs high-speed open-loop and closed-loop tracking 216 

of larval zebrafish17. BonZeb provides a unique tracking solution for zebrafish in that it inherits 217 

Bonsai’s framework, uses a high-performance compiled programming language (C#), and 218 

operates through a visual programming interface. BonZeb also provides a suite of fully 219 

developed visuomotor assays that cover many existing needs for zebrafish researchers.  220 

 221 
We demonstrate that BonZeb can perform high-speed online tracking during virtual open-loop 222 

predator avoidance, OMR, and prey capture assays. Larvae produced characteristic J-turns, 223 

slow approach swims, and eye convergence in response to a small prey-like stimulus in virtual 224 

open-loop, consistent with previous findings from naturalistic and virtual prey capture 225 

studies18,19,20. In response to optomotor gratings, larvae continually produced turns in the 226 

direction of the stimulus, similar to what has been described previously5,9. In our predator 227 

avoidance assay, larvae displayed rapid directional escape behavior when looming stimuli 228 

were presented to either side of the fish in agreement with prior results8,21. In the multi-animal 229 

OMR assay, we used group behavior to control the direction of optic flow while performing 230 

simultaneous online tail tracking for each fish. In the multi-animal prey capture experiment, 231 

numerous virtual prey stimuli, presented from below, elicited J-turns toward prey targets across 232 

all individuals. As expected, fish displayed much tighter swimming trajectories in the prey 233 

assay compared to the long swimming trajectories fish produced in the OMR assay.  234 

 235 
The head-fixed assays we developed for BonZeb allow for closed-loop optomotor stimulation 236 

in one or two dimensions. In our one-dimensional closed-loop assay, we found that fish 237 

produced more bouts more frequently under low gain conditions, with individual bouts having 238 

longer durations and higher tail beat frequency compared to bouts generated in high gain 239 

conditions. These results agree with previous research that also investigated the effect of 240 

visual reafference mismatching on optomotor swimming10,14. Our method for head-fixed two-241 

dimensional closed-loop visual feedback builds on the methods of previous research to provide 242 
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two-dimensional, closed-loop visual feedback to multiple animals simultaneously11,22. When 243 

presented with randomized initial starting orientations, larvae consistently responded to the 244 

OMR stimulus by swimming in the direction of optic flow. Swim bouts were found to align the 245 

stimulus orientation toward the animal’s heading direction, in agreement with previous 246 

results11. We also found that larvae increased their tail beat frequency as the stimulus 247 

orientation neared the heading angle. 248 

 249 
Bonsai provides a convenient framework for BonZeb to integrate with external devices. We 250 

demonstrate this feature with a novel optogenetics assay as well as closed-loop OMR 251 

stimulation during calcium imaging. BonZeb’s flexibility in creating tracking pipelines and 252 

support of hardware integration allows new users to rapidly develop and implement complex 253 

behavioral assays. An exciting future direction is the incorporation of BonZeb’s video 254 

acquisition, behavioral tracking, and stimulation capabilities with more complicated 3D visual 255 

rendering pipelines using the recently developed BonVision package. This combination would 256 

allow the creation of complex immersive environments for virtual open and closed-loop 257 

approaches23. In summary, BonZeb provides users with a suite of fast, adaptable and intuitive 258 

software packages for high-resolution larval zebrafish tracking and provides a diverse set of 259 

visuomotor assays to investigate the neural basis of zebrafish behavior.  260 

 261 
Methods 262 
 263 
BonZeb Installation and Setup 264 
 265 
A detailed manual for installation, setup and programming in BonZeb can be found on GitHub 266 

(https://github.com/ncguilbeault/BonZeb). Briefly, users will need to download and install 267 

Bonsai (https://bonsai-rx.org/docs/installation) and the packages required to run BonZeb 268 

workflows. Bonsai Video and Bonsai Vision packages are used for video acquisition and video 269 

analysis, Bonsai Shaders is used for OpenGL graphics rendering, and Bonsai Arduino is used 270 

for communication with Arduino microcontrollers. Packages for BonZeb can be downloaded 271 

from Bonsai’s built-in package manager.  272 

 273 
Video Acquisition 274 
 275 
BonZeb can be used with a variety of cameras already supported by Bonsai. The FlyCapture 276 

package integrates FLIR cameras and the PylonCapture package integrates Basler cameras. 277 

As well, the Bonsai Vision package offers access to DirectShow driver-based cameras, such 278 
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as USB webcams. We have developed packages to incorporate Allied Vision Technologies 279 

(AVT) USB 3.0 cameras, Teledyne DALSA GigE cameras, and CameraLink cameras that use 280 

Euresys frame grabber boards. Bonsai uses OpenCV for video acquisition and video 281 

processing. Thus, our packages use the same implementation of OpenCV structures, formats, 282 

and data types. These packages are written in the native C#/.NET language underlying 283 

Bonsai’s framework. Our Allied Vision, Teledyne DALSA, and Euresys packages utilize the 284 

software development kits (SDK) and .NET libraries (DLLs) provided by the manufacturers to 285 

acquire, process, and display frames in Bonsai. Each of our video capture packages offers 286 

unique properties for controlling the connected camera’s features. For example, the 287 

VimbaCapture module from the Allied Vision package allows users to control features of an 288 

AVT camera such as frame rate, exposure, black level, gain, and gamma. The output is a 289 

VimbaDataFrame, containing the image, a timestamp, and a frame ID associated with each 290 

image. Similarly, the SaperaCapture module performs the same control and output functions 291 

for Teledyne DALSA GigE cameras. The properties of each module can be changed 292 

dynamically. The ability to modify the camera’s specific features on the fly enables users to 293 

quickly optimize the camera’s acquisition properties with respect to their specific imaging 294 

requirements. The MultiCamFrameGrabber module from the Euresys Frame Grabber package 295 

allows users to specify properties such as the ConnectionType, BoardTopology, and 296 

CameraFile. While this module does not support dynamic changes to the specific camera’s 297 

acquisition features, users can modify the camera file for their camera prior to running Bonsai 298 

to adjust the camera’s acquisition settings. The MultiCamFrameGrabber module should be 299 

compatible with any CameraLink camera that is supported by a Euresys frame grabber board.  300 

 301 
Behavioral Tracking 302 
 303 
BonZeb's package for behavioral tracking is written in C#/.NET and utilizes OpenCV data 304 

types for efficient image processing and analysis. We built a CalculateBackground module that 305 

computes the background as the darkest or lightest image over time (Algorithm 1). This 306 

operation works by comparing each individual pixel value of the gray scale input image with 307 

the pixel values of a background image contained in memory. The module updates the internal 308 

background image only if the pixel value of the input image is greater than the corresponding 309 

pixel value of the background image. In this way, if the subject for tracking is darker than the  310 

background and the subject has moved, the output of the CalculateBackground node will 311 
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consist of a background image that has successfully removed the subject. By changing the 312 

PixelSearch property, users can set the module to maintain either the darkest or lightest pixel 313 

values in the input image. The optional NoiseThreshold parameter can be set to modify the 314 

background calculation such that the pixel value of the input image must be greater than or 315 

less than the pixel value of the background and some additional noise value. This background 316 

calculation method offers advantages over Bonsai’s pre-existing methods for background 317 

calculation because it enables rapid background subtraction and only requires a small amount 318 

of movement from the animal to obtain a reliable background image.  319 

 320 
We also provide a module for performing efficient centroid calculation using the 321 

CalculateCentroid module. This module takes an image as input (usually represented as the 322 
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background subtracted image) and finds an animal's centroid using the raw image moments or 323 

by finding the largest binary region following a binary region analysis. The method for centroid 324 

calculation is set by the CentroidTrackingMethod property. The ThresholdValue and 325 

ThresholdType properties set the value of the pixel threshold and the type of threshold applied 326 

(binary threshold or inverted binary threshold). If RawImageMoments is used, CalculateCentroid 327 

calculates the centroid using the center of mass of the entire binary thresholded image. The 328 

LargestBinaryRegion method performs a contour analysis on the thresholded image to find the 329 

contour with the largest overall area. This method utilizes the MinArea and MaxArea properties 330 

to discard contours whose area lies outside of the defined range. The result of the 331 

CalculateCentroid operation using the largest binary region method is the centroid of the 332 

contour whose area is the largest within the allowed range of possible areas. In most 333 

experiments, the LargestBinaryRegion method will be more robust against image noise than 334 

the RawImageMoments method.  335 

 336 
The centroid and the image can then be combined and passed onto the CalculateTailPoints 337 

module, which fits points along the tail using an iterative point-to-point contrast detection 338 

algorithm seeded by the centroid. Two pre-defined arrays are calculated containing the points 339 

along the circumference of a circle with a given radius centered around the origin. The first 340 

array consists of points along a circle whose radius is equal to the DistTailBase property. 341 

When the HeadingDirection property is negative, the most rostral tail point is found by 342 

searching the first array, whose points have been shifted such that the origin is at the centroid. 343 

If the HeadingDirection is positive, the first tail point is taken as the point in the array whose 344 

angle from the centroid corresponds to the angle in the opposite direction provided by the 345 

HeadingDirection. For subsequent tail points, a second array that contains points along the 346 

circumference of a circle with a radius equal to the DistTailPoints property is used. A subset 347 

of points in this array are calculated and searched for subsequent tail points. This subset of 348 

points corresponds to an arc with length determined by the RangeTailPointAngles property. 349 

The midpoint of the arch is determined by the point in the array where the angle is closest to 350 

the angle calculated between the previous two tail points. 351 

 352 
Three different contrast-based point detection algorithms can be selected for calculating tail 353 

points in the CalculateTailPoints module specified by the TailPointCalculationMethod 354 

property. The PixelSearch option is the simplest of the three algorithms and works by taking 355 
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the darkest or lightest pixel within the array of points. The WeightedMedian method involves 356 

taking the median of the points whose pixel values are weighted by the difference from the 357 

darkest or lightest pixel value. The CenterOfMass method calculates the center of mass using 358 

the difference of each pixel value from the darkest or lightest pixel value and taking the point in 359 

the array that is closest to the center of mass. All three algorithms can calculate the 360 

corresponding tail points of the fish efficiently, however, differences between each algorithm 361 

will make one or another more desirable depending on the specific needs of the application. 362 

While the PixelSearch method is faster than the other two methods, the calculated tail points 363 

tend to fluctuate more between successive frames. The WeightedMedian and CenterOfMass 364 

methods tend to reduce the amount of frame-to-frame fluctuations but take longer to compute. 365 

Despite the minor differences in computational speed, all three algorithms can reliably process 366 

images with 1 MP resolution acquired at 332 Hz. Changing the PixelSearchMethod property of 367 

the CalculateTailPoints function will determine whether the algorithm searches for the 368 

lightest or darkest pixel values in the image. How many tail points are included in the output 369 

depends on the value given to the NumTailSegments property, such that the number of points in 370 

the output array is the NumTailSegments value plus 2. The array is ordered along the rostral-371 

caudal axis, from the centroid to the tip of the tail. Lastly, the CalculateTailPoints function 372 

contains the optional OffsetX and OffsetY properties which allows users to offset the final x 373 

and y coordinates of the calculated tail points.  374 

 375 
The output of the CalculateTailPoints is used to extract information about the tail curvature 376 

using the CalculateTailCurvature module. This function converts an array of points along the 377 

tail, P = [(x0, y0), ..., (xn, yn)] (ordered from the most rostral to the most caudal), into an array of 378 

values Θ = [θ1, ..., θn].  The values in the output array correspond to the angles between 379 

successive points in the input array normalized to the heading direction. The heading direction 380 

(θh) is given as the angle between the second point in the array (the most rostral tail point) and 381 

the first point (the centroid): 382 

 383 
 384 
where (xi, yi) is the ith point along the tail and atan2 is an inverse tangent function that 385 

constrains θh such that -π < θh ≤ π. Each point in the array is translated by an amount that is 386 

equivalent to translating the centroid to the origin. The heading angle is used to rotate each 387 

point in the translated array such that the first angle in the output array is always 0: 388 
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 389 

 390 
 391 
The length of the output array is equivalent to the length of the input array (number of tail 392 

points) minus 1. One final computation is performed to normalize the angles. This involves 393 

iterating through the entire array and offsetting an angle in the array by 2π if the absolute 394 

difference between the current angle and the previous angle is greater than π. This ensures 395 

that the angles across all tail segments are continuous and removes disparities between 396 

successive angles when relative angles change from -π to π.  397 

 398 
The output of the CalculateTailCurvature module can then be passed onto the 399 

DetectTailBeatKinematics module which outputs a TailKinematics data structure containing 400 

peak amplitude, tail beat frequency, and bout instance. The algorithm used by the 401 

DetectTailBeatKinematics module (Algorithm 2) works by comparing the current tail angle to 402 

an internal memory of the minimum and maximum tail angle over a running window. The 403 

difference between the current tail angle and either the maximum or minimum tail angle is 404 

used to compare the current tail angle to a threshold, specified by the BoutThreshold property. 405 

If the difference exceeds this threshold, then the algorithm sets the bout detected value to true 406 

and begins searching for inflection points in the stream of input data. The time window, 407 

specified by the FrameWindow property, determines how many tail angle values to maintain in  408 

memory and how many times the counter variable, initialized at the start of a bout and 409 

incremented by 1 for each frame a bout is detected, should increment while continuing to 410 

search for successive points in the input stream. When a bout is detected, if the difference 411 

between the current tail curvature and the maximum or minimum value is less than or greater 412 

than the threshold value set by the PeakThreshold, then the algorithm begins searching for 413 

inflection points in the opposite direction and the peak amplitude is set to the maximum or 414 

minimum value. If more than one inflection point has been detected within a single bout, then 415 

the tail beat frequency is calculated by dividing the FrameRate property by the number of  416 

frames between successive peaks in the input data. When the counter variable exceeds the  417 

specified FrameWindow, the counter variable resets, the bout instance is set to false, and the 418 

peak amplitudes and tail beat frequency are set to 0. 419 

 420 
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The output of the CalculateTailPoints function can be used to find the coordinates of the 421 

eyes using the FindEyeContours module. The FindEyeContours module takes a combination of 422 

the array of tail points and a binary image. It processes the image using the output of the 423 

CalculateTailPoints function to calculate the binary regions corresponding to the eyes. To 424 

maintain consistency across our package and the Bonsai Vision package, the output of the 425 

FindEyeContours module is a ConnectedComponentCollection, the same output type as the 426 

BinaryRegionAnalysis module, which consists of a collection of non-contacting binary regions 427 
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called “connected components”. The algorithm for finding the eyes starts by performing a 428 

contour analysis on the input image, the parameters of which can be specified using the Mode 429 

and Method properties to optimize the contour retrieval and contour approximation methods,  430 

respectively. Once all of the contours in the image are acquired, contours whose area lie 431 

outside the range of areas provided by the MinArea and MaxArea properties and whose 432 

distance from the centroid of the tracking points lies outside the range of distances given by 433 

the MinDistance and MaxDistance properties, are discarded from further analysis. The 434 

remaining contours are then ordered by centering their position around the centroid of the tail 435 

tracking points, rotating each contour to face forward with respect to the heading angle, and 436 

calculating the absolute difference between the heading angle and the angle between the 437 

centroid and the contours’ centroid. The array of contours is ordered in ascending order with 438 

respect to the difference between the angle to the centroid and the heading angle. The 439 

algorithm continues to discard regions that do not correspond to the eyes by discarding 440 

regions that lie outside the AngleRangeForEyeSearch property, which is centered around the 441 

heading angle. The contours are then ordered by their angles once more, such that the final 442 

ConnectedComponentCollection consists of the left eye and right eye, respectively. The 443 

algorithm also provides the additional FitEllipsesToEyes property to allow users to fit ellipses 444 

to the eyes.  445 

 446 
The output of the FindEyeContours module can be combined with the output of the 447 

CalculateTailPoints function and provided as input to the CalculateEyeAngles function to 448 

calculate the convergence angles of the left and right eye with respect to the heading angle.     449 

For each eye, the function calculates the point p = (x, y) whose distance from the origin is 450 

equal to the length of the binary region’s major axis, lM, and whose angle from the origin 451 

corresponds to the orientation of the major axis, θM: 452 

 453 
 454 
The point is then rotated with respect to the heading angle and the new angle between the 455 

point and the origin, θ∗, is calculated: 456 

 457 
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 458 
The orientation of the binary region’s major axis orientation is always between 0 and π. This 459 

poses a problem for calculating the orientation of the eyes with respect to the heading 460 

direction, which is between 0 and 2π, because the orientation of the eyes needs to be in a 461 

consistent direction with respect to the heading angle. The CalculateEyeAngles module 462 

accounts for this by checking which direction the angle of the eye faces with respect to the 463 

heading direction and then offsets the angle by π if the eye angle is initially calculated in the 464 

opposite direction. Alternatively, the heading angle, derived from the CalculateHeadingAngle 465 

module, can be substituted for the array of tail points as input into the CalculateEyeAngles 466 

function to determine the angles of the eyes with respect to heading angle if only the centroid 467 

and heading angle data are available. A combination of the array of tail points, generated by 468 

the CalculateTailPoints operation, and the eye contours, generated by the FindEyeContours 469 

function, can be passed as input to the CalculateHeadingAngle module to calculate a more 470 

accurate representation of the heading angle using the angle between the centroid and the 471 

midpoint between the centroids of the two eyes. The CalculateHeadingAngle module, which 472 

tracks the cumulative heading angle over time, also has an option to initialize the heading 473 

angle to 0 at the start of recording, which can be set with the InitializeHeadingAngleToZero 474 

property. 475 

 476 
Visual Stimulus Library 477 
 478 
We used the Bonsai Shader package and OpenGL to compile a library of visual stimuli that 479 

can be used for closed-loop and virtual open-loop assays. Virtual open-loop visual stimuli are 480 

updated based on the position and heading direction of the animal. The library contains the 481 

following stimuli: looming dot, optomotor gratings, phototaxic stimuli, optokinetic gratings, 482 

single or multiple prey-like small dots, and whole field luminance changes (black and white 483 

flashes). Additionally, we have developed a method for closed-loop stimulation of head-484 

restrained animals using methods we have developed for analyzing the tail curvature of head-485 

restrained larval zebrafish to estimate changes in position and heading direction. We 486 

demonstrate how to use this method to provide head-fixed larval zebrafish with one-487 

dimensional or two-dimensional closed-loop OMR stimulation. Our method for closed-loop 488 

OMR stimulation in head-fixed animals can be easily extended to work with other stimuli such 489 

as the looming dot stimulus, prey stimulus, and multi prey stimulus. 490 

 491 
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Calibrating the display device to the camera involves identifying the areas of the display that 492 

correspond to the camera’s field of view (FOV). To do so, users need to align the edges of a 493 

projected box onto the edges of the camera’s FOV. Users can either remove the IR filter on the 494 

camera to allow the image from the display to show up on the camera, or use an object, such 495 

as a translucent ruler, as a common reference to align the edges of the projected box to the 496 

edges of the camera’s FOV. We developed a fast and reliable method to map this area using 497 

the DrawRectangle module, which allows users to draw a rectangle onto an input image and 498 

outputs a CalibrationParameters construct. The outputs of the CalibrationParameters can 499 

then be mapped directly onto a stimulus to modify the area the stimulus is presented to. By 500 

drawing a simple rectangle shader onto a specific area of the display, the user can then 501 

determine the area of the projector that corresponds to the camera’s FOV. 502 

 503 
Virtual Open-Loop and Closed-Loop Setup 504 
 505 
We implemented an established optomechanical configuration to record behavior of fish and 506 

project computer generated stimuli from below5,8,9. This setup included a projector for visual 507 

stimulation, an infrared backlight for fish illumination, a cold mirror and a high-speed camera 508 

equipped with a long-pass filter. A Sentech STC-CMB200PCL CameraLink camera (Aegis 509 

Electronic Group, Inc.) was used. The camera was integrated using a GrabLink Full XR Frame 510 

Grabber (Euresys Inc.). This configuration allowed us to acquire 1088 x 1088 resolution frames 511 

at 332 Hz. We also used the same configuration to acquire 640 x 480 resolution frames at 700 512 

Hz. We used a fixed focal length (30 mm) lens (Schneider-Kreuznach) equipped with a long-513 

pass filter (Edmund Optics) to block out the visible light from back-projected stimuli presented 514 

from below the camera. A high-definition, 1920 x 1080, 60 Hz, DLP pico projector (P7, AAXA 515 

Technologies Inc.) was used for visual stimulation and a 25 x 20 cm cold mirror (Knight 516 

Optical) reflected visible light from the projector upwards to the bottom of the platform. An 850 517 

nm LED array (Smart Vision Lights) provided tracking light and was placed underneath the 518 

cold mirror. The platform consisted of a 6 mm thick transparent polycarbonate sheet (20 cm x 519 

22 cm), with mylar diffusion paper placed on top for back projection. The workstation computer 520 

was equipped with an Intel Core i9-9900K processor, an ASUS ROG GeForce GTX 1060 521 

graphics card, and 64 GB of RAM. 522 

 523 
Virtual Open-Loop Looming Stimulation 524 
 525 
Fish were placed in a 6 cm watch glass inside a 10 cm petri dish. Both the petri dish and watch 526 
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glass were filled with filtered system. The water was 5 mm in depth. Looming stimulation trials 527 

were 20 seconds long. The angular size to speed ratio (l/v) of the looming stimulus was 90 ms. 528 

At the start of the trial, the looming stimulus was shown for 10 seconds without expansion. 529 

After 10 seconds, the looming stimulus began to expand after which the size was truncated at 530 

120o ~13 seconds into the trial. Looming stimuli were positioned 90o to the left or right of the 531 

fish and 1 cm away from the centroid. The position of the looming dot was calculated using the 532 

position and heading angle of the fish. Escapes were automatically detected by selecting the 533 

bouts whose max velocity exceeded 15 cm/s. Individual escape trajectories were calculated by 534 

taking the change in coordinates from the start of the bout. The coordinates were rotated so 535 

that the heading angle at the start of the bout faced the same direction in all cases. We 536 

calculated the change in heading from the start of the bout to the time the first change in peak 537 

amplitude was detected to obtain the max initial heading angle. 538 

 539 
Virtual Open-Loop OMR Stimulation 540 
 541 
We used sinusoidal gratings with a spatial frequency of 1 cm and a velocity of 1 cm/s. The 542 

orientation of the optomotor gratings was calculated using the heading angle of fish. The 543 

position of the fish was used to calculate the pivot point for changing the orientation of the 544 

gratings. Trials were 1-minute long and consisted of continuous OMR stimulation 90o leftward 545 

or rightward. 546 

 547 
Virtual Open-Loop Prey Stimulation 548 
 549 
Virtual prey stimuli were presented in 1-minute trials. Prey stimuli moved along an arc of 120o 550 

spanning 60o to the left and right of the fish in sinusoidal motion. The prey stimuli were 551 

positioned 5 mm away from the fish and were < 1 mm in diameter. The position of the prey 552 

was calculated using the centroid coordinates and the heading angle. 553 

 554 
Behavioral Clustering of Virtual Prey Responses 555 
 556 
We used hierarchical clustering to separate virtual prey responses into different bout classes. 557 

We calculated four kinematic parameters for each bout (mean tail beat frequency, bout 558 

integral, bout standard deviation, and max tail amplitude). For the clustering analysis, we 559 

ignored the specific left-right direction of the bout by taking the absolute value of the bout 560 

integral and max tail amplitude. We calculated the average silhouette score across bouts using 561 

a range of models with clusters from 2 – 10. We used the model which produced the maximum 562 
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silhouette score. When calculating the mean tail angle for each bout, bouts were normalized 563 

and plotted such that the bout integral was positive. The identities of the bout clusters we 564 

resolved (forward swims, routine turns, and J-turns) were determined by comparing the results 565 

of our analysis to the results of previous literature24,25. We then decomposed the normalized 566 

bouts in the J-turn cluster into unnormalized left-biased and right-biased J-turns using the sign 567 

of the bout integral to determine the direction. We calculated the prey yaw angle by taking the 568 

position of the virtual prey stimulus with respect to the position and heading angle of the fish at 569 

the start of each J-turn. 570 

 571 
Multi-Animal Tracking 572 
 573 
For multi-animal tracking with optomotor stimulation, we used sinusoidal gratings with a spatial 574 

frequency of 1 cm and a velocity of 1 cm/s. We built a simple protocol that calculated the 575 

center of mass of the group by taking the average of all tracked centroids. When the group’s 576 

center of mass entered the leftmost quarter of the arena, the direction of the OMR stimulus 577 

updated to move rightwards. When the center of mass was detected in the rightmost quarter of 578 

the arena, the direction of the stimulus changed to travel leftwards.  579 

 580 
For multi-animal tracking with virtual prey, we projected 6 virtual prey stimuli ~1 mm in 581 

diameter. Each virtual prey was programmed to move in a paramecia-like manner, such that 582 

prey would move in a specific direction for a randomly determined duration, followed by a brief 583 

pause and then movement in a different direction. Trials were 1-minute long. J-turns in 584 

response to virtual prey stimulation were manually identified in the video by a human observer. 585 

 586 
To calculate the identities of the fish, we developed a custom post-processing analysis pipeline 587 

that could determine the identities in retrospect. We computed the Euclidean distance between 588 

all centroids at successive points in time and performed a linear sum assignment to minimize 589 

the total distance between all pairs of centroids. When fish came into contact, their centroids 590 

merged into a single centroid during online calculation. This led to fewer centroids than the 591 

expected number of centroids calculated at those time points. Under these conditions, we 592 

calculated which centroid at the current time point minimized the distance between the 593 

unassigned centroid in the previous time point and all current centroids. We then assigned this 594 

centroid to the identity of the unassigned centroid.  595 

 596 
 597 
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One-Dimensional Closed-Loop OMR 598 
 599 
The one-dimensional closed-loop OMR assay we implemented was based on a previous 600 

study10. The one-dimensional closed-loop sensory feedback was calculated using the following 601 

transformation,  602 

 603 
 604 
where the stimulus velocity (Vs) at time t was the result of the baseline velocity (VB) minus the 605 

swim vigor. The swim vigor was calculated as the derivative of the tail angle (dT/dt) integrated 606 

over a 15 ms time window with a decay constant of 9 ms. The exponential function served to 607 

simulate the effects of acceleration and deceleration during bursts and glides. The tail angle 608 

derivative was multiplied by the instance of a detected bout (I) at time t, where I(t) equals 1 609 

when a bout is detected and 0 otherwise. Finally, the swim vigor was multiplied by a constant 610 

gain factor.  611 

 612 
For this head-fixed preparation, fish were mounted in 2% low-melting point agarose inside of a 613 

4 cm petri dish. Fish were positioned roughly 5 mm above the bottom of the dish. After letting 614 

the agarose set for ~5-10 minutes, we added filtered system water to a depth of 8 mm. We 615 

freed the tails of the fish by cutting away the agarose caudal to the swim bladder with a razor 616 

blade. Fish recovered from mounting for 4 – 12 hours in the agarose before testing.  617 

 618 
Fish were stimulated with a square wave grating with a spatial frequency of 10 mm. We initially 619 

presented fish with a static grating for 30 seconds. Following this initial waiting period, a 10 620 

second long trial was initiated where the gratings moved at a baseline velocity of 10 mm/s and 621 

the fish’s swim vigor was used to simulate closed-loop visual feedback. After the 10 second 622 

trial, the motion of the gratings ceased and a 30 second no motion inter-trial-interval 623 

commenced. For each trial, the gain factor was set to either 0.5 (low), 1 (medium), and 1.5 624 

(high) to provide varying degrees of perceived visual feedback. The calculation of swim vigor 625 

was set such that in trials with a medium gain factor of 1, a tail beat frequency of 20 626 

Hzapproximated a 20 mm/s forward translation, resulting in a final -10 mm/s stimulus velocity. 627 

Under low gain conditions (0.5), a tail beat frequency of 20 Hz only resulted in 10 mm/s 628 

forward translation, transforming the final stimulus velocity into 0 mm/s. When the gain was 629 

high (1.5), a bout with a 20 Hz tail beat frequency resulted in 30 mm/s forward motion, 630 
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generating a -20 mm/s visual feedback. Each gain value was presented in three consecutive 631 

trials, before switching to a different gain. The first three trials had a medium gain, followed by 632 

low gain and then high gain. After the first nine trials, fish were presented with medium gain, 633 

followed by high gain and then low gain. Blocks of 18 trials were repeated three times for a 634 

total of 54 trials for each fish.  635 

 636 
Similar to previous work10, we used normalized values to determine the relative change to a 637 

fish’s behavior under different gain conditions. To do this, the bout kinematics for each fish 638 

were divided by the average value for that fish across all trials. We then averaged the 639 

normalized kinematics of a single fish across all trials with the same gain value.  640 

 641 
Multi-Animal Two-Dimensional Closed-Loop OMR 642 
 643 
The design of the two-dimensional closed-loop OMR assay was inspired by work in a previous 644 

study11. We used the following transformation to update the velocity of the stimulus: 645 

 646 
 647 
The stimulus velocity (Vs) at time t was calculated as the base velocity (VB) minus the tail beat 648 

frequency (F) multiplied by a constant gain factor. The velocity of the OMR stimulus along a 649 

single dimension was directly proportional to the online calculated tail beat frequency. A 650 

moving average (box car filter) was applied to the tail beat frequency. This was used to 651 

simulate the effects of bursting and gliding during swimming. The velocity of the stimulus also 652 

depended on the orientation of the stimulus (θ) relative to the heading direction, where θ ∈ [-653 

180o, 180o). This term reaches a maximum value of 1 when the stimulus is perfectly aligned 654 

with the heading angle at 0o.  We calculated the orientation of the stimulus using the following 655 

equation, 656 

 657 
The angular velocity of the OMR stimulus (Vθ) was a function of the mean tail curvature (TC) 658 

along all calculated tail segments (s) at a given time t weighted by the inverse of time since the 659 

onset of the swimming bout (t0). The equation for angular velocity weighs the amplitude of the 660 
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mean tail curvature with the relative length of the swimming bout, such that the initial 661 

amplitudes of the swimming bout produced larger changes to the angular velocity compared to 662 

subsequent amplitudes.  663 

 664 
On a 10 cm petri dish, we mounted one fish at a time (4 total) in a 2 x 2 grid with all fish facing 665 

the same direction. Once the agarose was set for all fish, filtered system water was added. We 666 

inserted a laser-cut IR-transmitting black acrylic piece shaped like a cross to separate fish into 667 

quadrants. This was to ensure that fish could not see neighboring stimuli. We tested the four 668 

fish simultaneously, each presented with its own two-dimensional closed-loop OMR stimulus. 669 

We used a sinusoidal grating with a spatial frequency of 10 mm. We used a gain value of 1 for 670 

all trials. In a single test session, larvae were randomly presented with one of 8 grating 671 

orientations that were equally positioned around the unit circle [-180o to 135o]. After an initial 1-672 

minute period with static gratings, the gratings moved at a velocity of 10 mm/s for 30 seconds, 673 

after which both stimulus velocity and stimulus orientation were updated based on the fish’s 674 

behavior. Each initial starting orientation was presented to the fish four times for a total of 32 675 

trials.  676 

 677 
For calculating the probability density of stimulus orientations over time, we included all of the 678 

trials across all fish. The distribution of values for each time bin were determined by taking a 679 

snapshot of values at the point in time when the time bin started. The distribution of stimulus 680 

orientations at each point in time was normalized across trials. Stimulus orientations were 681 

binned into 45o samples. To compare the effects of stimulus orientation on bout kinematics, we 682 

used the stimulus orientation at the start of each bout. We grouped bouts based on their 683 

stimulus orientation into bins of 45o and performed a one-way ANOVA on the binned bouts. 684 

Finally, we used a polynomial regression to model the relationship between kinematics and 685 

stimulus orientation. A range of models were tested with degrees ranging from 1 – 10, and the 686 

model with the greatest change in explained variance was taken as the best model. 687 

 688 
Optogenetic Assay 689 
 690 
The optogenetic stimulation setup used a custom LED array arranged in a 3 x 3 grid of high-691 

powered blue LEDs (470 nm) that produced 0.9 mW/mm2 at the stage. The LED array was 692 

placed above and to the side of the platform and faced a 20 cm x 20 cm cold mirror (Knight 693 

Optical) angled at a 45o angle to direct the short wavelength light coming from the blue LED 694 

array towards the platform while transmitting IR light to the camera. A Basler ace acA1920-695 
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155uc (Basler AG) camera equipped with a lens (Edmund Optics) and long-pass filter 696 

(Edmund Optics) was used to record behavior at 200 Hz with a resolution of 1200 x 750. Four 697 

IR LED panels, each consisting of 12 LEDs (850 nm) provided behavior illumination (Autens IR 698 

Illuminator, Amazon). An Elegoo UNO R3 board connected via USB to the workstation was 699 

used to control the timing of LED illumination (50 Hz; 10 ms pulse width). The workstation was 700 

equipped with an Intel Core i7-6700K CPU, an EVGA GeForce GTX 1060 GPU, and 32GB of 701 

RAM. The platform of the behavioral assay consisted of a 19.5 x 14.5 cm transparent 702 

polycarbonate sheet with mylar diffusion paper placed on top. We tested 10 fish 703 

simultaneously by allowing them to freely swim in individual wells of 2.5 x 1.5 cm with a depth 704 

of 5 mm using a custom multi-well behavioral arena. All fish were tracked simultaneously in a 705 

multi-well plate, while providing timed stimulation light with a high-powered 470 nm LED array 706 

modulated by an Arduino microcontroller. We synchronized the output of the Arduino to the 707 

camera's frame rate (200 Hz) and delivered pulsed optical stimulation (50 Hz, 10 ms pulse 708 

width). We used fish expressing channelrhodosin-2 in glutamatergic neurons: 709 

Tg(vglut2a:Gal4)uot13; Tg(UAS:ChR2(H134R)-mCherry)s1986t. For each experiment, 5 710 

expressing and 5 non-expressing clutch-mates were placed pseudo randomly into one of the 711 

wells of the multi-well arena.  712 

 713 
Each experiment was 20 minutes long with stimulation given in periods of 1 minute with 1-714 

minute intervals of no stimulation. The beginning and end of the experiment had 30 second 715 

periods without stimulation. To calculate the mean velocity over stimulation periods, we 716 

averaged across all 2-minute periods for each fish and then averaged across fish to obtain the 717 

mean velocity over time for each group. We then calculated the cumulative distance travelled 718 

for each fish across all periods of stimulation ON and stimulation OFF separately. We used a 719 

mixed ANOVA design to compare experimental versus control animals (between group factor) 720 

and distance travelled during stimulation ON versus stimulation OFF (within group factor). We 721 

then conducted pairwise t-tests to compare the effects of stimulation ON/OFF within each 722 

group. 723 

 724 
 725 
 726 
Closed-Loop OMR During Calcium Imaging 727 
 728 
We modified the head-fixed closed-loop behavioral setup described above so that we could 729 

implement the same techniques under a two-photon microscope. We illuminated the tail of the 730 
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fish using a high-powered 850 nm LED (Thorlabs), placed above the stage and angled at 45o. 731 

We placed a small, 5 x 5 cm gold protected mirror, underneath the fish and angled it at 45o to 732 

reflect light towards the behavior camera. We used a Genie Nano M640 NIR camera 733 

(Teledyne DALSA), zoom lens (Navitar) and an IR long-pass filter (ThorLabs) to acquire video 734 

at 450 Hz with a resolution of 640 x 480. Visual stimuli were presented using a 1920 x 720, 60 735 

Hz, laser pico projector (MP-CL1A, Sony) onto a 10 x 10 cm screen made by adhering mylar 736 

diffusive paper to a 3D printed rectangular frame. A TTL signal from the microscope upon the 737 

start of scanning was sent to an Arduino Uno to synchronize imaging, visual stimulation, and 738 

the behavior camera. The Arduino, projector, and camera were controlled by a workstation 739 

with an Intel Core i7-4790 CPU, a Radeon R7 250 GPU, and 32GB of RAM.  740 

 741 
Fish expressing a pan-neuronal calcium indicator Tg(elavl3:GCaMP6f)jf1 were embedded in 742 

2% low melting point agarose with the caudal half of the tail free. To drive optomotor 743 

swimming, a square wave grating with a velocity of 1 cm/s and spatial frequency of 1 cm was 744 

projected onto a screen mounted parallel to the larval fish. We registered the scan trigger 745 

signal of the two-photon microscope with the analog pin of an Arduino. The state of the pin 746 

was monitored inside the Bonsai workflow and the rising edge of the analog signal was used to 747 

initiate data collection as well as presentation of a static OMR stimulus. After 15 seconds, the 748 

OMR stimulus began to move for 30 seconds. The stimulus velocity was updated dynamically 749 

using the feedback equation above with a gain of 1.  750 

 751 
Closed-Loop Round-Trip Latency 752 
 753 
Round-trip tests were conducted using a head-fixed larval zebrafish with closed-loop OMR 754 

stimulation. We used the same protocol described in the one-dimensional closed-loop methods 755 

section with the following modification. We rendered a black rectangle on top of the gratings 756 

that covered an area slightly larger than the fish’s head and body. In the upper left corner of 757 

this rectangle, we projected a square that flashed white when a bout was detected and black 758 

otherwise. The same digital signal from the bout detection algorithm was sent simultaneously 759 

to an Arduino-controlled LED that was visible to the camera to turn ON when a bout was 760 

detected. We used the same closed-loop feedback calculation as for the one-dimensional 761 

OMR experiment. We calculated the number of frames between when a bout was detected in 762 

the image and when the LED turned ON, as well as when a bout was detected and when the 763 

square from the projector flashed white. We then converted the number of frames to a time 764 
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delay in ms. 765 

 766 
Multi-Animal Tracking Performance  767 
 768 
For single animal tracking, we used the same virtual open-loop OMR assay described above 769 

and for multi-animal tracking with group sizes of 5, 10, 15 & 20 we used the same procedure 770 

as the multi-animal OMR assay. We conducted 3 separate tests for each group size. Each test 771 

was 2 minutes. Tracking data points were timestamped online. We then calculated the 772 

difference in timestamps between successive data points. For percent accuracy, we calculated 773 

the percentage of tracking data where no fish-to-fish contacts were detected. We used the 774 

same identity calculation method described in the multi-animal tracking section. The percent 775 

accuracy was calculated with the following equation, 776 

 777 
 778 
Finally, we calculated the average of the percent accuracy across all tests. 779 

 780 
Quantification and Statistical Analyses 781 
 782 
Statistical analyses of the data were performed in Python using custom scripts and imported 783 

functions from various python packages. NumPy and Pandas were used for processing data, 784 

organizing data, and performing numerical calculations. SciPy, Pingouin, and statsmodels 785 

were used for statistical analyses. Scikit-learn was used for clustering. Matplotlib and OpenCV 786 

were used in Python for generating data figures and plotting trajectories. Bonsai and BonVision 787 

was used to overlay text, tracking points and visual stimuli over raw video. Blender was used 788 

for 3D modelling. Raw data collected from BonZeb included tail curvature, heading angle, 789 

stimulus angle, position coordinates, bout instances, tail beat frequency, and peak amplitudes. 790 

We calculated the start and ends of individual bouts using the rising edge and falling edge of 791 

the bout detected signal. 15 ms before and after the start and end of each bout was included 792 

for analyses. We calculated the tail angle as the average curvature of the last 3 tail segments. 793 

All analyses scripts can be supplied upon request.  794 

 795 
 796 
 797 
 798 
 799 
 800 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 2, 2021. ; https://doi.org/10.1101/2021.03.02.433632doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.02.433632
http://creativecommons.org/licenses/by/4.0/


 26 

Animals 801 
 802 
All experiments were approved by the University of Toronto Local Animal Care Committee and 803 

adhered to the governance of the Canadian Council on Animal Care. The study was carried 804 

out in accordance with the ARRIVE guidelines. Zebrafish were raised and bred at 28o C on a 805 

14 hr light/10 hr dark cycle. Larvae were fed paramecia starting from 4 days post fertilization 806 

(dpf). A zebrafish strain recently obtained from large breeding ponds in Malaysia was used for 807 

free-swimming virtual open-loop and head-fixed closed-loop experiments (6-8 dpf). Larval fish 808 

(6-8 dpf) expressing channelrhodopsin-2 in glutamatergic neurons were used for the 809 

optogenetic assay: Tg(vglut2a:Gal4)uot13; Tg(UAS:ChR2(H134R)-mCherry)s1986t . Gal4uot13 was 810 

generated by injecting Cre RNA into one-cell stage embryos from a vglut2a:loxP-mcherry-loxP-811 

Gal4 line26. Tg(elavl3:GCaMP6f)jf1 larvae (6-8 dpf) were used for closed-loop OMR calcium 812 

imaging experiments.  813 

 814 
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Figures 
 
 
 
  

Figure 1. Overview of the behavioral feedback system. The behavioral feedback 
hardware consists of modular components based on a previous design5. High-speed 
cameras convey live video of behaving larval zebrafish to a workstation, which tracks the 
behavior of the fish and generates output signals to an external device to provide sensory 
stimulation. The workstation processes incoming video frames with BonZeb's customizable 
tracking pipeline. This pipeline transforms behavioral data into virtual open-loop stimulation 
for free-swimming fish or closed-loop stimulation for head-fixed fish. BonZeb can interface 
with Arduino boards, display devices, data acquisition boards, etc., for receiving or sending 
data. BonZeb also includes a library of common visual stimuli for closed-loop and open-loop 
visual stimulation. Components of the behavioral feedback system are not to scale. 
 
Figure 2. BonZeb inherits Bonsai's reactive architecture for processing data streams. 
(A) A video source node generates images over time. The video source can either be a 
continuous stream of images from an online camera device or a previously acquired video 
with a fixed number of frames. A series of transformation nodes are then applied to the 
original source sequence. Each transformation node performs an operation on the upstream 
observable sequence to produce a new observable sequence to downstream nodes. A 
typical pipeline consists of background subtraction, centroid calculation, tail point 
calculation, and finally, tail angle calculation. Nodes have a unique set of visualizers that 
provide the node’s output at each step. Each node has a set of properties associated with 
the output, such as a single coordinate, an array of coordinates, or an array of angles, 
which can be used for more sophisticated pipelines. (B) Bonsai workflow implementation of 
the above data processing pipeline. An additional node is attached at the end of the 
workflow to save the tail angles data to a csv file on disk. There are 4 different general 
classifications of nodes in Bonsai. Source nodes (green) generate new observable 
sequences and do not require inputs from upstream nodes. Transform nodes (blue) perform 
an operation on the elements of an upstream observable sequence to produce a new 
observable sequence that can be subscribed to by downstream nodes. Sink nodes (purple) 
perform side operations with the elements of the data stream, such as saving data to disk or 
triggering an external device. Sink nodes then pass along the upstream observable 
sequence to subscribed downstream nodes without modifying any of the elements of the 
upstream observable sequence. Combinator nodes (not shown here) are important for 
combining sequences and become crucial for more complex pipelines (see online manual 
for examples).  
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Figure 3. Free-swimming open-loop behavior. Individual freely-swimming zebrafish larva 
were presented with virtual open-loop visual stimuli while multiple behavioral metrics were 
recorded (332 Hz). The curvature along 14 tail segments, from the most rostral portion of 
the tail at the tail base to the most caudal portion of the tail at the tail tip, were calculated 
and averaged into 4 consecutive bins (cyan to magenta). The angle of the left (red) and 
right eye (green), the cumulative heading angle (yellow), the visual stimulus angle (black), 
tail beat frequency (orange), peak amplitudes (navy blue), and bout detection (gray) are 
displayed. (A) A looming dot stimulus (predator avoidance) produced a rapid escape turn 
followed by a burst swim and a marked divergence of the eyes (arrow). The location of the 
looming stimulus was fixed with respect to the heading direction and centroid position of the 
larvae such that the visual angle of the stimulus increased exponentially to a fixed size of 
the visual field. (B) During optomotor swimming, the direction of the OMR stimulus was 
fixed to the heading direction of the larvae and the point at which the OMR stimulus pivoted 
was fixed to the larva’s centroid. In this example, the OMR stimulus traversed 90o to the left 
of the heading direction of the fish, which consistently drove the fish to produce routine 
turns. (C) A small white dot on a black background was presented to larvae from below to 
create virtual prey stimuli. In this example, the prey stimulus moved along an arc with a 
fixed radius from the centroid. The velocity of the dot along the arc was defined by a 
sinusoidal function which reached a maximum of 100o/s directly in front of the larvae and 
reached a minimum of 0o/s at 60o to the left and to the right of the heading direction. Larvae 
displayed characteristic hunting behavior towards this stimulus by producing J-Turns when 
the stimulus was presented to the lateral parts of the visual field and slow, approach swims 
when the stimulus was presented in the frontal field. These hunting episodes were also 
characterized by convergence of the eyes throughout the hunting episode (arrow). Images 
of larvae in A, B & C were adjusted so they standout against the stimulus background. 
 
Figure 4. Visual stimulation drives specific behavioral kinematics. (A) Escape 
trajectories in the virtual open-loop looming dot assay when the looming dot was presented 
from the left (yellow) and from the right (magenta). Bottom left: max velocity (cm/s) with 
respect to the max initial heading angle (o) plotted for each bout. Bouts classified as 
escapes are colored red. Dashed red line represents the threshold value applied to the max 
velocity to select escape responses. Bottom right: probability density distribution for the max 
initial heading angle. (B) Cumulative heading angle over time in response to leftward (blue) 
and rightward (red) OMR stimulation. (C) Hierarchical clustering applied to bouts in 
response to virtual open-loop prey stimulation. Four kinematics parameters were calculated 
for each bout (mean tail beat frequency, bout integral, max tail amplitude, bout standard 
deviation). Left: silhouette plot showing the results of hierarchical clustering with 3 clusters. 
Dotted line represents silhouette index. Middle-left to right: kinematic parameters plotted for 
each bout color-coded by cluster. (D) Black lines: tail angle over time for every bout in each 
cluster. Colored lines represent the mean tail angle over time across all bouts in each 
cluster. Results from C and D were used to identify the three clusters as forward swims 
(red), routine turns (blue), and J-turns (green). (E) Bouts in the J-turn cluster were 
separated into left-biased and right-biased swims. Left: probability density distribution of 
prey yaw angles at the start of left-biased and right-biased swims in the J-turn cluster. Right: 
mean tail angle over time for left (yellow) and right (green) J-turns. 
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Figure 5. Multi-animal tracking during OMR and prey capture. (A) The position and tail 
curvature of 12 larvae tracked (332 Hz) during the presentation of an OMR stimulus. The 
direction of the OMR stimulus changed to traverse leftward or rightward depending on 
whether the center of mass of the group crossed into the rightmost quarter or leftmost 
quarter of the arena, respectively. Trajectories are individually color coded by fish and 
shaded by time. The tail curvature for each fish is represented as the average of the 3 most 
caudal tail segments. Post processing of the tail curvature data revealed sections of the 
data when fish physically contacted each other (red highlighted regions). The tail tracking 
results surrounding these encounters decreased in accuracy and occasionally produced 
tracking errors (arrow). (B) Freely swimming larvae in a group of 6 were tracked and 
presented with multi-prey stimuli projected from below. Virtual prey were programmed to 
produce paramecia-like behavior, defined as periods of forward movement, brief pauses, 
and changes in orientation. The linear velocity, distance, length of pause, angular velocity, 
and orientation were varied for each virtual prey. Larvae produced distinct J-turns in 
response to virtual prey (* = manually identified J-turn). 
 

Figure 6. One-dimensional head-fixed closed-loop OMR. The tail of a head-fixed fish 
was tracked (332 Hz) while presenting a closed-loop OMR stimulus with varying feedback 
gain values. (A) Example bouts taken for each gain value for a single fish. Fish were tested 
on 3 different gain values. Left: gain 0.5. Middle: gain 1.0. Right: gain 1.5. The stimulus 
velocity (black), tail angle (red), and tail beat frequency (orange) were recorded 
continuously throughout the experiment. The stimulus velocity changed in proportion to the 
swim vigor multiplied by the gain factor. Dotted lines indicate baseline value of 0. (B) An 
example of a single fish showing the tail beat frequency across trials. Left: tail beat 
frequency sorted by trial number. Right: same data as left with tail beat frequency sorted by 
gain. (C) Bout kinematics plotted as a function of gain factor.  
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Figure 7. Multi-animal two-dimensional closed-loop OMR. The tails of four head-fixed 
fish were tracked (332 Hz) while each fish was presented with a two-dimensional closed-
loop OMR stimulus. (A) Data collected for each fish included the stimulus velocity (black), 
stimulus orientation (green), tail angle (red) and tail beat frequency (orange). The stimulus 
velocity changed in proportion to the tail beat frequency and current stimulus orientation. 
The stimulus orientation changed with the tail angle. Trials were 30 seconds long and were 
preceded by a 1-minute rest period where only the stimulus velocity and stimulus orientation 
data were recorded. At the end of each trial, the orientation of the stimulus was reset to one 
of the 8 randomized start orientations. (B) Stimulus orientation over time. Left radial plot: 
stimulus orientation is plotted for all trials for a single fish. Trials are color-coded based on 
initial starting orientation and extend outwards from the origin as a function of time. Right 
heatmap: normalized histograms of stimulus orientations over time across fish (n = 16). 
Binning was 1 second for the x-axis and 45o for the y-axis. Far right plot: histogram and 
kernel density estimate of the distribution of orientations at the end of trials across all fish. 
(C) Bout kinematics and stimulus angular velocity are plotted for each bout as a function of 
stimulus orientation at bout onset. Orientations were divided into 45o bins and the median 
and standard deviation for each bin are plotted. A polynomial function was fit to each 
dataset. The mean bout tail angle and mean stimulus angular velocity were fit with 3rd 
degree polynomials (R2 = 0.223 and R2 = 0.256, respectively) whereas the mean bout tail 
beat frequency was fit with a 2nd degree polynomial (R2 = 0.05). 
 
Figure 8. Free-swimming multi-animal tracking during optogenetic stimulation. Ten 
larvae were tracked simultaneously (200 Hz) in a multi-well plate while being subjected to 
epochs of optogenetic stimulation. (A) 3D schematic of the optogenetic stimulation setup. 
Live video is processed by BonZeb, which sends commands to an Arduino to generate a 
digital signal for triggering a 470 nm LED array (0.9 mW/mm2 at the plate). Components of 
the optogenetic setup are not to scale. (B) Example of a single video frame. Data are color 
coded based on genetic background. (C) Example of trajectories over an entire 20-minute 
test session. (D) Instantaneous velocities for all fish plotted across the entire test session. 
Shaded regions represent periods when optogenetic stimulation occurred. 1-minute 
intervals of stimulation and no stimulation repeated throughout the assay with a 30 second 
no stimulation period occurring at the beginning and end of the assay. Left: instantaneous 
velocity of control larvae (n = 15). Right: instantaneous velocity of experimental larvae (n = 
15). (E) Mean instantaneous velocity averaged across all fish and all stimulation periods. 
Instantaneous velocity across each stimulation period was averaged for each fish and 
convolved with a box car filter of 200 samples. Bold line represents the mean and shaded 
region represents SEM. (F) Cumulative distance travelled during periods of stimulation ON 
(Stim+) and stimulation OFF (no stim).  
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Figure 9. Calcium imaging during closed-loop OMR. One-dimensional closed-loop 
optomotor gratings were presented to a head-fixed larva while simultaneously performing 
fast volumetric two-photon calcium imaging. (A) Single frame obtained from the behavior 
camera showing the larva’s tail with the OMR stimulus represented (stimulus spatial 
frequency was lower than depicted; 450 Hz tracking). The OMR stimulus was presented 
from the side and travelled from caudal to rostral. (B) Tail angle and stimulus velocity across 
the entire 1-minute trial. Movement of the closed-loop OMR stimulus began at 15 seconds 
and continued for 30 seconds. (C) Maximum intensity z-projection overlaid with neuronal 
ROIs found in the medial hindbrain. 25 ROIs were selected for each z-plane and color-
coded by depth. Automated ROI extraction was performed throughout the region enclosed 
in dotted red line which helped minimize the detection of non-somatic ROIs. (D) Z-scored 
ROI responses across the trial.  
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