Summary
Despite redundant cellular pathways to minimize translational errors, errors in protein synthesis are common. Pathways and mechanisms to minimize errors are classified as pre-ribosomal or ribosomal. Pre-ribosomal pathways are primarily concerned with the appropriate charging of tRNAs with their cognate amino acid. By contrast, the ribosomal decoding centre is considered ‘blind’ to mischarged tRNAs since these have cognate codon•anti-codon pairing. Here, we identified that in mycobacteria, deletion of the 16S ribosomal RNA methyltransferase gidB led to increased ribosomal discrimination of mischarged tRNAs. Discrimination only occurred in mycobacteria enriched from environments or genetic backgrounds with high rates of mistranslation. GidB deletion was necessary but not sufficient for reducing mistranslation due to misacylation. Analysis of new cryoEM structures of the M. smegmatis ribosomes derived from wild-type and gidB-deleted strains point to the interaction between the base methylated by GidB on the 16S RNA and an asparagine on the ribosomal S12 protein that when mistranslated to aspartate may be involved in altering translational fidelity. Our data suggest a mechanism by which mycobacterial ribosomes can discriminate mischarged tRNAs and that 16S rRNA differential methylation by GidB may act to prevent catastrophic translational error.
Competing Interest Statement
The authors have declared no competing interest.
Footnotes
Minor errors corrected in text and main figure files. Including additional funding acknowledgements.