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Abstract 25 

A detailed understanding of human gut microbial ecology is essential to engineer effective 

microbial therapeutics and to model microbial community assembly in health and disease. 

However, establishing generalizable insights into the functional determinants of microbial 

fitness in the gut has been a formidable challenge. Here we employ fecal microbiota 

transplantation (FMT) as an in natura experimental model to identify determinants of 30 

microbial colonization and resilience. Our findings reveal adaptive ecological processes 

that favor high-fitness populations with higher metabolic competence as the main driver 

of microbial colonization outcomes after FMT. We further show that while healthy 

individuals harbor both low-fitness and high-fitness populations, individuals with 

inflammatory bowel disease are typically depleted of low-fitness populations. These 35 

results offer a model to explain why common yet typically rare members of healthy guts 

can dominate under inflammatory conditions without any need for them to be causally 

associated with, or contribute to, such disease states. 
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Introduction 40 

The human gut microbiome is associated with a wide range of diseases and disorders 

(Almeida et al., 2020; Durack and Lynch, 2019; Lynch and Pedersen, 2016). However, 

mechanistic underpinnings of these associations have been difficult to resolve in part due 

to the diversity of human lifestyles (David et al., 2014) and the limited utility of model 

systems to make robust causal inferences for microbially mediated human diseases 45 

(Walter et al., 2020). 

Inflammatory bowel disease (IBD), a group of increasingly common intestinal disorders 

that cause inflammation of the gastrointestinal tract (Baumgart and Carding, 2007), has 

been a model to study human diseases associated with the gut microbiota (Schirmer et 

al., 2019). The pathogenesis of IBD is attributed in part to the gut microbiome (Plichta et 50 

al., 2019), yet the microbial ecology of IBD-associated dysbiosis remains a puzzle. 

Despite marked changes in gut microbial community composition in IBD (Joossens et al., 

2011; Ott et al., 2004; Sokol and Seksik, 2010), the microbiota associated with the 

disease lacks traditional pathogens (Chow et al., 2011), and microbes that are found in 

IBD typically also occur in healthy individuals (Clooney et al., 2021), which complicates 55 

the search for robust functional or taxonomic markers of health and disease states (Lloyd-

Price et al., 2019). One of the hallmarks of IBD is reduced microbial diversity during 

episodes of inflammation, when the gut environment is often dominated by microbes that 

typically occur in lower abundances prior to inflammation (Vineis et al., 2016). The sudden 

increase in the relative abundance of microbes that are common to healthy individuals 60 

suggests that the harsh conditions of IBD likely act as an ecological filter that prevents 

the persistence of low-fitness populations. Yet, in the absence of a complete 

understanding of the functional drivers of microbial colonization in this habitat, critical 

insights into the metabolic requirements of survival in IBD remains elusive. 

Understanding the determinants of microbial colonization has been one of the 65 

fundamental aims of gut microbial ecology (Costello et al., 2012; Messer et al., 2017). To 

overcome the difficulties of conducting well-controlled studies with humans, researchers 

have studied the determinants of microbial colonization of the gut in model systems, such 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 22, 2021. ; https://doi.org/10.1101/2021.03.02.433653doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.02.433653
http://creativecommons.org/licenses/by-nd/4.0/


as germ-free mice conventionalized with individual taxa (Lee et al., 2013) or a consortium 

of human microbial isolates (Feng et al., 2020). Despite their utility for hypothesis testing, 70 

simpler models do not capture the complex ecological interactions fostered by natural 

systems and thus the insights they yield do not always translate to human gut microbial 

ecology (Finucane et al., 2014; Ley et al., 2006). Between the extremes of well-controlled 

but simple mouse models and complex yet uncontrolled human populations, there exists 

a middleground that provides a window into the microbial ecology of complex human 75 

systems through a controlled perturbation: human fecal microbiota transplantation (FMT), 

the transfer of stool from a donor into a recipient’s gastrointestinal tract (Eiseman et al., 

1958). 

FMT complements laboratory models of environmental perturbation by colliding two 

distinct microbial ecosystems, and thus offers a powerful framework to study fundamental 80 

questions of microbial ecology, including the determinants of microbial succession and 

resilience (Schmidt et al., 2018). Here we use FMT as an in natura experimental model 

to investigate the ecological and functional determinants of successful microbial 

colonization of the human gut at the level of individual populations. Our findings suggest 

that adaptive ecological forces are key drivers of colonization outcomes after FMT, reveal 85 

taxonomy-independent metabolic determinants of fitness in the human gut, and 

demonstrate that similar ecological principles determine resilience of microbes in stressful 

and inflammatory conditions. 

Results and Discussion 

Our study includes 109 gut metagenomes (Supplementary Table 1) from two healthy FMT 90 

donors (A and B) and 10 FMT recipients (five recipients per donor) who had multiply 

recurrent Clostridium difficile infection (CDI) and received vancomycin for a minimum of 

10 days to attain resolution of diarrheal illness prior to FMT. On the last day of vancomycin 

treatment, a baseline fecal sample was collected from each recipient, and their bowel 

contents were evacuated immediately prior to FMT. Recipients did not take any antibiotics 95 

on the day of transplant, or during the post-FMT sampling period (Supplementary Figure 

1). We also collected 24 Donor A samples over a period of 636 days and 15 Donor B 
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samples over a period of 532 days to establish an understanding of the long-term 

microbial population dynamics within each donor microbiota. We also collected 5 to 9 

samples from each recipient up to 336 days post-FMT. Deep sequencing of donor and 100 

recipient metagenomes using Illumina paired-end (2x150) technology resulted in a total 

of 7.7 billion sequences with an average of 71 million reads per metagenome (Figure 1, 

Supplementary Table 1, Supplementary Table 2). We employed genome-resolved 

metagenomics, pangenomics, and microbial population genetics for an in-depth 

characterization of donor and recipient gut microbiota using these data, and we leveraged 105 

publicly available gut metagenomes to benchmark our observations. 

Many but not all donor microbes colonized recipients and persisted 

long-term 

We first characterized the taxonomic composition of each donor and recipient sample by 

aligning metagenomic short reads to reference genomes in the NCBI’s RefSeq database 110 

(Supplementary Table 2). The phylum-level microbial community composition of both 

donors reflected those observed in healthy individuals in North America (Human 

Microbiome Project Consortium, 2012): a large representation of Firmicutes and 

Bacteroidetes, and other taxa with relatively lower relative abundances, including 

Actinobacteria, Verrucomicrobia, and Proteobacteria (Figure 1, Supplementary Table 2). 115 

In contrast, the vast majority of the recipient pre-FMT samples were dominated by 

Proteobacteria, a phylum that typically undergoes a drastic expansion in individuals 

treated with vancomycin (Isaac et al., 2017). After the FMT, we observed a dramatic shift 

in recipient taxonomic profiles (Supplementary Table 2, Supplementary Figure 2), a 

widely documented hallmark of this procedure (Grehan et al., 2010; Khoruts et al., 2010; 120 

Shahinas et al., 2012). Nearly all recipient samples post-FMT were dominated by 

Bacteroidetes and Firmicutes as well as Actinobacteria and Verrucomicrobia in lower 

abundances, resembling qualitatively, but not quantitatively, the taxonomic profiles of 

their donors (Supplementary Table 2). For example, even though the median relative 

abundance of Bacteroidetes populations were 5% and 17% in donors A and B, their 125 

relative abundance in recipients post-FMT increased to 33% and 45%, respectively 
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(Figure 1, Supplementary Table 2). A single genus, Bacteroides, made up 76% and 82% 

of the Bacteroidetes populations in the recipients of Donor A and B, respectively 

(Supplementary Table 2). The success of the donor Bacteroides populations in recipients 

upon FMT is not surprising given the ubiquity of this genus across human populations 130 

throughout the globe (Wexler and Goodman, 2017) and the ability of its members to 

survive substantial levels of stress (Swidsinski et al., 2005; Vineis et al., 2016). This result 

suggests that FMT outcomes in our dataset are unlikely random, and the study design 

and resulting dataset offers a framework to study ecological principles of the human gut 

microbiome. 135 

Next, we assembled short metagenomic reads into contiguous segments of DNA 

(contigs). Co-assemblies of 24 Donor A and 15 Donor B metagenomes independently 

resulted in 53,891 and 54,311 contigs that were longer than 2,500 nucleotides, and 

described 0.70 and 0.79 million genes occurring in 179 and 248 genomes, as estimated 

by the mode of the frequency of bacterial single-copy core genes (Supplementary Table 140 

2). One way to characterize how well a given assembly describes the DNA content of a 

given metagenome is to calculate the percentage of reads it recruits from the 

metagenome through read mapping. Donor contigs recruited on average 80.8% of 

metagenomic reads from donor metagenomes. In contrast, they recruited 43.4% of reads 

on average from pre-FMT recipient metagenomes. This number increased to 80.2% for 145 

recipient metagenomes post-FMT (Figure 1), and the donor contigs continued to 

represent 76.8% of the recipient metagenomes on average even after a year post-FMT 

(Supplementary Table 2). These read recruitment results suggest that members of the 

donor microbiota successfully established in recipient guts upon FMT and largely 

persisted until the end of the sampling period. 150 

Compared to metagenomic short reads, assembled contigs provide a larger genetic 

context to study microbial metagenomes. However, a sole focus on contigs may yield 

misleading results (Kowarsky et al., 2017) that can be ameliorated by reconstructing 

microbial genomes from metagenomic assemblies (Chen et al., 2020). We reconstructed 

genomes from co-assembled donor metagenomes by grouping contigs into putative bins 155 

based on sequence composition and differential coverage signal as previously described 
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(Lee et al., 2017; Sharon et al., 2013). We retained bins that were at least 70% complete 

and had no more than 10% redundancy as predicted by bacterial single-copy core genes 

(Bowers et al., 2017; Chen et al., 2020) and manually refined them to improve their quality 

following previously described approaches (Delmont et al., 2018; Shaiber et al., 2020). 160 

Our binning resulted in a final list of 128 metagenome-assembled genomes (MAGs) for 

Donor A and 183 MAGs for Donor B that included members of Firmicutes (n=265), 

Bacteroidetes (n=20), Actinobacteria (n=14), Proteobacteria (n=7), Verrucomicrobia 

(n=2), Cyanobacteria (n=2), and Patescibacteria (n=1) (Supplementary Table 3). The 

taxonomy of donor-derived genomes largely reflected the taxonomic composition of donor 165 

metagenomes as predicted by short reads (Figure 1, Supplementary Table 2, 

Supplementary Table 3). While only 20 genomes (mostly of Bacteroides and Alistipes) 

explained the entirety of the Bacteroidetes group, we recovered 265 MAGs that 

represented lower abundance but diverse populations of Firmicutes (Figure 1, 

Supplementary Table 2, Supplementary Table 3). We found no difference between the 170 

delivery method of FMT for the recipients of donor A, where, on average 45% and 43% 

of donor genomes emerged in recipients who received donor stool through colonoscopy 

(n=3) versus pills (n=2), respectively. However, there was an increase in the efficiency of 

pills for donor B, where on average 25% and 54% of donor genomes emerged in 

recipients who received donor stool through colonoscopy (n=2) versus pill (n=3) 175 

(Supplementary Figure 3).  

Reconstructing genomes gave us access to microbial populations in metagenomes 

through metagenomic read recruitment strategies and enabled us to characterize (1) 

population-level microbial colonization dynamics before and after FMT using donor and 

recipient metagenomes and (2) the distribution of each donor population across 180 

geographically distributed humans using 1,984 publicly available human gut 

metagenomes (Supplementary Table 4). As expected, we detected each donor 

population in at least one donor metagenome (see Methods for ‘detection’ criteria). Yet, 

only 16% of Donor A populations were detected in every Donor A sample, and only 44% 

of Donor B MAGs were detected in every Donor B sample (Figure 1, Supplementary Table 185 

3), in agreement with the previously documented dynamism of gut microbial community 

composition over time (David et al., 2014). A marked increase in the detection of donor 
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populations in recipients after FMT echoed the general pattern of transfer suggested by 

the short-read taxonomy (Figure 1): while only 38% of Donor A and 54% of Donor B 

populations were detected in at least one recipient pre-FMT, these percentages increased 190 

to 96% and 96% post-FMT (Supplementary Table 3). Not every donor population 

colonized each recipient, but colonization events did not appear to be random: while some 

donor populations colonized all recipients, others colonized none (Figure 1), providing us 

with an opportunity to resolve colonization events and quantify colonization success for 

each donor population in our dataset. 195 
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Figure 1. FMT Donor genomes across recipients and publicly available gut metagenomes. In both heat maps 

each column represents a donor genome and each row represents a metagenome, and each data point represents the 

detection of a given genome in a given metagenome. Purple rows represent donor metagenomes which cover 636 
days for Donor A and 532 days for Donor B. Each recipient metagenome is colored red for pre-FMT samples and blue 200 
for post-FMT samples. The three rightmost columns display for each metagenome (X) the number of metagenomic 

short reads in millions, (Y) the percent of metagenomic short reads recruited by genomes, and (Z) the taxonomic 
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composition of metagenomes (based on metagenomic short reads) at the phylum level. The row Q provides the phylum-

level taxonomy for each donor genome. Finally, the 11 bottom rows under each heat map show the fraction of healthy 
adult metagenomes from 11 different countries in which a given donor genome is detected (if a genome is detected in 205 
every individual from a country it is represented with a full bar). The dendrograms on the right-hand side of these layers 

organize countries based on the detection patterns of genomes (Euclidean distance and Ward clustering). Red and 
green shades represent the two main clusters that emerge from this analysis, where green layers are industrialized 

countries in which donor genomes are highly prevalent and red layers are less industrialized countries where the 

prevalence of donor genomes is low. 210 

Resolving colonization events accurately is a challenging task as multiple factors may 

influence the ability to determine colonization outcomes unambiguously. These factors 

include (1) the inability to detect low-abundance populations, (2) inaccurate 

characterization of transient populations observed immediately after FMT as successful 

colonization events, (3) the reliance on relative abundance of populations to define 215 

colonization events when abundance estimates from stool do not always reflect the 

abundance of organisms in the GI tract (Sheth et al., 2019; Yasuda et al., 2015), and (4) 

the failure to distinguish between colonization by a donor population or emergence of a 

pre-FMT recipient population after FMT (where a low-abundance recipient population that 

is closely related to one or more donor populations becomes abundant after FMT and is 220 

mistaken as a bona fide colonization event). To mitigate these factors, we have (1) 

employed deep-sequencing of our metagenomes which averaged 71 million reads per 

sample, (2) implemented a longitudinal sampling strategy, that spanned 376 days on 

average, to observe donor populations in our recipients long after the FMT, (3) leveraged 

a ‘detection’ metric to define colonization events by presence/absence of populations 225 

rather than abundance, and (4) employed microbial population genetics to identify and 

resolve origins of subpopulations. We also developed an analytical approach 

(Supplementary Figure 4) to determine whether a given donor population has colonized 

a given recipient based on the detection of donor subpopulations in the transplant sample, 

in the recipient pre-FMT, and in the recipient post-FMT (see Materials and Methods, 230 

Supplementary Table 5). To determine colonization outcomes, we analyzed 640 

genome/recipient pairs for Donor A (128 donor genomes in 5 recipients) and identified 99 

successful colonization events, 38 failed colonization events, and 503 ambiguous 

colonization events (Supplementary Table 6). For Donor B, we analyzed 915 

genome/recipient pairs (183 donor genomes in 5 recipients) and identified 106 successful 235 
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colonization events, 109 failed colonization events, and 700 ambiguous colonization 

events (Supplementary Table 6). Our stringent criteria (see Materials and Methods, 

Supplementary Figure 4) classified the vast majority of all genome/recipient pairs as 

ambiguous colonization events. Nevertheless, due to the relatively large number of donor 

MAGs and FMT recipients in our study, we were left with 352 MAG/recipient pairs with 240 

unambiguous phenotypes for downstream analyses. 

Adaptive ecological forces are the primary drivers of microbial 

colonization 

The ability of a microbial population to colonize and persist in a complex ecosystem is 

influenced by both neutral and adaptive forces (Maignien et al., 2014). Although which of 245 

these is the major driver of successful colonization of the human gut remains unclear 

(Smillie et al., 2018). In the context of FMT, previous studies have suggested neutral 

processes to determine colonization success based on the abundance of a microbial 

population in a donor stool sample (Podlesny and Florian Fricke, 2020; Smillie et al., 

2018). Indeed, ecological drift may have a significant role in a system dominated by 250 

neutral processes, where low-abundance donor populations in the transplant would be 

less likely to be observed in recipients. In contrast, if the system is dominated by adaptive 

forces, colonization success would be a function of the population fitness in the recipient 

environment, rather than its abundance in the transplant. 

To investigate the impact of neutral versus adaptive processes on colonization in our 255 

dataset we first asked whether the prevalence of a donor population in healthy human gut 

metagenomes, which we define here as a measure of its fitness, was associated with the 

detection of the same population in donor or recipient metagenomes. Within both FMT 

cohorts, the mean detection of each population in recipients post-FMT had a stronger 

association with population fitness than mean detection in donor samples (Figure 2a). 260 

The fitness of donor A populations explained 4.2% of the variation in mean detection of 

those populations in donor samples (R2=0.042, p=0.021) and 19% of variation in mean 

detection in recipient post-FMT samples (R2=0.19, p=2.7e-07), an increase of 

approximately 4.5-fold (Figure 2a). Similarly, Donor B population fitness explained 7.3% 
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of the variation in mean detection in donor samples (R2=0.073, p=2.1e-04), and 36% of 265 

the variation in mean detection in recipient post-FMT samples (R2=0.36, p=4.5e-19), an 

increase of approximately 5-fold (Figure 2a). This suggests that fitness is a better 

predictor of colonization outcome than it is of the detection of a population in the donor, 

suggesting that adaptive forces are likely at play. But detecting a donor population in a 

recipient post-FMT metagenome through metagenomic read recruitment does not prove 270 

colonization, since donor genomes can recruit reads from recipient populations that are 

closely related (i.e., strain variants) and that were low abundance prior to FMT. Single-

nucleotide variants in read recruitment results, however, can reveal such cases (Denef, 

2019) and quantify their dynamics (Quince et al., 2017). Thus, we developed an improved 

model that took into consideration the presence and absence of distinct subpopulations 275 

in our data and their origins (Supplementary Figure 4). We then used this model to test if 

colonization success was correlated with population fitness or population dose, which we 

define here as the relative abundance of a given population in the transplanted donor 

stool sample. For Donor A populations, colonization outcome was significantly correlated 

with both dose (Wald test, AUC=0.73, p=7.7e-05) and fitness (Wald test, AUC=0.76, 280 

p=6.3e-06) (Figure 2b,c). But combining both measures as predictive variables did not 

substantially improve the performance of our colonization model (AUC=0.82) (Figure 2c). 

This was likely due to the small, but significant, correlation between dose and fitness in 

Donor A MAGs (R2=0.053, p=0.0070) (Figure 2d). When the fitness of a microbial 

population is reflected in its relative abundance, the effect of fitness on colonization 285 

outcome may be masked by an apparent dose effect. In contrast to Donor A, the fitness 

of Donor B populations and their relative abundance in Donor B samples were not 

correlated (R2=0.0012, p=0.61) (Figure 2d), providing us with an ideal case to analyze 

these two factors independently. Indeed, there was no correlation between dose of a 

microbial population in Donor B transplant samples and colonization outcome in 290 

recipients post-FMT (Wald test, AUC=0.56, p=0.09). Instead, we found a significant 

correlation between the fitness of each population and the colonization outcome (Wald 

test, AUC=0.70, p=9.0e-07) (Figure 2c). 

Taken together, our findings suggest that fitness of a microbial population as measured 

by its prevalence across global gut metagenomes can predict its colonization success 295 
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better than its abundance in the donor stool sample, giving credence to the role of 

adaptive rather than neutral ecological processes in colonization. This finding contrasts 

with previous studies which suggested that the abundance of a given population in the 

donor sample was an important determinant of colonization (Podlesny and Florian Fricke, 

2020; Smillie et al., 2018). However, these analyses included many recipient samples 300 

collected less than one week after FMT and it is likely that their observations were 

influenced by the presence of transient populations. Indeed, samples collected 

immediately after FMT are more likely to inflate the number of colonization events, 

whereas longitudinal sampling over a longer time course can distinguish transient 

populations from those that successfully colonized the recipients. We cannot definitively 305 

test this hypothesis as we sampled most of our recipients a week after FMT. Still, on 

average 12% of the donor populations detected in our recipients a week after FMT were 

no longer detected after a month (Figure 1, Supplementary Table 3). Overall, our stringent 

criteria to determine colonization outcome and the extended post-FMT sampling period 

likely enabled us to study the long-term engraftment of successful and potentially low-310 

abundance colonizers, instead of high-abundance transient populations that may be 

dominant directly after FMT. 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 22, 2021. ; https://doi.org/10.1101/2021.03.02.433653doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.02.433653
http://creativecommons.org/licenses/by-nd/4.0/


 

Figure 2. Relationships between dose, prevalence, and colonization outcome. Left: Donor A. Right: Donor B. a) 

Linear regression models of mean detection of each MAG in either donor or recipient post-FMT samples as a function 315 
of prevalence. b) Colonization outcome of MAG/recipient pairs as a function of MAG dose or MAG prevalence. 
Significance calculated by Wald test. c) Receiver operator curves (ROCs) for logistic regression models of colonization. 

d) Linear regression models of dose as a function of prevalence. 
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Accurately distinguishing the role of dose versus fitness in colonization success is further 

compounded by the fact that microbial populations that are prevalent across human 320 

populations may also tend to be more abundant. This is well illustrated by Donor A. 

Fortunately, the abundant populations in Donor B did not reflect prevalent microbes in 

healthy adult guts, which demonstrated the importance of fitness as a determinant of 

colonization success compared to dose without the confounding effect of a correlation 

between fitness and dose. Thus, it is a theoretical possibility that colonization success is 325 

purely driven by adaptive forces and is not influenced by dose, at all. However, while our 

data assign a larger role to adaptive forces with confidence, a more accurate 

determination of the proportional influence of adaptive versus neutral processes in 

colonization requires a much larger dataset. 

Colonizer and resilient microbes are enriched in metabolic 330 

pathways for the biosynthesis of essential organic compounds 

Fitness in a specific environment is conferred to an organism by a combination of 

functional traits. In the human gut, such traits drive microbial community succession and 

structure as a response to changing host diet and lifestyle (Koenig et al., 2011; Rothschild 

et al., 2018). Behind successful colonization and resilience after perturbation are likely 335 

similar functional traits that promote fitness. Building on our observation that suggests a 

primary role of adaptive ecological processes in colonization outcome, we next sought to 

identify genetic determinants of colonization. For this, we leveraged our access to donor 

microbial population genomes and global metagenomes to investigate whether a 

functional enrichment analysis could reveal predictors of success independent of 340 

taxonomy. 

To generate metabolic insights into colonization success we divided our donor 

populations into ‘high-fitness’ and ‘low-fitness’ groups by considering both their 

prevalence in FMT recipients and prevalence across global gut metagenomes (Materials 

and Methods). The ‘high-fitness’ group included the microbial populations that colonized 345 

or persisted in all FMT recipients and were the most prevalent in gut metagenomes from 

Canada. We assumed that they represented a set of highly fit microbial populations as 
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(1) they were able to colonize human gut environments systematically, (2) they persisted 

in these environments long-term regardless of the host genetics or lifestyle, and (3) they 

were prevalent in gut metagenomes outside of our study. In comparison, the ‘low-fitness’ 350 

group comprised microbial populations that failed to colonize or persist in at least three 

FMT recipients. These populations were nevertheless viable gut microbes as not only our 

long-term sampling of the donors systematically identified them but also, they sporadically 

colonized some FMT recipients. Yet, unlike those in the high-fitness group, the distribution 

patterns of low-fitness populations were sparse, not only within our cohort, but also within 355 

publicly available metagenomes. In fact, low-fitness populations were less prevalent than 

high-fitness genomes in each of the 17 different countries we queried, and in countries 

including United States, Canada, Austria, China, England, and Australia, we detected 

high-fitness populations in 5 times more people than low-fitness genomes in the same 

country (Figure 1, Supplementary Table 3). Overall, we conservatively categorized 20 360 

populations in each group for downstream analyses (Supplementary Table 7). All 

populations in the low-fitness group resolved to Firmicutes. The high-fitness group was 

also dominated by Firmicutes (15 of 20) but it also included four Bacteroidetes and one 

Actinobacteria (Supplementary Table 7). Genome completion estimates did not differ 

between high and low-fitness groups (Wilcoxon rank sum test, p=0.42) and averaged to 365 

91% and 93%, respectively. However, genome sizes between the two groups differed 

dramatically (p=2.9e-06), where high-fitness group genomes averaged to 2.8 Mbp while 

low-fitness group genomes averaged to 1.6 Mbp. These results suggest that the length 

difference between genomes in high and low-fitness groups is likely to have biological 

relevance. Indeed, we found a very high correspondence between the lengths of our 370 

MAGs and their best matching reference genomes in the GTDB (r=0.88, p=5e-14) 

(Supplementary Table 7). 

Our metabolic enrichment analysis revealed 33 KEGG pathway modules, each containing 

genes that form a functional unit in a metabolic pathway. Every module that was enriched 

differentially between these two groups were enriched in the high-fitness group. The lack 375 

of any enriched modules in the low-fitness group is in line with the reduction in genome 

lengths in the low-fitness group and further suggests that the reduction is associated with 

the absence of metabolic modules. Of all enriched modules, 79% were modules related 
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to biosynthesis, which indicates an overrepresentation of biosynthetic capabilities in the 

high-fitness group as KEGG modules for biosynthesis only make up 55% of all KEGG 380 

modules (Figure 3, Supplementary Table 7). Of the 33 enriched modules, 48.5% were 

associated with amino acid metabolism, 21.2% with vitamin and cofactor metabolism, 

18.2% with carbohydrate metabolism, 6% with lipid metabolism and 3% with energy 

metabolism (Supplementary Table 7). Metabolic modules that were enriched in the high-

fitness group included the biosynthesis of seven of the nine essential amino acids, 385 

indicating the importance of metabolic competency to synthesize high-demand 

compounds as a factor increasing fitness in colonizing new gut environments 

(Supplementary Table 7). This is further supported by the enrichment of biosynthesis 

pathways for the essential cofactor vitamin B12 (cobalamin), which occurred in 67.5% of 

the high-fitness populations and only 12.5% of the low-fitness group (Supplementary 390 

Table 7). Vitamin B12 is structurally highly complex and costly to produce, requiring 

expression of more than 30 genes that are exclusively encoded by bacteria and archaea 

(Martens et al., 2002). Thus, the competitive advantages conferred by metabolic 

autonomy appear to outweigh the additional costs. In addition to the biosynthesis of 

tetrahydrofolate, riboflavin, and cobalamin, the high-fitness group had a larger 395 

representation of biosynthetic modules for vitamins including biotin, pantothenate, folate, 

and thiamine (Supplementary Table 7), micronutrients that are equally important in 

bacterial and human metabolism and are shown to play important roles in mediating host-

microbe interactions (Biesalski, 2016). Interestingly, enriched metabolic modules in our 

analysis partially overlap with those that Feng et al. identified as the determinants of 400 

microbial fitness using metatranscriptomics and a germ-free mouse model 

conventionalized with microbial isolates of human origin (Feng et al., 2020). 

Even though enriched metabolic modules occurred mostly in high-fitness populations, we 

did find some of these modules in the low-fitness group as well (Supplementary Table 7), 

but their distribution was not uniform as they primarily occurred only in a subset of 405 

genomes that resolved to Firmicutes (Figure 3). We then sought to identify whether the 

levels of completion of these modules that occurred in both groups were identical. For 

this, we matched six low-fitness genomes that encoded modules enriched in high-fitness 

group genomes to six high-fitness genomes from the same phylum (marked as HF and 
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LF subgroups in Figure 3). Bacterial single-copy core genes estimated that genomes in 410 

both subgroups were highly complete with a slight increase in average completion of low-

fitness genomes (93.7%) compared to high-fitness genomes (90.1%). Despite the higher 

estimated genome completion for low-fitness populations, estimated metabolic module 

completion values were significantly lower in the low-fitness group (Wilcoxon rank sum 

test with continuity correction, V=958, p=5e-09) (Figure 3, Supplementary Table 7). This 415 

indicates that even when modules that are associated with high-fitness were detected in 

low-fitness genomes, they were systematically missing genes and were less complete 

than the same modules in high-fitness genomes. 

 

Figure 3. Distribution of metabolic modules across low and high-fitness genomes. Each data point in this 420 
heat map shows the level of completion of a given metabolic module (rows) in a given genome (columns). 

The box-plot on the right-side compares a subset of low-fitness (LF) and high-fitness (HF) genomes, where 

each data point is the level of completion of a given metabolic module in a genome and shows a statistically 

significant difference between the overall completion of metabolic modules between these subgroups 
(Wilcoxon rank sum test, p=5.4e-09).  425 
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While gut microbial ecosystems of healthy individuals include both 

low- and high-fitness microbes, IBD primarily selects for high-

fitness populations 

Our results so far show that while the healthy donor environment could support both high-

fitness and low-fitness populations (Figure 1, Supplementary Table 3), challenging 430 

microbes to colonize a new environment or to withstand massive ecosystem perturbation 

during FMT selects for high-fitness populations (Figure 3, Supplementary Table 7), 

suggesting that metabolic competence is a more critical determinant of fitness during 

stress than during homeostasis. Based on these observations, it is conceivable to 

hypothesize that (1) a gut environment in homeostasis will support a range of microbial 435 

populations with a wide spectrum of metabolic competency, and (2) a gut environment 

under stress will select for high metabolic competency in microbial populations. 

To test these hypotheses, we compared genomes reconstructed from a cohort of healthy 

individuals (Pasolli et al., 2019) to genomes reconstructed from individuals who were 

diagnosed with inflammatory bowel disease (IBD). Our IBD dataset was composed of two 440 

cohorts: a set of patients with pouchitis (Vineis et al., 2016), a form of IBD with similar 

pathology to ulcerative colitis (De Preter et al., 2009), and a set of pediatric Crohn's 

disease patients (Quince et al., 2015). The number of genomes per individual and the 

average level of genome completeness per group were similar between healthy 

individuals and those with IBD: overall, our analysis compared 264 genomes from 22 445 

healthy individuals with an average completion of 90.4%, 44 genomes from 4 pouchitis 

patients with an average completion of 89.2% and 256 genomes from 12 Crohn's disease 

patients with an average completion of 94.1% (Supplementary Table 8). Intriguingly, 

similar to the length differences between genomes of high-fitness and low-fitness 

populations (2.8 Mbp versus 1.6 Mbp on average), microbial populations associated with 450 

IBD patients had larger genomes compared to healthy people and averaged to 3.0 Mbp 

versus 2.6 Mbp, respectively (Supplementary Table 8). This suggests that despite the 

comparable levels of completion of microbial genomes from the healthy cohort, these 
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genomes tended to be smaller in size compared to those reconstructed from individuals 

with IBD. 455 

Next, we asked whether the completion of those metabolic modules associated with 

colonization success and resilience differed between the genomes reconstructed from 

healthy and IBD individuals. The level of completion of the 33 metabolic modules were 

almost identical between high-fitness genomes and genomes from IBD patients 

(Wilcoxon rank sum test, p=0.5), but genomes from healthy individuals were significantly 460 

less complete compared to high-fitness genomes (Wilcoxon rank sum test, p < 1e-07) as 

well as genomes from IBD patients (Wilcoxon rank sum test, p < 1e-07) (Figure 4, 

Supplementary Table 8). Metabolic modules with the largest differences in completion 

between genomes from healthy and IBD individuals included biosynthesis of cobalamin, 

arginine, ornithine, tryptophan, isoleucine as well as the Shikimate pathway (Figure 4, 465 

Supplementary Table 8), a seven step metabolic route bacteria use for the biosynthesis 

of aromatic amino acids (phenylalanine, tyrosine, and tryptophan) (Herrmann and 

Weaver, 1999). 

Our findings show that the same set of key metabolic modules that distinguish high-fitness 

and low-fitness populations in FMT were also differentially associated with populations 470 

that occurred in healthy individuals compared to IBD patients. In particular, while healthy 

individuals seem to harbor microbes with a broad range of metabolic competency, 

individuals who suffer from two different forms of IBD appear to harbor organisms with 

higher metabolic autonomy. It is conceivable that a stable gut microbial ecosystem is 

more likely to support low-fitness populations through metabolic cross-feeding, where 475 

vitamins, amino acids, and nucleotides are exchanged between microbes (D’Souza et al., 

2018). In contrast, host-mediated environmental stress in IBD likely disrupts such 

interactions and creates an ecological filter that selects for metabolic competence, which 

subsequently leads to loss of diversity and the dominance of organisms with large 

genomes that are not necessarily abundant in states of homeostasis. 480 
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Figure 4. Distribution of metabolic modules in genomes reconstructed from healthy individuals and 
individuals with IBD. The top panel shows the metabolic module completion values for (1) high- and (2) low-

fitness donor genomes identified in this study (blue and yellow), (3) genomes from healthy individuals 

(green), and (4) genomes from individuals with pouchitis (red) and Crohn’s disease (orange). Red whiskers 485 
in group averages indicate the median. Next to group averages shown the distribution of metabolic modules 

for each individual. Each dot in a given box-plot represents one of 33 metabolic modules that were enriched 

in high-fitness FMT donor populations and the y-axis indicates its estimated completion. In the bottom panel 

the completion values for 10 of the 33 pathways demonstrated as ridge-line plots. Each plot represents a 

single metabolic module where each layer corresponds to an individual, and the shape of the layer 490 
represents the completion of a given metabolic module across all genomes reconstructed from that 

individual. 

These observations have implications on our understanding of the hallmarks of healthy 

gut environments from an ecological point of view. Defining the ‘healthy gut microbiome’ 

has been a major goal of human gut microbiome research (Bäckhed et al., 2012), and 495 

remains elusive (Eisenstein, 2020). Despite comprehensive investigations that 
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considered core microbial taxa (Arumugam et al., 2011; Lloyd-Price et al., 2016) or guilds 

of microbes that represent coherent functional groups (Wu et al., 2021), the search for 

‘biomarkers’ of healthy microbiomes is ongoing (McBurney et al., 2019). Given our data 

we hypothesize that one of the defining features of a healthy gut environment is its ability 500 

to support a diverse community of microbes with a broad spectrum of metabolic 

competence, where both low-fitness and high-fitness populations live in a coherent 

ecosystem. Conversely, an enrichment of metabolically competent high-fitness 

populations would likely indicate the presence of environmental stress. Our analyses 

demonstrate that this is a quantifiable feature of microbial communities through genome-505 

resolved metagenomic surveys. Our analyses have limitations. For instance, metabolic 

insights in our study have been limited to genomic potential and have considered only 

well-known metabolic pathways, which, given the extent of the unknown coding space in 

microbial genomes (Vanni et al., 2020), are likely far from complete. As a result, the 

disproportional enrichment of biosynthetic modules in high-fitness genomes indicates that 510 

the ability to synthesize essential biological compounds is necessary but likely insufficient 

to survive environmental stress in the gut. Nevertheless, the finding that the same 

metabolic modules that promote colonization success after FMT are also the hallmarks 

of fitness in IBD suggests the presence of ecological principles that are shared between 

these systems and warrants deeper investigation. 515 

Subtle differences in key functions distinguish populations of the 

same genus with differential colonization success 

While adaptive processes that favor metabolic independence explain the determinants of 

colonization and resilience for distantly related taxa, metabolic features that promote high-

fitness at this broad level may not explain differences in fitness between more closely 520 

related taxa, such as distinct species within a single genus, which are likely to have similar 

metabolic capabilities (Martiny et al., 2013) due to unifying ecological traits in higher ranks 

of taxonomy (Philippot et al., 2010). We finally investigated whether we could identify 

determinants of fitness across metabolically similar populations with different levels of 

success in colonizing unrelated individuals. 525 
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Members of the genus Bifidobacterium have long been used as probiotics (Gomes and 

Malcata, 1999) and are prevalent occupants of the healthy human gut microbiota 

(Arboleya et al., 2016). In our dataset, Bifidobacterium was the second most abundant 

genus (14.1%) after Bacteroides (15.8%) in Donor A, from whom we reconstructed three 

MAGs over 98% completion that resolved to three distinct species in this genus: B. 530 

longum (DA_MAG_00052), B. adolescentis subsp. adolescentis (DA_MAG_00018), and 

B. animalis subsp. lactis (DA_MAG_00011, Supplementary Table 3). While each of these 

Bifidobacterium populations occurred in Donor A metagenomes in a relatively stable 

fashion, they showed vastly different colonization efficiency upon FMT (Figure 5), 

enabling us to investigate determinants of colonization among closely related taxa. 535 

In contrast to the B. longum and B. adolescentis subsp. adolescentis (henceforth B. 

adolescentis) populations that colonized most recipients, B. animalis subsp. lactis 

(henceforth B. lactis) did not seem to have colonized any of our recipients (Supplementary 

Table 3). Overall, we were able to detect B. longum, B. adolescentis, and B. lactis 

populations in 83%, 75%, and 4% of all post-FMT recipient metagenomes, respectively 540 

(Figure 5). Most strikingly, patterns of colonization that emerged from the analysis of FMT 

recipients reflected those seen in publicly available gut metagenomes from Canada, 

where B. longum, B. adolescentis, and B. lactis populations occurred in 74%, 39%, and 

13% of the population, demonstrating a positive relationship (Pearson’s correlation of 0.9, 

n.s.) between the colonization efficiency upon FMT and the fitness of these populations. 545 

Furthermore, the gut metagenomes from 17 countries confirmed the substantially 

reduced fitness of B. lactis globally (Supplementary Table 9). Interestingly, the B. lactis 

MAG we reconstructed from Donor A was virtually identical (with over 99.99% sequence 

identity over 99.82% alignment, Supplementary Table 9) to most B. lactis strains that are 

widely used as probiotics (Jungersen et al., 2014), revealing a disagreement between the 550 

preferences of commercial microbial therapeutics and human gut microbial ecology. 
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Figure 5. Characteristics of three Bifidobacterium species. Top panel shows the distribution of Donor A MAGs that 

represent three distinct Bifidobacterium populations across donor and recipient metagenomes before and after FMT. 

The last two columns in this panel show the prevalence of these populations in post-FMT metagenomes, and publicly 555 
available gut metagenomes from Canada. The panel below displays the distribution of KEGG orthologs across the 

three Bifidobacterium MAGs along with 31 high-quality isolate genomes from the NCBI. Each item shown in concentric 

circles represents a single function assigned by the database of KEGG Orthologs, and each layer is a distinct genome. 

The intensity of color indicates the presence of a given function in a given genome. The most outer circle marks groups 
of functions that are enriched in various groups of Bifidobacterium genomes as well as those functions that are not 560 
enriched in any group as they are either in all genomes, or only a very small number of them. 

To identify factors that may explain the differences in colonization success between B. 

longum, B. adolescentis, and B. lactis, we created a collection of Bifidobacterium 

genomes that, in addition to the three metagenome-assembled genomes we 

reconstructed, included 31 complete genomes obtained from the NCBI (within-group and 565 

across-groups average gANI of 98.9% and 77.3%, respectively) (Supplementary Table 
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9). All three groups of Bifidobacterium genomes encoded the majority of the metabolic 

pathways associated with the high-fitness group (63% ± 5%). However, missing pathways 

were not uniformly distributed across three: B. lactis lacked the largest fraction of these 

pathways (42%) compared to the more prevalent B. adolescentis (36%) and B. longum 570 

(33%) (Supplementary Table 9). B. longum and B. adolescentis carried the complete 

tetrahydrofolate (vitamin B9) biosynthesis pathway in agreement with previous metabolic 

descriptions of Bifidobacterium (D’Aimmo et al., 2012; Sugahara et al., 2015) which 

qualifies this group as attractive probiotics (Pompei et al., 2007; Strozzi and Mogna, 

2008), but this pathway was absent in B. lactis genomes. We also found that B. longum 575 

and B. adolescentis genomes encoded histidine biosynthesis which B. lactis lacked 

(Supplementary Table 9). Finally, the average genome lengths of B. longum (2.31 Mbp) 

and B. adolescentis (2.18 Mbp) were longer than the average genome length of B. lactis 

(1.94 Mbp), which reflects the pattern we observed previously where high-fitness 

populations tended to have larger genomes. In summary, even though all Bifidobacterium 580 

genomes in our pangenome had a higher metabolic overlap with one another compared 

to high-fitness and low-fitness genomes we have previously studied, the reduced fitness 

of B. lactis compared to B. longum and B. adolescentis could still be explained by the 

absence of a small number of metabolic competencies associated with the high-fitness 

group genomes. 585 

Next, we focused on the enrichment of individual functions across the three groups of 

genomes using gene annotations from KOfam profiles (Aramaki et al., 2020) from the 

Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa and Goto, 2000) and 

Clusters of Orthologous Groups (COGs) from the NCBI (Galperin et al., 2021). Of all 954 

unique KOfams found in our Bifidobacterium pangenome, 272 functions were not 590 

common to all genomes but statistically enriched in either one or two groups. Our analysis 

of these accessory functions showed that B. longum encoded 150 (55.5%), B. 

adolescentis encoded 115 (42.3%), and B. lactis encoded 95 (34.9%) of all accessory 

functions that were statistically enriched (Figure 5, Supplementary Table 9). The same 

analysis with 1,286 unique COGs confirmed these observations: of all 353 COGs 595 

enriched in any group, B. longum encoded 212 (60.1%), B. adolescentis encoded 172 

(48.7%), and B. lactis encoded 118 (33.4%) (Supplementary Table 9). Overall, these 
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results reveal a striking correlation between the number of accessory functions 

associated with B. longum, B. adolescentis, and B. lactis, and echo the absence of 

metabolic pathways in B. lactis even at the level of accessory gene functions, explaining 600 

their differential ability to colonize new individuals and distribution in global human gut 

metagenomes. 

We finally investigated the contents of the differentially occurring accessory functions to 

speculate on whether they could be related to differences in fitness. For instance, in 

contrast to all B. longum and B. adolescentis in the Bifidobacterium pangenome, none of 605 

the B. lactis genomes encoded a phosphoenolpyruvate phosphotransferase (PEP-PTS) 

system specific for the uptake of 𝛽-glucoside (Supplementary Table 9). As the genus 

Bifidobacterium is characterized by a large array of genes associated with carbohydrate 

uptake and metabolism (Kleerebezem and Vaughan, 2009; Schell et al., 2002; Ventura 

et al., 2009), B. lactis represents a notable exception with a lower number of genes 610 

associated with carbohydrate metabolism, fewer genes encoding carbohydrate-specific 

ABC transporters, and the absence of phosphoenolpyruvate-phosphotransferase (PEP-

PTS) systems (Barrangou et al., 2009). The absence of any other PEP-PTS system in B. 

longum and B. adolescentis may indicate the catabolic niche occupied by these 

populations in the human gut that is shaped by their extensive capacity for uptake and 615 

metabolism of plant derived glycosides (Chien et al., 2006; Schell et al., 2002). Additional 

functions that exclusively occurred in B. adolescentis and B. longum genomes included 

two multidrug resistance pumps of the ‘multidrug and toxin extrusion’ (MATE) type, three 

transporters of the major facilitator superfamily (MFS) involved in bile acid tolerance and 

macrolide efflux, two bile acid:natrium ion symporters, and one proton/chloride ion 620 

antiporter conferring acid tolerance (Supplementary Table 9). The drug defense 

mechanisms may act to protect these populations during periods of inflammation and 

drug administration, but may also be beneficial with regard to the common ingestion of 

antibiotics through various food products (Kirchhelle, 2018). These results show that in 

the microbial fitness landscape of the human gut, where the determinants of success 625 

across distantly related taxa are primarily defined by the presence or absence of a large 

number of metabolic pathways, there exists smaller niches equally accessible to closely 
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related organisms with similar metabolic potential, among which success can be 

speculated by subtle differences in key functions. 

Conclusions 630 

Our study points to adaptive ecological processes as primary determinants of both long-

term colonization after FMT and microbial fitness in the human gut environment through 

metabolic competency as conferred by biosynthesis of nucleotides, amino acids, and 

essential micronutrients. Even when we found these metabolic modules in low-fitness 

populations, they were systematically less complete compared to their high-fitness 635 

counterparts. 

Our findings suggest that in a healthy gut environment high- and low-fitness populations 

co-occur in harmony, with their differential fitness indiscernible by taxonomy or relative 

abundance. However, transfer to a new gut environment through FMT, or host-mediated 

stress through IBD, initiates an ecological filter that selects for high-fitness populations 640 

that can self-sustain. This model offers a null hypothesis to explain how low-abundance 

members of healthy gut environments can come to dominate the gut microbiota under 

stressful conditions, while not being causally associated with disease states. If the 

association between particular microbial taxa and disease is solely driven by their 

superior metabolic competence, microbial therapies that aim to treat complex diseases 645 

by adding microbes associated with healthy individuals will be unlikely to compete with 

the adaptive processes that regulate complex gut microbial ecosystems. 

Materials and Methods 

Sample collection and storage. We used a subset of individuals who participated in a 

randomized clinical trial (Kao et al., 2017) and conducted a longitudinal FMT study of two 650 

human cohorts (DA and DB), each consisting of one FMT donor and 5 FMT recipients of 

that donor’s stool. All recipients received vancomycin for a minimum of 10 days pre-FMT 

at a dose of 125 mg four times daily. Three DA and two DB recipients received FMT via 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 22, 2021. ; https://doi.org/10.1101/2021.03.02.433653doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.02.433653
http://creativecommons.org/licenses/by-nd/4.0/


pill, and two DA and three DB recipients received FMT via colonoscopy. All recipients had 

recurrent C. difficile infection before FMT, and two DA recipients and 1 DB recipient were 655 

also diagnosed with ulcerative colitis (UC). 24 stool samples were collected from the DA 

donor over a period of 636 days, and 15 stool samples were collected from the DB donor 

over a period of 532 days. Between 5 and 9 stool samples were collected from each 

recipient over periods of 187 to 404 days, with at least one sample collected pre-FMT and 

2 samples collected post-FMT. This gave us a total of 109 stool samples from all donors 660 

and recipients. Samples were stored at -80oC. (Supplementary Figure 1, Supplementary 

Table 1) 

Metagenomic short-read sequencing. We extracted the genomic DNA from frozen 

samples according to the centrifugation protocol outlined in MoBio PowerSoil kit with the 

following modifications: cell lysis was performed using a GenoGrinder to physically lyse 665 

the samples in the MoBio Bead Plates and Solution (5–10 min). After final precipitation, 

the DNA samples were resuspended in TE buffer and stored at −20 °C until further 

analysis. Sample DNA concentrations were determined by PicoGreen assay. DNA was 

sheared to ~400 bp using the Covaris S2 acoustic platform and libraries were constructed 

using the Nugen Ovation Ultralow kit. The products were visualized on an Agilent 670 

Tapestation 4200 and size-selected using BluePippin (Sage Biosciences). The final 

library pool was quantified with the Kapa Biosystems qPCR protocol and sequenced on 

the Illumina NextSeq500 in a 2 × 150 paired-end sequencing run using dedicated read 

indexing. 

‘Omics workflows. Whenever applicable, we automated and scaled our ‘omics analyses 675 

using the bioinformatics workflows implemented by the program `anvi-run-workflow` 

(Shaiber et al., 2020) in anvi’o (Eren et al., 2015, 2021). Anvi’o workflows implement 

numerous steps of bioinformatics tasks including short-read quality filtering, assembly, 

gene calling, functional annotation, hidden Markov model search, metagenomic read-

recruitment, metagenomic binning, pangenomics, and phylogenomics. Workflows use 680 

Snakemake (Köster and Rahmann, 2012) and a tutorial is available at the URL 

http://merenlab.org/anvio-workflows/. The following sections detail these steps. 
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Taxonomic composition of metagenomes based on short reads. We used Kraken2 

v2.0.8-beta (Wood et al., 2019) with the NCBI’s RefSeq bacterial, archaeal, viral and viral 

neighbours genome databases to calculate the taxonomic composition within short-read 685 

metagenomes. 

Assembly of metagenomic short reads. To minimize the impact of random sequencing 

errors in our downstream analyses, we used the program `iu-filter-quality-minoche` to 

process short metagenomic reads, which is implemented in illumina-utils v2.11 (Eren et 

al., 2013) and removes low-quality reads according to the criteria outlined by Minoche et 690 

al. (Minoche et al., 2011). IDBA_UD v1.1.2 (Peng et al., 2012) assembled quality-filtered 

short reads into longer contiguous sequences (contigs), although we needed to recompile 

IDBA_UD with a modified header file so it could process 150bp paired-end reads. 

Processing of contigs. We use the following strategies to process both sequences we 

obtained from our assemblies and those we obtained from reference genomes. Briefly, 695 

we used (1) `anvi-gen-contigs-database` on contigs to compute k-mer frequencies and 

identify open reading frames (ORFs) using Prodigal v2.6.3 (Hyatt et al., 2010), (2) `anvi-

run-hmms` to identify sets of bacterial (Campbell et al., 2013) and archaeal (Rinke et al., 

2013) single-copy core genes using HMMER v3.2.1 (Eddy, 2011), (3) `anvi-run-ncbi-

cogs` to annotate ORFs with functions from the NCBI’s Clusters of Orthologous Groups 700 

(COGs) (Tatusov et al., 2003), and (4) `anvi-run-kegg-kofams` to annotate ORFs with 

functions from the KOfam HMM database of KEGG orthologs (KOs) (Aramaki et al., 2020; 

Kanehisa and Goto, 2000). To predict the approximate number of genomes in 

metagenomic assemblies we used the program `anvi-display-contigs-stats`, which 

calculates the mode of the frequency of single-copy core genes as described previously 705 

(Delmont and Eren, 2016).  

Metagenomic read recruitment, reconstructing genomes from metagenomes, 
determination of genome taxonomy and ANI. We recruited metagenomic short reads 

to contigs using Bowtie2 v2.3.5 (Langmead and Salzberg, 2012) and converted resulting 

SAM files to BAM files using samtools v1.9 (Li et al., 2009). We profiled the resulting BAM 710 

files using the program `anvi-profile` with the flag `--min-contig-length` set to 2500 to 

eliminate shorter sequences to minimize noise. Once we have read recruitment results 
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from each metagenome is profiled to store contig coverages into single anvi’o profile 

databases, `anvi-merge` combined all profiles into an anvi’o merged profile for 

downstream visualization, binning, and statistical analyses. We then used `anvi-cluster-715 

contigs` to group contigs into 100 initial bins using CONCOCT v1.1.0 (Alneberg et al., 

2014), `anvi-refine` to manually curate initial bins with conflation error based on 

tetranucleotide frequency and differential coverage signal across all samples, and `anvi-

summarize` to report final summary statistics for each gene, contig, and bin. We used the 

program `anvi-rename-bins` to identify bins that were more than 70% complete and less 720 

than 10% redundant, and store them in a new collection as metagenome-assembled 

genomes (MAG), discarding lower quality bins from downstream analyses. GTBD-tk 

v0.3.2 (Chaumeil et al., 2019) assigned taxonomy to each of our MAG using GTDB r89 

(Parks et al., 2018), but to assign species- and subspecies-level taxonomy for 

`DA_MAG_00057`, `DA_MAG_00011`, `DA_MAG_00052` and `DA_MAG_00018`, we 725 

used `anvi-get-sequences-for-hmm-hits` to recover DNA sequences for bacterial single-

copy core genes that encode ribosomal proteins, and searched them in the NCBI’s 

nucleotide collection (nt) database using BLAST (Altschul et al., 1990). Finally, the 

program `anvi-compute-genome-similarity` calculated pairwise genomic average 

nucleotide identity (gANI) of our genomes using PyANI v0.2.9 (Pritchard et al., 2016). 730 

Criteria for MAG detection in metagenomes. Using mean coverage to assess the 

occurrence of populations in a given sample based on metagenomic read recruitment can 

yield misleading insights since this strategy cannot accurately distinguish reference 

sequences that represent very low-abundance environmental populations from those 

sequences that do not represent an environmental population in a sample yet still recruit 735 

reads from non-target populations due to the presence of conserved genomic regions. 

Thus, we relied upon the ‘detection’ metric, which is a measure of the proportion of the 

nucleotides in a given sequence that are covered by at least one short read, and 

considered a population was detected in a metagenome if anvi’o reported a detection 

value of at least 0.25 for its genome (whether it was a metagenome-assembled or isolate 740 

genome). Values of detection in metagenomic read recruitment results often follow a 

bimodal distribution for populations that are present and absent (see Supplementary 
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Figure 2 in (Utter et al., 2020)), thus 0.25 is an appropriate cutoff to eliminate false-positive 

signal in read recruitment results for populations that are absent.  

Identification of MAGs that represent multiple subpopulations. To identify 745 

subpopulations of MAGs in metagenomes, we used the anvi’o command `anvi-gen-

variability-profile` with the `--quince-mode` flag which exported single-nucleotide variant 

(SNV) information for all MAGs after read recruitment. We then used DESMAN v2.1.1 

(Quince et al., 2017) to analyze SNVs to determine the number and distribution of 

subpopulations represented by a single genome. To account for non-specific mapping 750 

that can inflate the number of estimated subpopulations, we removed any subpopulation 

that made up less than 1% of the entire population explained by a single MAG. To account 

for noise due to low-coverage, we only investigated subpopulation for MAGs for which 

the mean non-outlier coverage of single-copy core genes was at least 10X. 

Criteria for colonization of a recipient by a MAG. We developed a method to determine 755 

whether or not a MAG successfully colonized a recipient, and applied this method to each 

MAG and each recipient within a cohort. In order to confidently assign colonization or 

non-colonization phenotypes to each MAG/recipient pair, we required that the MAG be 

detected in the donor sample used for transplant into the recipient. If these criteria were 

met, we then determined whether the MAG was detected in any post-FMT recipient 760 

sample taken more than 7 days after transplant. If not, the MAG/recipient pair was 

considered a non-colonization event. If the MAG was detected in the recipient greater 

than7 days post-FMT, we used subpopulation information to determine if any 

subpopulation present in the donor and absent in the recipient pre-FMT was detected in 

the recipient more than 7 days post-FMT. If this was the case, we considered this to 765 

represent a colonization event. See Supplementary Figure 4 for a complete outline of all 

possible cases. 

Determination of dose and fitness for MAGs. We defined population dose as the 

second and third quartile mean coverage of a population in the transplanted stool sample. 

We defined fitness as the prevalence of a population in 23 healthy adult gut metagenomes 770 

(see Materials and Methods: Criteria for MAG detection in metagenomes) from Canada, 

the same country in which the FMTs were performed. 
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Regression analysis. To examine the association between dose and/or prevalence with 

colonization outcome, we built binomial logistic regression models using the R stats `glm` 

function. We used the R stats ̀ predict` function and the R pROC ̀ roc` function to evaluate 775 

our models by creating receiver operating characteristic (ROC) curves and calculating the 

area under the ROC curve (AUC). To determine the correlation between dose and 

prevalence, we performed linear regression using the R stats `lm` function. We used the 

R tidyverse package, including ggplot2, to visualize boxplots, scatterplots, and ROC 

curves. 780 

Pangenomic analysis and gANI. We used anvi’o to compute and visualize pangenomes 

of MAGs and reference genomes. We stored all processed MAG and reference genome 

contigs (see Contig processing methods section) in an anvi’o database using the 

command `anvi-gen-genomes-storage`. To create the pangenomes, we then passed that 

database to the command `anvi-pan-genome` which used NCBI’s BLAST (Altschul et al., 785 

1990) to quantify gene similarity within and between genomes and the Markov Cluster 

algorithm (MCL) (Enright et al., 2002) to cluster groups of similar genes. We set the `anvi-

pan-genome` `--min-occurrence` flag to 2 to remove gene clusters only present in one 

genome (singletons), and visualized pangenomes using `anvi-display-pan`. 

Phylogenomic tree construction. To concatenate and align amino acid sequences of 790 

46 single-copy core (Campbell et al., 2013) ribosomal proteins that were present in all of 

our Bifidobacterium MAGs and reference genomes, we ran the anvi’o command `anvi-

get-sequences-for-hmm-hits` with the `--return-best-hit`, `--get-aa-sequence` and `--

concatenate` flags, and the `--align-with` flag set to `muscle` to use MUSCLE v3.8.1551 

(Edgar, 2004) for alignment. We then ran `anvi-gen-phylogenomic-tree` with default 795 

parameters to compute a phylogenomic tree using FastTree 2.1 (Price et al., 2010). 

Analysis of metabolic modules and enrichment. We calculated the level of 

completeness for a given KEGG module (Kanehisa et al., 2014, 2017) in our genomes 

using the program `anvi-estimate-metabolism`, which leveraged previous annotation of 

genes with KEGG orthologs (KOs) (see the section ‘Processing of contigs’). Then, the 800 

program `anvi-compute-functional-enrichment` determined whether a given metabolic 

module was enriched in based on the output from `anvi-estimate-metabolism`. The URL 
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https://merenlab.org/m/anvi-estimate-metabolism serves a tutorial for this program which 

details the modes of usage and output file formats. The statistical approach for 

enrichment analysis is defined elsewhere (Shaiber et al., 2020), but briefly it computes 805 

enrichment scores for functions (or metabolic modules) within groups by fitting a binomial 

generalized linear model (GLM) to the occurrence of each function or complete metabolic 

module in each group, and then computing a Rao test statistic, uncorrected p-values, and 

corrected q-values. We considered any function or metabolic module with a q-value less 

than 0.05 to be ‘enriched’ in its associated group if it was also at least 75% complete and 810 

in at least 50% of the group members. To display the distribution of individual KEGG 

orthologs across genomes and order them based on their enrichment scores and group 

affiliations we used the program `anvi-display-functions`. 

Determination of high-fitness and low-fitness MAGs for metabolic enrichment 
analysis. We classified MAGs as high-fitness if, in all 5 recipients, they were detected in 815 

the donor sample used for transplantation as well as the recipient more than 7 days post-

FMT. We classified low-fitness MAGs as those that, in at least 3 recipients, were detected 

in the donor sample used for FMT but were not detected in the recipient at least 7 days 

post-FMT. We reduced the number of high-fitness MAGs to be the same as the number 

of low-fitness MAGs for metabolic enrichment analysis by selecting only the high-fitness 820 

MAGs which were the most prevalent in the Canadian gut metagenomes. 

Ordination plots. We used the R vegan v2.4-2 package `metaMDS` function to perform 

nonmetric multidimensional scaling (NMDS) with Horn-Morisita dissimilarity distance to 

compare taxonomic composition between donor, recipient, and global metagenomes. We 

visualized ordination plots using R ggplot2. 825 

Code and Data Availability 

Raw sequencing data for donor and recipient metagenomes are stored under the NCBI 

BioProject PRJNA701961 (see Supplementary Table 1 for accession numbers for each 

sample). The URL https://merenlab.org/data/fmt-colonization serves reproducible 

bioinformatics workflow and gives access to ad hoc scripts, usage instructions, and 830 
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intermediate data objects to reproduce findings in our study. Supplementary tables are 

also accessible via doi:10.6084/m9.figshare.14138405. 
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Supplementary Figures 

 

Supplementary Figure 1. Timeline of stool samples collected from FMT study. Each circle represents a stool 

sample collected from either an FMT donor or FMT recipient. The thicker, red vertical line at day 0 represents the FMT 

event for each recipient. FMT method (pill or colonoscopy) and FMT recipient health and disease state (C. diff - chronic 1160 
recurrent Clostridium difficile infection, UC - ulcerative colitis) are indicated on the right. 
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Supplementary Figure 2. Nonmetric multidimensional scaling (NMDS) ordination of the taxonomic composition 
of donor, recipient, and Canadian gut metagenomes at the genus level based on Morisita-Horn dissimilarity. 
Samples from the same participant are joined by lines with the earliest time point labeled. CAN: Canadian gut 1165 
metagenomes, DA: donor A, DB: donor B, POST: recipients post-FMT, PRE: recipients pre-FMT. 
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Supplementary Figure 3. Nonmetric multidimensional scaling (NMDS) ordination of the taxonomic composition 
of the donor and recipient metagenomes at genus level based on Morisita-Horn dissimilarity. Samples from the 

same participant are joined by lines with the earliest time point labeled. DA_POST: donor A recipients post-FMT, 1170 
DA_PRE: donor A recipients pre-FMT, DA: donor A, DB_POST: donor B recipients post-FMT, DB_PRE: donor B 

recipients pre-FMT, DB: donor B. 
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Supplementary Figure 4. A flowchart outlining our method to assign successful colonization, failed colonization, or 
undetermined colonization phenotypes to donor-derived populations in the recipients of that donor’s stool. 1175 
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Supplementary Tables (🔗) 

Supplementary Table 1: Description of FMT study and stool samples collected. a) Description of FMT donor stool 
samples and SRA accession numbers. b) Description of FMT recipient samples and SRA accession numbers. c) 
Description of transplantation events. 

Supplementary Table 2: Description of FMT metagenomes and co-assemblies. a) Metagenome SRA accession 1180 
numbers and number of metagenomic short-reads sequenced and mapped to co-assemblies and MAGs. b) Phylum 
level taxonomic composition of metagenomes. c) Genus level taxonomic composition of metagenomes. d) Summary 
statistics for contigs from metagenome co-assemblies. 

Supplementary Table 3: Description of MAGs. a) Summary statistics and taxonomic assignments for MAGs. b) and 
c) Detection of Donor A and Donor B MAGs in FMT metagenomes, respectively. d) and e) Detection of Donor A and 1185 
Donor B MAGs in global gut metagenomes, respectively. f) and g) Detection summary statistics of Donor A and Donor 
B MAGs in global gut metagenomes, respectively. h) and i) Mean non-outlier coverage of Donor A and Donor B MAG 
single-copy core genes in FMT metagenomes.   

Supplementary Table 4: Accession numbers of gut metagenomes from 17 countries. 

Supplementary Table 5: MAG subpopulation information. a) and b) Number of Donor A and Donor B MAG 1190 
subpopulations detected in FMT metagenomes, respectively. c) and d) Subpopulation composition of Donor A and 
Donor B MAGs in FMT metagenomes, respectively. 

Supplementary Table 6: MAG/recipient pair colonization outcomes and MAG mean coverage in the 2nd and 3rd 
quartiles in stool samples used for transplantation. 

Supplementary Table 7: Description of high vs. low-fitness populations. a) Taxonomic assignments and genome 1195 
size estimates for high- and low-fitness populations. b) KEGG module completeness information for high- and low-
fitness populations. c) Raw KEGG module enrichment information for high- and low-fitness populations. d) KEGG 
module enrichment and categorical information for the 33 modules enriched in high-fitness populations. e) and f) 
Completeness information for the 33 modules enriched in high-fitness populations in all high- and low-fitness 
populations. 1200 

Supplementary Table 8: a) List of genomes from healthy individuals and individuals with IBD. b) Module completion 
values across genomes. 

Supplementary Table 9: Bifidobacteria functional analysis. a) Accession numbers for Bifidobacteria reference 
genomes. b) Summary statistics for Bifidobacteria MAGs and reference genomes. c) Prevalence of Bifidobacteria 
MAGs in global gut metagenomes. d) gANI percent identity between Bifidobacteria genomes. e) gANI percent alignment 1205 
coverage between Bifidobacteria genomes. f) KOfams enriched in different Bifidobacteria species. g) KOfam presence 
and absence in Bifidobacteria genomes. h) COG functions enriched in different Bifidobacteria species. i) COG function 
presence and absence in Bifidobacteria genomes. j) KEGG modules enriched in different Bifidobacteria species. k) 
KEGG module completeness in Bifidobacteria genomes. 
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