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Abstract 7 

Accurate and robust population trend assessments are key to successful biodiversity 8 
conservation. Citizen science surveys have provided good evidence of biodiversity declines 9 
whilst engaging people with them. Citizen scientists are also collecting opportunistic biodiversity 10 
records at unprecedented scales, vastly outnumbering records gathered through structured 11 
surveys. Opportunistic records exhibit spatio-temporal biases and heterogeneity in observer 12 
effort and skill, but their quantity offers a rich source of information. Data integration, the 13 
combination of multiple information sources in a common analytical framework, can potentially 14 
improve inferences about populations compared to analysing either in isolation. We combine 15 
count data from a structured citizen science survey and detection-nondetection data from an 16 
opportunistic citizen science programme. Population trends were modelled using dynamic N-17 
mixture models to integrate both data sources.  We applied this approach to two different 18 
inferential challenges arising from sparse data: (i) the estimation of population trends for an area 19 
smaller than a structured survey stratum, and (ii) the estimation of national population trends for 20 
a rare but widespread species.  In both cases, data integration yielded population trajectories 21 
similar to those estimated from structured survey data alone but had higher precision when the 22 
density of opportunistic records was high. In some cases this allowed inferences about 23 
population trends where indices derived from single data sources were too uncertain to assess 24 
change. However, there were differences in the trend magnitude between the integrated and the 25 
standard survey model.  26 

We show that data integration of large-scale structured and unstructured data is feasible and 27 
offers potential to improve national and regional wildlife trend estimates, although a need to 28 
independently validate trends remains. Smaller gains are achieved in areas where uptake of 29 
opportunistic recording is low. The integration of opportunistic records from volunteer-selected 30 
locations alone may therefore not adequately address monitoring gaps for management and 31 
policy applications. To achieve the latter, scheme organisers should consider providing 32 
incentives for achieving representative coverage of target areas in both structured and 33 
unstructured recording schemes.   34 

Keywords: biodiversity monitoring; breeding bird survey; Citizen science; population trend; 35 
data integration; 36 
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1 Introduction 37 

The ability to accurately and robustly quantify species’ population trajectories is key to 38 

successful biodiversity conservation. Monitoring of changes in a species’ population size or 39 

range is essential to assess threat status; to act as an early-warning signal of population declines; 40 

for conservation resource prioritization; and to assess the efficacy of environmental policies 41 

(Lawton 1993; Johnston et al. 2015). Yet, most wildlife populations cannot be completely 42 

enumerated, or even robustly surveyed, because resources for monitoring are finite. Large 43 

geographic biases exist in monitoring effort even for well sampled taxa like birds (Meyer et al. 44 

2015, 2016; Amano, Lamming & Sutherland 2016). This affects our knowledge of species 45 

distributions, as well as our understanding of the processes underlying population dynamics 46 

because potential drivers, such as climate or land-use change, can differ between surveyed and 47 

unsurveyed regions (Pearce-Higgins et al. 2015). 48 

National scale biodiversity monitoring schemes such as those that make up the Pan-European 49 

Common Bird Monitoring Scheme (van Strien, Pannekoek & Gibbons 2001; Birdlife 50 

International 2004) or the European Butterfly Monitoring Scheme (van Swaay et al. 2008, 2019) 51 

are designed to provide coverage of a broad range of common species, allowing the derivation of 52 

indicators of the state of nature while making the most of finite resources (Burns et al. 2018; 53 

Hayhow et al. 2019). Such high-level efforts have become closely intertwined with high-level 54 

(i.e. national and supra-national) conservation legislation and policy. However, the 55 

implementation of conservation policy on a legislative and executive level is increasingly 56 

devolved within nations. For example, in the UK conservation is now devolved to sub-national 57 

governments (NUTS 1 level) and their executive agencies, resulting in legislation and 58 

implementation approaches, including e.g. red list assessments, that are specific to England, 59 
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Scotland, Wales, and Northern Ireland (Bainbridge 2014; Kirsop-Taylor 2019); similarly, in 60 

Germany federal conservation legislation provides an overarching legal framework but delegates 61 

implementation to the states, and the executive agencies implementing state laws may be 62 

devolved further to government regions (NUTS 2 level) or districts (NUTS 3 level) (Rose-63 

Ackerman 1994). There is also a shift from treating conservation and management as 64 

jurisdictional issues towards more holistic approaches focussed on the maintenance of healthy 65 

ecosystems and ecosystem services at the appropriate spatial scales (Kirsop-Taylor 2019). Apart 66 

from individually designated large protected areas (e.g. national parks, protected landscapes), 67 

such approaches are promoted e.g. through the European Landscape Convention and within 68 

programmes of the EU common agricultural policy (Lomba et al. 2014). Again, the 69 

implementation varies among signatory states. Within the UK such natural subdivisions are 70 

reflected, for example, in the National Character Areas in England (Natural England 2014) or the 71 

Area Statements in Wales (Welsh Government 2017), both of which are based on a combination 72 

of landscape features, bio- and geodiversity, and socio-economic activity. The plethora of spatial 73 

units that arise from jurisdictional devolution and landscape-centric approaches, creates an 74 

increasing desire to repurpose data from national biodiversity monitoring schemes to provide 75 

information at smaller spatial scales, not addressed by national trends and indicators. 76 

Many national biodiversity monitoring schemes are based on long-term structured surveys, 77 

which use predetermined monitoring sites and standardized survey methods. Structured surveys 78 

provide robust estimates of population trends but require large and long-term commitments by 79 

institutions – and where conducted as citizen science schemes, volunteers – and can be 80 

challenging to organize and coordinate (Schmeller et al. 2009).  Instead, projects which rely on 81 

opportunistic records by interested members of the public may be a more effective means to 82 
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increase the spatio-temporal coverage of distribution and abundance data (Dickinson, 83 

Zuckerberg & Bonter 2010; Isaac & Pocock 2015). Although such projects may have primary 84 

goals other than monitoring, e.g. raising awareness about focal taxa or facilitating personal 85 

record keeping for naturalists, there is increasing interest in using such schemes to fill knowledge 86 

gaps in regions that are poorly or not at all covered by structured surveys, and as a basis to obtain 87 

indices of population trajectories that meaningfully capture true wildlife population trends (Kéry 88 

et al. 2010; Isaac et al. 2014; Horns, Adler & Şekercioğlu 2018). Trend modelling based on such 89 

data is challenging because of known biases in site selection, visit timing, survey effort, and/or 90 

surveyor skill (Isaac & Pocock 2015; Johnston et al. 2018, 2020). Thus, there is usually a trade-91 

off between collecting a small amount of higher ‘quality’ data conforming to a defined common 92 

structure or a larger amount of relatively heterogeneous (i.e. lower ‘quality’) data (Gardiner et al. 93 

2012; Bayraktarov et al. 2018). 94 

The consequences of this trade-off are a topic of active research (Aceves-Bueno et al. 2017; 95 

Bayraktarov et al. 2018; Kelling et al. 2018; Specht & Lewandowski 2018; Boersch-Supan, 96 

Trask & Baillie 2019; Johnston et al. 2020; Robinson et al. 2020), and there is a growing set of 97 

modelling approaches to address the challenges of unstructured datasets using auxiliary 98 

structured biodiversity data and/or observation models that account for preferential sampling, 99 

usually at the cost of increased model complexity and computational demands (van Strien, van 100 

Swaay & Termaat 2013; Fithian et al. 2015; Robinson, Ruiz-Gutierrez & Fink 2018; Isaac et al. 101 

2019; Johnston et al. 2019, 2020). 102 

Other recent work has investigated whether relatively simple models are sufficient to extract 103 

population trend information from less structured data (Roberts, Donald & Green 2007; Roy et 104 

al. 2012; Walker & Taylor 2017; Boersch-Supan et al. 2019). These simpler approaches 105 
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generally rely on the assumption that the information gain from a larger quantity of records 106 

outpaces potential biases from opportunistic sampling. 107 

However, integrating these two data sources may help overcome some of these issues, by 108 

combining the structure of survey data with the improved coverage of less structured schemes. 109 

This has the potential to improve the precision of model parameters and the resulting inferences 110 

(Fithian et al. 2015; Isaac et al. 2019), perhaps especially for species that are poorly covered by 111 

structured monitoring programmes, as well as offering a route to gain a more mechanistic 112 

understanding of the drivers of those population dynamics. 113 

In the UK, biological recording by volunteers provides information on the occurrence or 114 

abundance of over 10000 taxa, although records are sparse for the vast majority of taxa (Roy et 115 

al. 2014; Hayhow et al. 2019; Outhwaite et al. 2020). As part of these efforts, comprehensive 116 

structured bird monitoring is undertaken through the Breeding Bird Survey (BBS; Figure 1) 117 

which provides population trends for about 120 common and widespread bird species 118 

(Greenwood et al. 1995; Freeman et al. 2007; Harris et al. 2018), but knowledge gaps remain for 119 

rare and cryptic species (approximately 220 species are regular breeders (Robinson 2010)). 120 

Opportunistic citizen science recording schemes such as BirdTrack (Figure 1; 121 

www.birdtrack.net; Baillie et al. (2006); Newson et al. (2016)) provide greater coverage in space 122 

and time, but lack the structured protocols and formal sampling design. A recent comparison of 123 

these two datasets showed that national-scale annual reporting rate trends in BirdTrack were 124 

broadly consistent with BBS abundance trends for common species, and those exhibiting marked 125 

population changes (Boersch-Supan et al. 2019). However, the magnitude of reporting rate–126 

abundance relationships were inconsistent across species, and agreement in trends for rarer 127 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 4, 2021. ; https://doi.org/10.1101/2021.03.03.431294doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.03.431294
http://creativecommons.org/licenses/by-nd/4.0/


Boersch-Supan & Robinson 2021  Integrating citizen science data 

6 
 

species could not be ascertained, in part because of high uncertainty about population change in 128 

trends from either dataset. 129 

In this study, we leverage the spatio-temporal overlap of two citizen science schemes to 130 

investigate the utility of joint analyses of structured and opportunistic datasets to derive 131 

population trends for uncommon breeding birds at regional and local scales. This has the 132 

potential to address a gap in currently available monitoring products with high relevance for 133 

landscape management. In particular we evaluate integrated trend models for two different 134 

inferential challenges: (i) the estimation of population trends for areas smaller than a BBS 135 

stratum to improve small-area inferences about population trends for local managers and 136 

decision makers, and (ii) the estimation of national population trends for a rare but widespread 137 

species to assess the utility of data integration when a species is not widespread enough to fulfil 138 

minimum sample size criteria for the structured survey model. 139 

2 Materials and Methods 140 

2.1 Data sources 141 

We employed structured survey data from the Breeding Bird Survey (BBS) (Gregory, Baillie & 142 

Bashford 2000; Harris et al. 2018), which follows a rigorous protocol in which skilled volunteers 143 

count all birds heard or seen in three distance bands along two 1km transects within a 1km
2
 site 144 

on two annual morning visits during the breeding season. The two visits are not designed a priori 145 

as replicates, but rather ensure coverage of both early breeding residents and later breeding 146 

migrants. The early visit takes place April to mid May, and is followed by a late visit in mid May 147 

to June. BBS provides a spatial coverage which is extremely high for a national monitoring 148 

scheme (1.10-1.65% of the UK territory for the study period (Harris et al. 2018)), and sampling 149 
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is largely unbiased with respect to habitat types (with the exception of mountainous areas) 150 

(Martay et al. 2018). The survey follows a stratified random design which aligns coverage with 151 

variable volunteer availability. Coverage within strata ranges from 0.1% to 9%. This allows an 152 

unbiased assessment of UK-wide and national trends for many common species, but the survey 153 

was not designed to allow for inferences at sub-stratum level, or to provide reliable coverage of 154 

rare species. 155 

 156 

Figure 1: BBS surveys and BirdTrack lists are both observations of the true spatio-temporal distribution of birds. 157 
Observations from each scheme differ in their information quality and quantity. BBS counts are collected with 158 
known effort and spatially unbiased, but comparably sparse. BirdTrack lists are more numerous, but come from non-159 
random locations and effort is heterogeneous. Figure adapted from Isaac et al. (2019). 160 
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Structured data were supplemented with records from BirdTrack (Newson et al. 2016), which is 161 

also a citizen science dataset, but with less stringent observation requirements and a wider range 162 

of participants than the BBS: last year 2766 volunteers contributed to BBS whereas 6869 163 

individuals submitted at least one BirdTrack list. BirdTrack participants contribute lists of 164 

species they have detected during a self-selected time interval spent at a self-selected location. 165 

Compared to the BBS there are about three times as many locations (i.e. 1km British National 166 

Grid squares) in the UK that have at least one BirdTrack record during the breeding season in 167 

recent years (Figure S1). However, the relative density of records for both schemes follows a 168 

similar large-scale pattern: Coverage is higher near urban centres and lower in less populated and 169 

more mountainous areas (Boersch-Supan et al. 2019; Darvill et al. 2020). On smaller spatial 170 

scales the site-selection biases in BirdTrack are complex. Broadly speaking, sites fall into two 171 

clusters: sites that are convenient to access, e.g. in the vicinity of participants’ homes, and more 172 

distant sites that offer more diverse bird assemblages (Johnston et al. 2020). 173 

We only considered timed complete BirdTrack lists, i.e. lists for which birdwatchers recorded a 174 

start and end time and reported that they had listed all detected species. To match the spatial 175 

grain and temporal extent of the BBS data we only used lists with a location precision of 1km 176 

collected from 01 April to 30 June of each year. The resulting dataset constitutes detection/non-177 

detection data with biases associated with self-selection of sites and visit timings. Finally, we 178 

filtered available data to retain only locations which had lists in three or more years, and within a 179 

year we randomly sub-sampled lists from locations that had more than 25 visits.  180 

2.2 Modelling approach 181 

We used a state-space modelling approach to integrate data from BBS surveys and BirdTrack 182 

lists [Isaac et al. (2019); Supplementary Materials]. The model assumes an underlying biological 183 
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process describing species-specific abundances 𝑁𝑗,𝑡 at a site 𝑗 in every year 𝑡, and their changes 184 

from year to year as a result of individuals that survive and remain at each site, and those that are 185 

gained to a site by recruitment or immigration. Following Zipkin et al. (2017) we link this 186 

process model to the count and detection-nondetection data with a separate observation model 187 

for each data source: a dynamic N-mixture model for the count data and a dynamic occupancy 188 

model for the detection-nondetection data (Figure S2). 189 

Model parameters were estimated in a Bayesian framework using JAGS via the jagsUI package 190 

in R (Plummer 2003; Kellner 2018; R Core Team 2018). Markov-chain Monte Carlo (MCMC) 191 

estimation was run on four parallel chains until the Gelman-Rubin convergence diagnostic 𝑅̂ 192 

indicated convergence, usually after 10,000-50,000 iterations. 193 

We stratified the modelled sites based on prior information on site occupancy pre-dating the BBS 194 

and BirdTrack data from the 1988-1991 Bird Atlas (Gibbons, Reid & Chapman 1993). Sites that 195 

fell into occupied tetrads (2km x 2km squares) in the Atlas were assigned a positively-biased 196 

normal prior truncated at zero for the initial abundance 𝑁+(5,10), and sites that fell into 197 

unoccupied or unsurveyed tetrads were assigned a zero-biased normal prior, truncated at zero, 198 

i.e. a half-normal prior 𝑁+(0,10). 199 

Population trajectories from integrated models were compared to relative abundance indices 200 

derived from BBS data alone using the standard BBS trend model, a survey weighted count 201 

model with fixed additive site and year effects (Freeman et al. 2007) (Supplementary Methods) 202 

and occupancy indices derived from dynamic occupancy models using BirdTrack data alone 203 

which closely mirrored the structure of the integrated model (Kéry et al. 2010). 204 
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3 Case studies 205 

3.1 Improving small-area trends 206 

The motivation for this case study was to assess the utility of data integration to draw inferences 207 

about population trends areas smaller than a BBS stratum. We chose the Corn Bunting Miliaria 208 

calandra as the focal species (Figure 2), a lowland farmland bird whose dramatic decline in 209 

range and abundance in the UK has made it a red listed species of conservation concern (Eaton et 210 

al. 2015) and the target of management interventions (Perkins et al. 2011). We fitted integrated 211 

models for two areas to contrast different levels of recording coverage: the South Downs 212 

National Character Area of southern England which has an expanse of c. 1,000km 2 (Figure 213 

S3), and a similar sized area largely dominated by arable farmland in North East Scotland 214 

(Figure S4). The South Downs are close to major conurbations and are well covered by 215 

BirdTrack records from recreational birdwatchers; recording in North East Scotland occurs at 216 

much lower rates (Figure 2). 217 

 218 

Figure 2: A: The range of Corn Bunting in Great Britain and Ireland 2007-2011. B: The South Downs NCA (white 219 
outline) is well covered by BirdTrack observations. C: Farmland in the NE of Scotland is poorly covered by 220 
BirdTrack observations. Coloured squares indicate BirdTrack list density. Grey squares lack BirdTrack lists. 221 
Symbols indicate Corn Bunting status based on the 2007-2011 Bird Atlas. White outlines show the spatial domain of 222 
the integrated models. 223 
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3.1.1 Species-specific model details 224 

Survival and colonisation rates were separately estimated within each stratum (occupied, 225 

unoccupied, unsurveyed) as a yearly random effect, using an informative Beta prior (mean 0.58, 226 

variance 0.24) based on a mark-recapture estimate of survival probability (Luebcke 1977). 227 

3.1.2 Results 228 

Single data source trend models and the integrated trend could be derived for the South Downs 229 

NCA. Because of the lower density of records in both schemes in north east Scotland, some or 230 

all trend models failed to fit for the two areas with the highest density of BirdTrack lists that 231 

were of equal size to the South Downs NCA. Model fitting was successful when using records 232 

from an area spanning Elgin to Peterhead, approximately three times the size of the South Downs 233 

NCA (Figure 2, Figure S4). 234 

For both areas the trend estimates from the joint model did not differ substantially from 235 

occupancy changes derived from BirdTrack or abundance changes derived from BBS alone, 236 

respectively. All models for the South Downs NCA showed a range and abundance decline 237 

between 2005 and 2011 followed by a period of relative stability (Figure 3A), and the models for 238 

North East Scotland yielded highly uncertain abundance and occupancy trends, neither of which 239 

provided statistically significant evidence of change since 2005 (Figure 3B). 240 
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 241 

Figure 3: Occupancy and abundance trend estimates for Corn Bunting in the South Downs (A, green) and NE 242 
Scotland (B, blue) based on single data sources (BBS or BirdTrack; open symbols) and the integrated model (BBS 243 
and BirdTrack; solid symbols). Error bars show posterior 95% credible intervals. Boxplots aggregate relative bias 244 
(C) and precision (D) of annual index values comparing the integrated and single data source models. 245 

The integrated trend was negatively biased compared to both reference trends at both locations, 246 

although point estimates for yearly index values from the integrated model were within the 247 

credible intervals of each reference trend. In the South Downs credible intervals for the 248 

integrated occupancy trend were about 50% as wide as those of the BirdTrack occupancy trend 249 

model, and integrated abundance trend credible intervals were even narrower at about 20% of 250 

those of the BBS trend (Figure 3C,D). The integrated model predicts a significant decline of 251 

Corn Bunting range and abundance in the study area between 2005 and 2011. In contrast, models 252 

based on either dataset alone do not allow inferences about population change given the large 253 

uncertainty about annual index values. In Scotland inferential gains from data integration were 254 

much more modest. The nominal precision of the integrated model results was on par with the 255 

BirdTrack occupancy trend, and the credible intervals of the integrated abundance trend were 256 

about half as wide as those for the BBS standard model (Figure 3C,D). 257 

Aside from the inferences about range and abundance changes the integrated model also 258 

provides estimates of detection parameters such as the influence of time spent recording on the 259 

probability of detecting a given species (Figure 4). This is a crucial feature to assess the 260 
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properties of unstructured observations, as observation protocols for these data are less stringent 261 

leading to substantial heterogeneity in observer effort. 262 

 263 

Figure 4: Detection probability of Corn Bunting in the South Downs increases with recording duration. Top: 264 
Distribution of BirdTrack list durations (in hours). Bottom: Estimated effect of list duration on the probability of 265 
detecting at least one individual. Red line shows median, grey lines show realisations from the detection model 266 
posterior. 267 

3.2 A rare but widespread species 268 

The second case study assessed the utility of data integration to draw inferences about population 269 

trends for a species that is not widespread enough to fulfil the minimum sample size criterion for 270 

standard BBS reporting at the country level. We chose the Pied Flycatcher Ficedula hypoleuca in 271 

Wales as the focal species (Figure S5). It is a migratory woodland bird with a distribution 272 

restricted to upland deciduous woods in parts of western and northern Britain. It is red listed, 273 

both in Wales and UK wide, due to its breeding population decline over the last 25 years (Eaton 274 

et al. 2015; Johnstone & Bladwell 2016). 275 
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3.2.1 Results 276 

In the relative comparison the occupancy change estimates from the joint model did not differ 277 

substantially from occupancy changes derived from BirdTrack alone (Figure 5). 278 

 279 

Figure 5: A: Occupancy and abundance trend estimates for Pied Flycatcher in Wales based on single data sources 280 
(BBS or BirdTrack; open symbols) and the integrated model (BBS and BirdTrack; red solid symbols). Error bars 281 
show posterior 95% credible intervals. B,C: Relative bias and precision of annual index values comparing the 282 
integrated and single data source models.. 283 

The integrated abundance trend was more precise with credible intervals about 40% the width of 284 

those of the BBS trend, however, the integrated trend was negatively biased compared to the 285 

BBS trend (Figure 5 B,C).  This bias was strong enough in recent years to result in diverging 286 

inferences between the two models. The BBS model indicates that the Welsh Pied Flycatcher 287 

population is growing, with significant gains in 2011 and 2015-2017 compared to the reference 288 

year 2005. Population fluctuations indicated by the integrated trend model followed a similar 289 

pattern of gains and losses but with overall smaller magnitudes of change, resulting in a 290 

prediction of a stable population with no statistically significant gains or losses in any year since 291 

2005 (Figure 5 A). Despite their discrepancy both of these findings are more optimistic than 292 

trends observed for other humid-zone migrants in England (Morrison et al. 2013). 293 
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4 Discussion 294 

Integrated models of BBS and BirdTrack data provided realistic estimates of the regional 295 

population trajectories of both bird species. In all cases the integrated trends had higher nominal 296 

precision for the abundance trajectory compared to models based on structured count data alone. 297 

Integrated occupancy trends were at least as precise as, or more precise than occupancy trends 298 

based on unstructured detection-nondetection data alone. Bias in the trends for both species was 299 

harder to assess. Population trajectories followed similar shapes, but overall effect sizes differed 300 

between models. Further work is required to validate integrated trend models against existing 301 

independent survey data, and to develop cross-validation strategies for evaluating integrated 302 

models in the absence of independent reference data. The availability of independent reference 303 

data is limited to a small number of species and regions (e.g. Stevens, Murn & Hennessey 304 

(2019), Stevens, Murn & Hennessey (2020)). In part this is due to the relative recent 305 

development of BirdTrack, which means that, as yet, temporal overlap with several established 306 

national surveys for rare bird species (e.g. Cirl Bunting (Stanbury et al. 2010), Dotterel (Hayhow 307 

et al. 2015), Hen Harrier (Wotton et al. 2018)) is insufficient for formal comparisons - a situation 308 

that should improve in the future. 309 

Although the BBS collects detectability data using distance sampling, this information is 310 

currently not included in the calculation of routine BBS trends, as the effects of heterogeneous 311 

detection on trend estimates are deemed small (Newson et al. 2013). However, this assumption is 312 

less likely to hold for rare species. The integrated model therefore attempted to capture 313 

observation uncertainty in structured data using an N-mixture model. Although this type of 314 

observation model has been shown to be robust under certain field conditions (Bötsch, Jenni & 315 

Kéry 2019), N-mixture models are known to be sensitive to violations of their assumptions, 316 
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including the closure assumption (i.e. that there is no change in occupancy between survey visits) 317 

(Barker et al. 2018). Given the two BBS visits are not designed as replicates this assumption 318 

only holds for species with relatively unchanged detectability within the survey window. Using 319 

the distance sampling data to model detectability in the BBS data would be preferable (Farr, 320 

Green & Zipkin 2020), however, the corresponding observation model is computationally much 321 

more demanding than the N-mixture model.  Computational effort for the estimation of 322 

integrated model parameters was high with the larger case study requiring model fitting times in 323 

the order of 5-24 hours on dedicated scientific computing hardware with Intel Xeon E5 324 

processors and ample memory. This makes model development and checking slow and may limit 325 

the roll-out of this model type for routine reporting across many species and regions.   326 

The expected gains from data integration will vary both depending on the target species and 327 

target area.  Target areas are an important consideration because sampling coverage for both 328 

structured and unstructured data are not evenly distributed (Figure 6). The modelling approach 329 

used for the Corn Bunting case study performed well in the South Downs because this area has 330 

good BBS coverage and exceptional BirdTrack coverage. In North East Scotland low coverage 331 

from BBS and very low coverage from BirdTrack made it impossible to fit some or all trend 332 

models for an area equivalent to the South Downs NCA (c. 1,000 km 2). Model fitting did 333 

succeed when increasing the spatial domain to about 3,000km 2, but even then gains in 334 

precision from the integrated approach were modest. In fact, for much of Scotland the target 335 

species range does not overlap with the distribution of opportunistic sampling effort (Figure 2), 336 

making it impossible to gain information from opportunistic observations e.g. about the efficacy 337 

of agri-environment schemes and indicating the lower limit at which such data might inform 338 

policy. 339 
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Similarly, the modelling strategy used here would likely not provide gains for country-level 340 

trends in Northern Ireland at the current level of BirdTrack coverage (Figure S1). Integration of 341 

opportunistic records is thus not a silver bullet for closing gaps in biodiversity monitoring on 342 

sub-national scales. At current levels of recording in the UK precision gains in bird trends from 343 

data integration can be expected at most NUTS 1 units (e.g. countries, statistical regions of 344 

England), densely settled NUTS 2 units (e.g. counties) or similarly sized landscape units such as 345 

NCAs, but likely only few NUTS 3 units (e.g. unitary authorities, districts, council areas). 346 

In summary, we demonstrate that integration of structured and unstructured biodiversity records 347 

is in principle feasible for trend reporting at national and sub-national scale. Given the growing 348 

popularity of recreational biodiversity recording, opportunistic records are available in many 349 

countries which also maintain structured survey schemes, making our approach transferable 350 

beyond the UK and to non-avian taxa. However our findings also highlight that addressing 351 

monitoring gaps at these scales can not be solved with statistical models alone, but requires a 352 

careful consideration of the most promising survey approaches:  In densely populated areas 353 

existing opportunistic citizen science schemes may provide a relatively easy solution to fill 354 

information gaps, but elsewhere information gains require steering the observation efforts in both 355 

opportunistic (see e.g. Callaghan et al. (2019b), Callaghan et al. (2019a)) and structured 356 

schemes, as is done e.g. for the BBS by targeted efforts to increase observer coverage of 357 

mountainous survey strata (Darvill et al. 2020). Birds are disproportionally well covered by both 358 

structured and unstructured schemes within the UK and globally (Amano et al. 2016; Sorte & 359 

Somveille 2020). Given the generally lower coverage of non-avian taxa by structured surveys, 360 

the potential for relative information gain from opportunistic schemes is expected to be much 361 

larger. At the same time, our findings imply that scheme design considerations are likely even 362 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 4, 2021. ; https://doi.org/10.1101/2021.03.03.431294doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.03.431294
http://creativecommons.org/licenses/by-nd/4.0/


Boersch-Supan & Robinson 2021  Integrating citizen science data 

18 
 

more important for these taxa to ensure that spatially biased and/or heterogenous coverage from 363 

opportunistic observations at national and sub-national scales does not affect the representativity 364 

of derived trends. 365 
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9 Supplementary Materials 575 

 576 

Figure S1: Opportunistic sampling coverage (measured here as annual locations with lists, solid blue line) has 577 
greatly increased since the inception of the BirdTrack scheme and now exceeds the number of BBS plots (solid red 578 
line) in all four countries. Revisits of locations by BirdTrack participants are relatively rare, however, with only 579 
about half of the sites having lists in two or more years (dotted blue line), and even fewer in three or more years 580 
(dashed blue line). 581 
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9.1 Integrated Model details 582 

We used a state-space modelling approach which models the latent biological processes of 583 

population persistence and growth and links them to the observed data using an observation 584 

model that accounts for imperfect detection to integrate data from BBS surveys and BirdTrack 585 

lists (Figure S2: ). This integrated model is compared to trends derived from each of the two data 586 

sources separately. For the structured BBS data we use the statistical model that is used in the 587 

official reporting of this survey (Freeman et al. 2007) as a reference model. 588 

This is a simple trend model in that it relies on the randomised nature of the survey and does not 589 

explicitly model the observation process. For the unstructured BirdTrack data the reference 590 

model we use is a dynamic occupancy model which explicitly models the observation process 591 

(van Strien et al. 2013). This class of models has been shown to be reasonably robust for 592 

opportunistic biological records (Kéry et al. 2010; van Strien et al. 2013), unlike simpler trend 593 

models (Boersch-Supan et al. 2019). 594 

 595 
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Figure S2: An overview of the modelling approaches used in his study. Reference models cover a single dataset at a 596 
time and serve as a comparison with the integrated model. There are two types of reference models, simple 597 
regression models of the observations and hierarchical models that explicitly separate the biological state process 598 
(i.e. the latent population dynamics) from the observation process. Data integration relies on this conceptual 599 
separation and link the two different data sources via a common process model. 600 

9.1.1 Biological process model 601 

The state process for this model assumes there is a population abundance 𝑁𝑗,𝑡 at a site 𝑗 in every 602 

time step 𝑡, which is imperfectly observed. 𝑁𝑗,𝑡 changes between successive timesteps as a result 603 

of individuals that survive and remain at each site 𝑆𝑗,𝑡, and those that are gained to a site by 604 

recruitment or immigration 𝐺𝑗,𝑡. These sub-processes are expressed as 605 

𝑆𝑗,𝑡 ∼ Bin(𝑁𝑗,𝑡−1, 𝜔) 

𝐺𝑗,𝑡 ∼ Pois(𝛾) 

where 𝜔 is the apparent annual survival probability of individuals, and 𝛾 is the expected number 606 

of individuals that are gained at site 𝑗 by recruitment or immigration between 𝑡 − 1 and 𝑡. 607 

For every time step 𝑡 > 1 the total population abundance at site 𝑗 is 608 

𝑁𝑗,𝑡 = 𝑆𝑗,𝑡 + 𝐺𝑗,𝑡 

For the first year (𝑡 = 1), the state process is initialized by modelling abundance at each site 609 

according to a Poisson distribution with an expected count 𝜆 610 

𝑁𝑗,1 ∼ Pois(𝜆) 

From the state model we can further derive the colonisation probability 𝜙𝑗,𝑡 of an unoccupied 611 

site as 612 

𝜙𝑗,𝑡 = 1 − 𝑒−𝛾 
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as well as the extinction probability 𝜖𝑗,𝑡 as 613 

𝜖𝑗,𝑡 = (1 − 𝜔)𝑁𝑗,𝑡 ⋅ 𝑒−𝛾 

9.1.2 Observation model 614 

The true population abundance 𝑁𝑗,𝑡 in the survey area was linked to the data according to two 615 

sampling processes, counts of individuals in the case of BBS data and detection of at least one 616 

individual or non-detection in the case of BirdTrack lists. In both cases repeat visits to a site 617 

between April and the end of June were treated as replicates, implying the assumption of a 618 

closed population over this period, which we deemed reasonable for the species covered. 619 

We assumed detection was imperfect for both sampling approaches, i.e. for count data the 620 

number of individuals encountered during a survey visit 𝑛𝑗,𝑡,𝑘 ≤ 𝑁𝑗,𝑡 and similarly, an occurrence 621 

record 𝑦𝑗,𝑡,𝑘 could be a nondetection if none of the 𝑁𝑗,𝑡 individuals was seen or heard during a 622 

site visit. We modelled the count data as arising from a binomial process 623 

𝑛𝑗,𝑡,𝑘 ∼ Bin(𝑁𝑗,𝑡, 𝑝) 

with an individual detection probability 𝑝. Detection-nondetection data were modelled as arising 624 

from a Bernoulli trial 625 

𝑦𝑗,𝑡,𝑘 ∼ Bern(1 − (1 − 𝑝𝑜𝑐𝑐)
𝑁𝑗,𝑡) 

with a separate detection probability 𝑝𝑜𝑐𝑐, to take into account potential differences in survey 626 

methodology and/or observer skill between BBS and BirdTrack records. 627 
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9.2 Reference Trends 628 

9.2.1 BBS abundance trends 629 

Abundance models for BBS data followed the Poisson GLM approach employed in the official 630 

BBS trend production (Freeman et al. 2007), which models the mean local count 𝜆𝑖𝑡 at site 𝑖 and 631 

year 𝑡 based on the observed maximum counts 𝑦𝑜𝑏𝑠,𝑖𝑡 across the two survey visits as a function 632 

of fixed additive site and year effects 𝛽𝑖 and 𝛽𝑡, respectively. 633 

𝑦𝑜𝑏𝑠,𝑖𝑡 ∼ Poisson(𝜆𝑖𝑡) 

𝑙𝑜𝑔(𝜆𝑖𝑡) = 𝛽𝑖 + 𝛽𝑡. 

Abundance indices are derived from the conditional year effects 𝛽𝑡. For BBS data we further 634 

used sampling weights – equal to the inverse inclusion probability of a site within a stratum for a 635 

given year – to account for uneven monitoring coverage among BBS survey strata. 636 

Parameter inference was conducted in a Bayesian framework using a weighted likelihood 637 

approach as implemented in the brms package (Bürkner 2018), rather than following the 638 

bootstrapping approach of Freeman et al. (2007). 639 

9.2.2 BirdTrack Dynamic Occupancy models 640 

Occupancy trends from BirdTrack data were modelled using a dynamic site occupancy model 641 

(Kéry et al. 2010; van Strien et al. 2013) which closely mirrored the structure of the integrated 642 

model. The latent state 𝑁𝑗,𝑡 becomes a binary indicator of occupancy in these models, and initial 643 

occupancy 𝑁𝑗,1 and the immigration/recruitment process 𝐺𝑗,𝑡 were modelled as a Bernoulli 644 

processes. 645 
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9.3 Data details 646 

 647 

Figure S3: The study area for the South Downs Corn Bunting case study and locations of BBS surveys and complete 648 
BirdTrack lists. 649 

 650 
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Figure S4: The study area for the Scottish Corn Bunting case study and locations of BBS surveys and complete 651 
BirdTrack lists. Both dark shaded areas are approximately the same size as the South Downs NCA (Fig. S3), but 652 
data were to sparse in both to fit the integrated and/or references models. Model fitting succeeded when using 653 
records from the dark and medium grey shaded areas. 654 

 655 

Figure S5: Top: The study area for the Pied Flycatcher case study and locations of BBS surveys (n=519) and 656 
locations of complete BirdTrack lists (n=1034). Bottom: Time-series of the number of locations with BBS surveys 657 
and complete BirdTrack lists (solid) and locations with positive detections of the target species (dashed). 658 

9.4 Model code examples 659 

9.4.1 BBS survey weighted trend models 660 
#BBS survey trend using maximum likelihood estimation with survey weights 661 
library(survey) 662 
bbs_design <- svydesign(ids = ~1, weights = ~weight, data = bbs_counts) 663 
bbs_trend <- svyglm(count ~ year_factor + square, design = bbs_design, 664 
family=poisson) 665 
 666 
#BBS survey trend using Bayesian weighted likelihood approach 667 
library(brms) 668 
bbs_trend_brms <- brm(count|weights(weight, scale = TRUE) ~ year_factor + 669 
square - 1, data = bbs_pf_counts, family = poisson) 670 

9.4.2 BirdTrack dynamic occupancy model JAGS code 671 
model{     672 
    #Priors     673 
      lambda ~ dnorm(0,0.2)T(0,) # initial abundance -half normal prior      674 
      p ~ dbeta(2, 2)      # detection # use beta prior centred on 0.5 since 675 
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we know detectability is ok     676 
           677 
      omega_intercept ~ dnorm(0,0.1)# survival intercept     678 
      gamma_intercept ~ dnorm(0,0.1)# colonisation intercept     679 
      tau <- 1/pow(sigma, 2)     680 
      sigma ~ dt(0, pow(2.5,-2), 1)T(0,)#half-cauchy prior following 681 
https://arxiv.org/pdf/0901.4011.pdf     682 
      tau_gamma <- 1/pow(sigma_gamma, 2)     683 
      sigma_gamma ~ dt(0, pow(2.5,-2), 1)T(0,)#half-cauchy prior following 684 
https://arxiv.org/pdf/0901.4011.pdf     685 
           686 
      for(t in 2:nYears){     687 
        logit(omega[t-1]) <- omega_intercept + omega_raneff[t-1]     688 
        omega_raneff[t-1] ~ dnorm(0, tau)     689 
        log(gamma[t-1]) <- gamma_intercept + gamma_raneff[t-1]     690 
        gamma_raneff[t-1] ~ dnorm(0, tau_gamma)     691 
      }     692 
     693 
         694 
    #Likelihood - Biological process model     695 
    for(i in 1:nSites) {     696 
    #First year of sampling      697 
    N[i,1] ~ dpois(lambda)     698 
         699 
    #All other years of sampling      700 
    for(t in 2:nYears) {     701 
    S[i,t-1] ~ dbin(omega[t-1], N[i,t-1])     702 
    G[i,t-1] ~ dpois(gamma[t-1])     703 
    N[i,t] <- S[i,t-1] + G[i,t-1]     704 
    }     705 
    }     706 
         707 
    #Detection process model for count data     708 
    for (i in 1:nCount) {     709 
    for (j in 1:nReps) {       710 
    for (t in 1:nYears) {     711 
    y2[i,t,j] ~ dbin(p, N[i,t])     712 
    }}}     713 
           714 
      #derived quantities (track N total w/o using up memory for the entire N 715 
array)     716 
    for (i in 1:nYears){     717 
        N.total[i] <- sum(N[,i])     718 
  }     719 
} 720 

9.4.3 Joint model JAGS code for corn bunting case study 721 
#joint model with observation covariates for corn bunting     722 
model {     723 
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  #Priors     724 
  lambda[1] ~ dnorm(0,0.1)T(0,) # initial mean abundance for sites without 725 
Atlas presences     726 
  lambda[2] ~ dnorm(5,0.1)T(0,) # initial mean abundance for sites with Atlas 727 
presences     728 
  lambda[3] ~ dnorm(0,0.1)T(0,) # initial mean abundance for sites not 729 
surveyed for 1990 Atlas     730 
  #gamma ~  dunif(0,10) # gains     731 
  for(j in 1:3){#set different baseline vital rates for different atlas 732 
categories     733 
  mu_omega[j] ~ dbeta(57.4,41.2)# survival intercept using informative prior 734 
derived from Luebcke 1977     735 
  gamma_intercept[j] ~ dnorm(0,0.1)# colonisation intercept     736 
  }     737 
  p ~ dunif(0,1)      # detection probability prior     738 
  p.occ_intercept ~ dnorm(0,0.1)#  intercept     739 
  p.occ_beta_time ~ dnorm(0,0.1)#  coefficient on list duration     740 
  p.occ_beta_yday[1] ~ dnorm(0,0.1)#  coefficient on list duration     741 
  p.occ_beta_yday[2] ~ dnorm(0,0.1)#  coefficient on list duration^2     742 
       743 
  tau <- 1/pow(sigma, 2)     744 
  sigma ~ dt(0, pow(2.5,-2), 1)T(0,)#half-cauchy prior following 745 
https://arxiv.org/pdf/0901.4011.pdf     746 
  tau_gamma <- 1/pow(sigma_gamma, 2)     747 
  sigma_gamma ~ dt(0, pow(2.5,-2), 1)T(0,)#half-cauchy prior following 748 
https://arxiv.org/pdf/0901.4011.pdf     749 
     750 
       751 
  for(t in 2:nYears){     752 
    for(j in 1:3){#site classes     753 
    omega[j,t-1] ~ dnorm(mu_omega[j], tau)T(0,1)     754 
    gamma[j,t-1] <- gamma_intercept[j] + gamma_raneff[j,t-1]     755 
    gamma_raneff[j,t-1] ~ dnorm(0, tau_gamma)     756 
    }     757 
  }     758 
       759 
       760 
  #Likelihood - Biological process model     761 
  for(i in 1:nSites) {     762 
    #First year of sampling      763 
    N[i,1] ~ dpois(lambda[SitePrior[i]])     764 
    #All other years of sampling      765 
    for(t in 2:nYears) {     766 
      S[i,t-1] ~ dbin(omega[SitePrior[i],t-1], N[i,t-1])     767 
      G[i,t-1] ~ dpois(exp(gamma[SitePrior[i],t-1]))     768 
      N[i,t] <- S[i,t-1] + G[i,t-1]     769 
    }     770 
  }     771 
       772 
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       773 
  #Detection process model for sites with detection/nondetection data *only*     774 
  #dense array formulation, i.e. imputing NAs     775 
  # for (i in 1:nSites){ # loop over state array to determine site-specific 776 
Bernoulli parameters. This could be made more efficient by not calculating 777 
this for all sites     778 
  #   for (t in 1:nYears){     779 
  #     p.site[i,t] <- 1-pow( (1-p.occ[i,t]),N[i,t] )       780 
  #   }     781 
  # }     782 
  #loop over observations       783 
  for (j in 1:nOccObs) {     784 
    OccObs[j] ~ dbern(1-pow((1-p.occ[j]),N[OccSite[j],OccYear[j]]))     785 
    logit(p.occ[j]) <- p.occ_intercept + p.occ_beta_time*OccDuration[j] + 786 
p.occ_beta_yday[1]*OccYday[j] + p.occ_beta_yday[2]*(OccYday[j]*OccYday[j])     787 
  }     788 
       789 
  #Detection process model for sites with count data *only*     790 
  #looping over observations     791 
  for (j in 1:nCountObs) {       792 
    CountObs[j] ~ dbin(p, N[CountSite[j],CountYear[j]])     793 
  }     794 
       795 
       796 
  #derived quantities (so it's possible to track N total without using up 797 
memory for the entire N array)     798 
  for (i in 1:nYears){     799 
    N.total[i] <- sum(N[,i])     800 
    N.occupied[i] <- sum(N[,i]>0)     801 
    mean_occ[i] <- mean(N[,i]>0)     802 
  }     803 
       804 
} 805 
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