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Global containment of COVID-19 still requires accessible and affordable vaccines  

for low- and middle-income countries (LMICs).1 Recently approved vaccines provide 

needed interventions, albeit at prices that may limit their global access.2 Subunit 

vaccines based on recombinant proteins are suited for large-volume microbial 

manufacturing to yield billions of doses annually, minimizing their manufacturing costs.3 

These types of vaccines are well-established, proven interventions with multiple safe and 

efficacious commercial examples.4–6 Many vaccine candidates of this type for SARS-CoV-

2 rely on sequences containing the receptor-binding domain (RBD), which mediates viral 

entry to cells via ACE2.7,8 Here we report an engineered sequence variant of RBD that 

exhibits high-yield manufacturability, high-affinity binding to ACE2, and enhanced 

immunogenicity after a single dose in mice compared to the Wuhan-Hu-1 variant used in 

current vaccines. Antibodies raised against the engineered protein exhibited heterotypic 

binding to the RBD from two recently reported SARS-CoV-2 variants of concern 

(501Y.V1/V2). Presentation of the engineered RBD on a designed virus-like particle (VLP) 

also reduced weight loss in hamsters upon viral challenge. 

Vaccines using mRNA have established the efficacy of vaccines for SARS-CoV-2 based 

on full-length trimeric Spike (S) protein.9,10 Recombinant S protein produced in mammalian or 

insect cells has also shown immunogenicity and efficacy in non-human primates.11 For large-

volume, low-cost production, however, protein-based vaccines incorporating the receptor 

binding domain (RBD) subunit remain an important alternative.12 Antibodies to RBD account for 

most of the neutralizing activity elicited in natural infections, and several potent monoclonal 

antibodies have been discovered from convalescent patients.13,14 This domain contains the 

Receptor-Binding Motif (RBM) that mediates viral entry through the receptor ACE2.15 A His-

tagged SARS-CoV-2 RBD construct based on SARS-CoV-2 Wuhan-Hu-1 and produced in 

insect cells has elicited neutralizing antibodies in mice and protective immunity in non-human 

primates.16 Similar tagged constructs have also been adapted for production in yeast like K. 
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phaffii,17,18 establishing the RBD domain as a prominent candidate for large-volume 

manufacturing of COVID-19 vaccines. 

Despite its significance for low-cost vaccine candidates, recombinant RBD based on the 

original SARS-CoV-2 clade 19A sequence has shown limited immunogenicity to date. Reported 

candidates would require as many as three doses or large doses to elicit strong neutralizing 

antibody responses in mice when formulated with adjuvants.16,18 Increasing the number of 

doses or amounts required could limit its benefits for affordable and accessible vaccines. An 

engineered design for the RBD, therefore, could enhance the potency of many subunit-based 

vaccine candidates using this domain. 

We reasoned that an improved RBD variant for vaccine candidates should exhibit both 

improved quality attributes relevant for manufacturing (titers, aggregation) and immunogenicity 

relative to the Wuhan-Hu-1 sequence used in current vaccines. We further sought to develop a 

variant amenable to production in microbial hosts, which can be cultured at very large volumes 

(up to 50,000+ liters) and low costs. Based on previous reports for similar constructs from 

SARS-CoV-1 and MERS-CoV with demonstrated immunogenicity,12,19,20 we first chose to 

evaluate the production of a tagless 201 amino-acid sequence within the RBD (S protein amino 

acids 332-532) by secretion from yeast (Figure S1A).  

We created a two-stage chromatographic method to purify RBD based on its biophysical 

characteristics and prior experience purifying heterologous proteins with similar molecular 

weight, isoelectric point, and hydrophobicity.21–23 We produced RBD in 200 mL shake flask 

culture and purified quantities to assess the quality attributes of the protein (Fig. 1A). The 

resulting protein bound human ACE2-Fc (KD 49 ± 22 nM) and CR3022 (a neutralizing antibody 

to SARS-CoV-1 with cross-reactivity to SARS-CoV-2) (KD 32 ± 2 nM) (Fig. S1B-C).24 The 

protein displayed high mannose glycoforms at the single canonical position for N-linked 

glycosylation present on the exposed surface distal from the RBM (Fig. S1D). The protein, 

however, exhibited a strong tendency to form high-molecular weight species (evident in SDS-
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PAGE and SEC), particularly in fermentations with high air-water interfaces. The titers were also 

limited (~12 mg/L), similar to previously described titers and product quality of unoptimized 

fermentation.25 Together, these results suggested production of this domain was feasible, but 

presented concerns regarding potential yields and consistency for large-volume manufacturing.  

 From these assessments, we reasoned that the qualities of the protein itself may impede 

its expression and ultimately its attributes that would influence its suitability as an immunogen 

for subunit-based vaccine candidates. We hypothesized that the tendency of the protein to self-

associate may also induce stress on the host cells during the expression and secretion of the 

protein. Efficient secretion of recombinant protein by yeast requires successful folding and 

modification of the nascent peptide in the endoplasmic reticulum (ER).26 Insoluble or misfolded 

protein inside the host cells could lead to an unfolded protein response and subsequent 

degradation of the recombinant product, reducing its production. To further evaluate this 

relationship, we performed a genome-scale analysis of the yeast by RNA-sequencing and 

compared the host’s response to the protein to another strain capable of producing a subunit 

vaccine candidate for rotavirus (P2-VP4-P[8]) of similar size and complexity at commercially-

relevant productivities (exceeding 0.5 g/L/d).23 Analysis of the differentially regulated pathways 

revealed differences in gene sets related to protein folding and ER-associated protein 

degradation pathways. These were upregulated relative to the strain secreting P2-VP4-P[8], 

implying that the recombinant RBD may be routed from the ER for degradation, reducing yields 

(Fig. 1B).  

Small, conservative changes to a protein sequence can address quality attributes of the 

protein such as aggregation and also reduce strain on cellular functions to improve titer.23 We 

undertook a similar approach to molecular engineering for SARS-CoV-2 RBD. We inspected the 

predicted folded structure of the RBD and identified several hydrophobic patches on the surface 

of this molecule that could promote non-covalent multimerization (Fig. 1C). Spike protein amino 

acids 452-456 and 488-490 in the RBM had the highest predicted regions of hydrophobicity. To 
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mitigate these hydrophobic patches, we replaced hydrophobic residues with amino acids highly 

conserved among other sarbecoviruses known to bind ACE2 (Fig. 1D).27,28 Lysine residues (as 

found in other coronaviruses in this region) are generally known to influence adjacent regions in 

sequences prone to aggregation.29 Replacement of only 1-4 amino acids in the RBM in silico 

reduced the AggScore,30 a predicted metric of hydrophobicity, of the RBD from 151.26 to 

132.46. Based on this analysis, we tested five variants of RBD (Fig. S1E), and found two of 

these variants (RBD-L452K-F490W and RBD-L452K-L455Y-F456L-F490W) exhibited 4-6 fold 

increased specific productivity relative to the original strain (Fig. 1E).31 We selected the RBD-

L452K-F490W to characterize further since it required fewer total changes from the original 

Wuhan-Hu-1 sequence. We found purified RBD-L452K-F490W exhibited a reduced tendency 

towards forming high-molecular weight species compared to the original RBD (Fig. 1F-G). We 

then produced and purified multiple milligrams of each antigen using our InSCyT manufacturing 

systems for automated, end-to-end production (Fig. S1F-G).21 RBD-L452K-F490W exhibited 

similar secondary structure to the original wildtype sequence (Fig. 1H). The modified sequence 

manifested a higher melting temperature compared to the original RBD (Fig. 1I), and static light 

scattering as a function of temperature revealed that thermally induced aggregation of RBD-

L452K-F490W was shifted nearly 10°C higher than unmodified RBD (Fig. 1J).  

Finally, we reassessed differences in gene expression between strains expressing RBD 

and RBD-L452K-F490W (Fig. S1H). Contrasting the results for the strain producing the original 

RBD sequence, the strain expressing RBD-L452K-F490W did not upregulate gene sets related 

to protein folding and ER-associated protein degradation relative to the strain expressing P2-

VP4-P[8], suggesting that the L452K-F490W mutations may alleviate this source of cellular 

stress. These transcriptomic and biophysical data together suggest the targeted changes to 

reduce the hydrophobicity of residues within the RBM reduced the propensity for aggregation, 

enhanced the thermostability of the protein, and improved expression—these traits are all 
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important for large-volume production as well as development of a formulated product with 

reduced thermal requirements for storage.  

The L452K and F490W mutations were selected from conserved substitutions identified 

from other sarbecoviruses and improved the quality attributes of the RBD, but these changes 

could alter the antigenicity and immunogenicity of the molecule. Several identified neutralizing 

antibodies from patients recognize epitopes around the RBM, and many bind near L452.32 We 

measured the affinities of the RBD variant to both human ACE2-Fc and CR3022, and 

surprisingly, the RBD-L452K-F490W exhibited higher binding affinity to both molecules (KD = 7 

± 1 and 7 ± 1 nM) (Fig. 2A). These data confirmed the engineered RBD variant retains its 

antigenicity relative to the Wuhan-Hu-1 sequence.  

To assess the immunogenicity of our engineered variant, we subcutaneously immunized 

mice with the unmodified RBD (332-532) or RBD-L452K-F490W formulated with different 

adjuvants (a saponin-based adjuvant SMNP,33 aluminum hydroxide referred to as alum, 

CpG1826, or a mixture of alum and CpG1826). All animals immunized with RBD-L452K-F490W 

seroconverted after a single dose, exhibiting robust anti-RBD IgG titers that remained 

consistently elevated over seven weeks post-boost, regardless of adjuvant (Fig. 2B). In contrast, 

anti-RBD IgG responses in animals immunized with unmodified Wuhan-Hu-1 RBD were 

significantly less robust and less durable; serum titers from mice receiving the wildtype 

sequence with either alum or CpG alone declined to basal levels over time. Furthermore, 

immunization with RBD-L452K-F490W, both in combination with SMNP and the mixture of 

alum+CpG adjuvants, elicited pseudovirus neutralizing antibody (NAb) titers after only one 

dose, with NT50 titers exceeding 104 after a second dose (Fig. 2C-D). These NAb levels were 

significantly greater than those elicited by the WT sequence both post-prime (3 weeks, SMNP) 

and post-boost (6 weeks, SMNP and alum+CpG). Of note, SMNP and alum+CpG adjuvant 

groups elicited high levels of anti-RBD IgG across a distribution of isotypes, including isotypes 

associated with Th1 (IgG2a and IgG2b) and Th2 (IgG1) responses, suggesting a balanced 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 4, 2021. ; https://doi.org/10.1101/2021.03.03.433558doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.03.433558
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 
 

Th1/Th2 phenotype (Fig. 2D). In contrast, alum alone promoted an IgG1-dominant response, 

consistent with a Th2 bias (Fig. S2A). Other adjuvants, including MF59, Matrix-M, and aluminum 

salts have previously been shown to promote functional neutralizing responses for SARS-CoV-1 

and MERS.34 The RBD-L452K-F490W immunogen also elicited seroconversion in mice similar 

to full-length S protein when used in combination with oil-in-water emulsion or liposome-based 

adjuvants (Fig. S2B). Together, these results indicate the engineered variant exhibits enhanced 

immunogenicity superior to the Wuhan-Hu-1 RBD sequence and could be formulated with 

several potential adjuvants of commercial relevance. 

Antibody responses raised by different antigen-adjuvant combinations can exhibit 

variable binding and efficacy against naturally occurring variants of SARS-CoV-2.35 We tested 

the binding of antibodies raised against RBD-L452K-F490W to RBD molecules with mutations 

found in two recently reported SARS-CoV-2 variants of concern, 501Y.V1 and 501Y.V2 (Fig. 

2F). Antibodies raised with alum or alum + CpG adjuvants exhibited comparable or slightly 

improved binding to variant RBDs, while antibodies raised with only CpG adjuvant did not retain 

binding. These results suggest that immune responses elicited by RBD-L452K-F490W may 

protect against SARS-CoV-2 variants with the N501Y spike protein mutation.  

Multimeric display of subunit antigens like RBD on nanoparticle-based scaffolds provides 

a promising approach to enhance immunogenicity further and to reduce the amount of protein 

required for individual doses of a vaccine or the number of doses required.36,37 Both attributes 

could facilitate broader global coverage for COVID-19 vaccines. We further modified the 

engineered RBD-L452K-F490W to include a peptide motif for covalently linking the antigen to a 

virus-like particle (VLP) via a transpeptidation reaction and produced the antigen similarly to the 

unmodified version (Fig. 3A,B; Fig. S3A).38,39 We conjugated the engineered antigen onto a 

designed self-assembling nanoparticle (i3-01) produced in bacteria.40 The resulting particles had 

~85% occupancy of the 60 available sites for antigenic display on each VLP (Fig. 3A-B, Fig. 

S3C). We confirmed that VLPs were correctly assembled by electron microscopy and size 
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exclusion chromatography before and after conjugation (Fig. 3C, Fig. S3D). We immunized 

mice with these constructs with doses containing 5 µg of RBD down to 0.06 µg, with alum and 

CpG adjuvants. All doses induced seroconversion with a strong correlation evident between the 

anti-RBD Ig response and neutralizing titers (Fig. 3D-E, Fig. S3D). We then immunized golden 

Syrian hamsters with the RBD-decorated VLPs with either alum or alum and CpG1018—a 

commercial GMP-grade adjuvant—with a prime and a boost after 3 weeks. Following the boost, 

we challenged the hamsters with SARS-CoV-2 and monitored for body weight change and viral 

titer post challenge. Animals that received the RBD-VLP with alum+CpG recovered in weight 

faster than the control group (p=0.04, day 6 post challenge) (Fig. 3F, Fig. S3E-F). Across all 

vaccinated animals, body weight change correlated with the measured titer of neutralization 

antibody from sera (Fig. S3G). These two studies demonstrate one potential presentation of the 

RBD-L452K-F490W as a vaccine antigen on a nanoparticle, and its efficacy reducing the effects 

of SARS-CoV-2 in the hamster model. 

In conclusion, we have demonstrated an engineered variant of SARS-CoV-2 RBD that 

shows improved immunogenicity compared to the original Wuhan-Hu-1 sequence for RBD used 

in current vaccines and is compatible with multiple commercially-relevant adjuvants. This design 

also exhibits improved biomolecular attributes that make it well-suited for further development 

for large-volume manufacturing of low-cost vaccine candidates. Improving the designs of 

vaccines for COVID-19 will remain critical as new variants like 501Y.V1/V2 continue to emerge 

with mutations in the RBD domain. Such adaptations by the virus could reduce the effectiveness 

of interventions like monoclonal antibodies and current vaccines based on the original Wuhan-

Hu-1 strain.41 Antibodies raised against the engineered RBD reported here exhibit heterotypic 

binding to both 501Y.V1 and V2. Interestingly, these viral variants also exhibit enhanced binding 

to ACE2, similar to the design here,42 and genomic sequences for reported strains containing 

mutations at E484 also show co-occurrences with changes at F490.43 The ACE2 RBM remains 

a critical epitope for neutralization of emerging variants.44 Another recent variant 
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(B.1.429/CAL.20C) that also shows escape from known neutralizing antibodies for SARS-CoV-2 

contains a strikingly similar change in the first position identified in our engineered design 

(L452R).45 The modifications to RBD we demonstrated here are limited to the ACE2 RBM, and, 

therefore, are compatible in principle with any vaccine based on presentation of the S protein or 

RBD, and could be combined with other specific mutations identified from naturally occurring 

variants. The increased immunogenicity of the design presented here may afford further insights 

to improve the breadth of protection afforded by SARS-CoV-2 vaccine candidates, and 

ultimately affordable and accessible vaccines.   
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Fig. 1 

Molecular engineering of the RBD for manufacturability 

(A) Reduced SDS-PAGE of purified RBD. Sup = cultivation supernatant, Pur = purified protein. 

(B) Gene set enrichment analysis comparing strains expressing RBD and a rotavirus VP8 

fragment (left); schematic model based on pathways for degradation of the RBD in the 

proteasome and peroxisome, with higher flux of recombinant protein shown with larger arrows 
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(right). (C) Structural rendering of RBD (predicted hydrophobic patches are red). (D) Sequence 

logo of predicted ACE2 binding motif hydrophobic patch using the top 96 sequences 

homologous to SARS-CoV-2. Alignment of the ACE2 binding motif to other sarbecoviruses, 

including selected designs for testing. (E) Bar graph of relative specific productivity for 

engineered variants of the RBD. preOST1-proMF1 is an alternative signal peptide. Reported 

values are relative to expression of wild type RBD. (F) Reduced SDS-PAGE of purified RBD-

L452K-F490W. (G) Size exclusion chromatography of purified RBD variants. (H) Far-UV circular 

dichroism at 10º C of purified RBD variants. (I) Differential scanning calorimetry of purified RBD 

variants. (J) Static light scattering vs. temperature of purified RBD variants.   
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Fig. 2 

Immunogenicity and antigenicity of wild type and engineered RBD 

(A) Binding of purified RBD variants to human ACE2-IgG fusion protein and CR3022  

neutralizing antibody by biolayer interferometry. (B) Titer of RBD-specific IgG in mouse sera by 

ELISA. Gray lines represent median values. (C) Titer of neutralizing antibody in mouse sera 

from SARS-CoV-2 pseudovirus neutralization assay. (D) Correlation of anti-RBD IgG ELISA and 

pseudovirus neutralization from mouse sera with saponin and alum + CpG adjuvants. (E) Titer 

of RBD-specific IgG1, IgG2a, and IgG2b antibodies in week 8 mouse sera by ELISA. (F) Titer of 

RBD-specific IgG in week 8 mouse sera from mice inoculated with RBD-L452K-F490W, 

evaluated for binding against RBD proteins with mutations from circulating strains of SARS-

CoV-2.  

LOD = limit of detection. Gray lines represent median values. Significance was determined by t-

test, with Holm-Sidak correction. *p<0.1, **p<0.01, ***p<0.001, ****p<0.0001  
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Fig. 3 

Immunogenicity and antigenicity of engineered RBD nanoparticles in mice and hamsters 

(A) Schematic of nanoparticle assembly using SpyTag and SpyCatcher. (B) Reduced SDS-

PAGE of nanoparticle components. (C) Negative stain electron microscopy of SpyCatcher-

12GS-I3-01 nanoparticles before (left) and after (right) conjugation to RBD-L452K-F490W-

GGDGGDGGDGG-SpyTag. (D) Titer of spike protein-specific IgG in mouse sera by ELISA. (E) 

Spearman correlation of anti-S protein IgG ELISA and pseudovirus neutralization from mouse 

sera. (F) Mean percent body weight change of hamsters in each group after challenge with 

SARS-CoV-2.  

Gray bars represent median values.   
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Fig. S1 

Initial expression and manufacturing of RBD variants 

(A) Reduced SDS-PAGE of cultivation supernatants of initial RBD variants. Each lane 

represents a unique clone after transformation. (B,C) Binding of RBD to human ACE2-IgG 
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fusion protein (B) and CR3022 neutralizing antibody (C) by biolayer interferometry. (D) Mass 

spectrum of purified RBD with labeled specific glycan peaks. Man = mannose. (E) Reduced 

SDS-PAGE of cultivation supernatants of RBD variants. (F-G) Yields for production of RBD (F) 

and RBD-L452K-F490W (G). Wet cell weight and purified pools of RBD variants are shown. (H) 

Gene set enrichment analysis comparing strains expressing RBD, RBD-L452K-F490W, and a 

rotavirus VP8 fragment (left); summary of upregulated cellular processes in each strain (right).  
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Fig. S2 

Immunogenicity of engineered RBD formulated with adjuvants 

(A) Titer of RBD-specific IgG1, IgG2a, and IgG2b antibodies in mouse sera by ELISA. (B) Titer 

of RBD-specific total Ig in mouse sera by ELISA. RBD-L452K-F490W was administered in 2 µg 

or 10 µg doses at weeks 0 and 3 with different adjuvants. (C) Titer of RBD-specific IgG in week 

8 mouse sera from mice inoculated with RBD, evaluated for binding against RBD proteins with 

mutations from circulating strains of SARS-CoV-2.  

Gray lines represent median values. Significance was determined by t-test, with Holm-Sidak 

correction. *p<0.1.  
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Figure S3 

Production and characterization of RBD-VLP nanoparticles 

(A) Reduced SDS-PAGE of RBD-L452K-F490W-GGDGGDGGDGG-SpyTag purification. Sup = 

cultivation supernatants, Pur = purified protein. (B) Reduced SDS-PAGE of purified RBD-

L452K-F490W-GGDGGDGGDGG-SpyTag, SpyCatcher-12GS-I3-01 (produced in E. coli), 

nanoparticles after the conjugation reaction, and nanoparticles after buffer exchange and filter 

concentration. Gel replicates are serial 3x dilutions of each sample. (C) Size exclusion 

chromatography of nanoparticles before and after the conjugation reaction. (D) Titer of 

neutralizing antibody in mouse sera from SARS-CoV-2 pseudovirus neutralization assay for the 

RBD-VLP dosing study. (E) Titer of spike protein-specific IgG in hamster sera by ELISA. Doses 

were administered at weeks 0 and 3. (F) Titer of neutralizing antibody in hamster sera from 

SARS-CoV-2 pseudovirus neutralization assay. (G) Change in body weight of individual 
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hamsters after challenge with SARS-CoV-2. Three animals in each group underwent scheduled 

necropsies at day 4. (H) Correlation of percentage weight change at day 6 post challenge with 

neutralizing antibody titer in sera sampled in week 5. 

Gray lines represent median values. LOD = limit of detection.  
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Materials and Methods 

Strains 

All strains were derived from wild-type Komagataella phaffii (NRRL Y-11430), in a 

modified base strain (RCR2_D196E, RVB1_K8E) described previously.1 Genes containing RBD 

variants were codon optimized, synthesized (Integrated DNA Technologies), and cloned into a 

custom vector. K. phaffii strains were transformed as described previously.2  

 

Cultivations 

Strains for initial characterization and titer measurement were grown in 3 mL culture in 

24-well deep well plates (25°C, 600 rpm), and strains for protein purification were grown in 200 

mL culture in 1 L shake flasks (25°C, 250 rpm). Cells were cultivated in complex media 

(potassium phosphate buffer pH 6.5, 1.34% nitrogen base w/o amino acids, 1% yeast extract, 

2% peptone).  Cells were inoculated at 0.1 OD600, outgrown for 24 h with 4% glycerol feed, 

pelleted, and resuspended in fresh media with 3% methanol to induce recombinant gene 

expression. Supernatant samples were collected after 24 h of production, filtered, and analyzed. 

InSCyT bioreactors were operated as described previously.3  

 

Transcriptome analysis 

Cell were harvested after 18 h of production at 3 mL plate scale. RNA was extracted and 

purified according to the Qiagen RNeasy kit (cat #74104) and RNA quality was analyzed to 

ensure RNA Quality Number >6.5. RNA libraries were prepared using the 3’DGE method and 

sequenced on an Illumina Nextseq to generate paired reads of 20 (read 1) and 72 bp (read 2). 

Sequenced mRNA transcripts were demultiplexed using sample barcodes and PCR duplicates 

were removed by selecting one sequence read per Unique Molecular Identifier (UMI) using a 

custom python script. Transcripts were quantified with Salmon version 1.1.04 and selective 

alignment using a target consisting of the K. phaffii transcripts, the RBD-N1del, P[8] and 
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selectable marker transgene sequences and the K. Phaffii genome as a selective alignment 

decoy. Expression values were summarized with tximport version 1.12.35 and edgeR version 

3.26.8.6,7 Expression was visualized using log2(Counts per Million + 1) values. Gene set 

enrichment analysis (GSEA) was performed with GSEA 4.1.0 using Wald statistics calculated by 

DESeq28 and gene sets from yeast GO Slim.9  

 

Protein purification  

Protein purification for non-clinical studies and end-to-end manufacturing was carried out 

on the purification module of the InSCyT system as described previously.3 All columns were 

equilibrated in the appropriate buffer prior to each run. Product-containing supernatant was 

adjusted to pH 4.5 using 100mM citric acid. The adjusted supernatant was loaded into a pre-

packed CMM HyperCel column (5-mL) (Pall Corporation, Port Washington, NY), re-equilibrated 

with 20 mM sodium citrate pH 5.0, washed with 20 mM sodium phosphate pH 5.8, and eluted 

with 20 mM sodium phosphate pH 8.0, 150 mM NaCl. Eluate from column 1 above 15 mAU was 

flowed through a 1-mL pre-packed HyperCel STAR AX column (Pall Corporation, Port 

Washington, NY). Flow-through from column 2 above 15 mAU was collected. 

 

Analytical assays for protein characterization 

Purified protein concentrations were determined by absorbance at A280 nm. SDS-PAGE 

was carried out as described previously.3 Supernatant titers were measured by reverse phase 

liquid chromatography, and normalized by cell density, measured by OD600. 

 

Biolayer interferometry 

Biolayer interferometry was performed using the Octet Red96 with Protein A (ProA) 

biosensors (Sartorius ForteBio, Fremont, CA), which were hydrated for 15 min in kinetics buffer 

prior to each run. Kinetics buffer comprising 1X PBS pH 7.2, 0.5% BSA, and 0.05% Tween 20 
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was used for all dilutions, baseline, and disassociation steps. CR3022 and ACE2-Fc were used 

in the assay at concentrations of 2 and 10 µg/mL, respectively. Samples were loaded in a 96-

well black microplate (Greiner Bio-One, Monroe, NC) at starting concentrations of 15 and 10 

µg/mL, respectively. Seven 1:1 serial dilutions and a reference well of kinetics buffer were 

analyzed for each sample. Association and dissociation were measured at 1000 rpm for 300 

and 600 sec, respectively. Binding affinity was calculated using the Octet Data Analysis 

software v10.0 (Pall ForteBio), using reference subtraction, baseline alignment, inter-step 

correction, Savitzky-Golay filtering, and a global 1:1 binding model. 

 

Size exclusion chromatography 

Size exclusion high performance liquid chromatography (HPLC) analysis was performed 

on an Agilent 1260 HPLC system controlled using OpenLab CDS software (Agilent 

Technologies, Santa Clara, CA). The analysis was performed using an AdvanceBio SEC 

column (Agilent Technologies, Santa Clara, CA, 4.6 x 300 mm, 300Å, 2.7µm) and AdvanceBio 

SEC guard column (Agilent Technologies, Santa Clara, CA, 4.6 x 50 mm, 300Å, 2.7µm). The 

column was operated at a flow rate of 0.25 mL/minute and ambient temperature. The mobile 

phase buffer was 150mM sodium phosphate (Sigma-Aldrich, St. Louis, MO), pH 7.0. Total 

method run time was 30 minutes and sample injection volumes were 10µL. A diode array 

detector was set for absorbance detection at 214nm. Data analysis was completed using 

Agilent’s OpenLab CDS Data Analysis. 

 

Reverse phase chromatography 

Reverse phase high performance liquid chromatography (HPLC) analysis was 

performed on an Agilent 1260 HPLC system controlled using OpenLab CDS software (Agilent 

Technologies, Santa Clara, CA). Antigen concentration was determined using a PLRP-S column 

(2.1 x 150 mm, 300Å, 3µm) operated at 0.6 mL/min and 80⁰C (Agilent Technologies, Santa 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 4, 2021. ; https://doi.org/10.1101/2021.03.03.433558doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.03.433558
http://creativecommons.org/licenses/by-nc-nd/4.0/


27 
 

Clara, CA) on an HPLC equipped with a diode array detector set for absorbance detection at 

214nm and. Buffer A was 0.1% (v/v) TFA in water and buffer B was 0.1% (v/v) TFA, 0.5% (v/v) 

water in ACN. A gradient of 39-43% B was performed over 9 minutes; total method run time was 

18 minutes. Sample injection volumes were 50µL. A diode array detector was set for 

absorbance detection at 214nm. Data analysis was completed using OpenLab CDS Data 

Analysis (Agilent Technologies, Santa Clara, CA). 

 

Mass spectrometry 

Intact mass analysis was performed on a 6530B Q-TOF LC-MS with a 1290 series 

HPLC (Agilent Technologies, Santa Clara, CA). Mobile phase A consisted of LC-MS grade 

water with 0.1% formic acid, and mobile phase B was LC-MS grade acetonitrile with 0.1% 

formic acid. About 1.0 µg of protein for each sample was injected, bound to a PLRP-S column 

(2.1mm x 50mm, 5μm, 300Å) (Agilent Technologies), desalted, and subjected to electrospray 

ionization. The LC gradient comprised 5-95% B over 30 min at a flow rate of 0.4 mL/min. A 

blank injection between each sample was performed as a wash step, consisting of an LC 

gradient of 5 -95% B over 6 min. The electrospray ionization parameters were: 325°C drying 

gas temperature, 10 L/min drying gas flow, 30 psig nebulizer, 4000 V Vcap, and 325 V 

fragmentor voltage. Mass spectra were collected from 500-3200 m/z at a scan rate of 1 

spectra/sec. MS spectra were processed using MassHunter Bioconfirm software (v B.10.0, 

Agilent Technologies) with a deconvolution range of 10-50 kDa, using a mass step of 1 Dalton. 

 

Far-UV Circular Dichroism (CD) 

CD spectroscopy was performed using a Chirascan-plus CD spectrometer (Applied 

Photophysics Ltd., Leatherhead, UK) equipped with a 6-cuvette position Peltier temperature 

controller (Quantum Northwest, Liberty Lake, WA) and a high-performance solid-state detector. 

The lamp (150 W air-cooled Xe arc) housing, monochromator and sample compartment were 
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continuously purged with N2 gas. The 10°C CD spectra of RBD samples at 0.2 mg/mL were 

collected in triplicate in the range of 280-200 nm using quartz cuvettes (1 mm path length) 

sealed with a Teflon stopper (Starna Cells Inc., Atascadero, CA). Data were subjected to a 3-

point Savitzky-Golay smoothing filter using the Chirascan software (Applied Photophysics) and 

the ellipticity of the buffer was subtracted from all sample measurements. 

 

Static Light Scattering vs. Temperature 

Static light scattering measurements as a function of temperature were made in triplicate 

using a dual emission PTI QM-40 Spectrofluorometer (Horiba Scientific Northampton, UK) 

equipped with a 4-position cell holder Peltier temperature control device, a high-power 

continuous 75 W short-arc Xe lamp (Ushio), and a Hamamatsu R1527 photomultiplier tube. 

Data were collected using FelixGX software (Horiba Scientific) in 10 mm path length quartz 

cuvettes. RBD samples at 0.2 mg/mL were examined as a function of temperature (10°C-90°C) 

using an excitation wavelength of 295 nm. Static light scattering signal at 295 nm was collected 

at 1.25°C interval with a 2 min equilibration at each temperature. The light scattering signal of 

the buffer was subtracted from all sample measurements and the light scattering intensity at 295 

nm was plotted at a function of temperature.  

 

Differential Scanning Calorimetry (DSC) 

DSC was performed in triplicate using an auto-VP capillary differential scanning 

calorimeter (MicroCal/GE Health Sciences, Pittsburgh, PA) equipped with Tantalum sample and 

reference cells pressurized at ~60 psi with nitrogen. RBD samples at 0.2 mg/mL were loaded in 

the autosampler tray held at 4°C and scans were completed from 10°C to 90°C using a scan 

rate of 60°C/h and a pre-scan thermostat of 15 min. Buffer subtraction and concentration 

normalization were performed using Origin (OriginLab, Northampton, MA). Data analysis was 

performed using the MicroCal LLC DSC plug-in for the Origin 7.0 software package. 
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Immunization of mice for soluble RBD studies 

The immunogenicity of RBD-L452K-F490W compared to RBD was evaluated in vivo in 

mice. All procedures were approved by the Massachusetts Institute of Technology Institutional 

Animal Care and Use Committee (IACUC) following local, state, and federal regulations. 

Immunization studies were carried out using age-matched 6-8 wk old Balb/cJ female mice 

purchased from The Jackson Laboratory (strain: 000651). Mice were immunized on day 0 and 

day 21 with 5µg RBD plus adjuvant: 50µg alum Alhydrogel (Invivogen), 30µg CpG1826 

(Invivogen), or 5µg saponin MPLA nanoparticles (SMNP). SMNP was synthesized in-house as 

previously described,10 where dose is reported as the amount of saponin administered. 

Immunizations were administered via subcutaneous injection in 100µl PBS at the tail base (2 x 

50µl bilateral injections, one on each side of the tail base). Blood was collected by cheek or 

retro-orbital bleed for ELISA antibody analysis on wk 2, 3, 4, and then every 2 weeks thereafter. 

Serum was isolated from blood using serum separator tubes, centrifuged at 10,000xg for 5min 

at 4C, then stored at -80C. 

 

RBD-specific ELISA assays 

Anti-RBD IgG was measured in mouse serum by ELISA. To capture serum antibodies 

from immunized mice, Costar Polystyrene High Binding 96-well plates (Corning) were coated 

directly with RBD antigen at 2µg/ml in PBS overnight at 4C, then blocked with PBS + 2% BSA 

for 2 hr at 25C. Mouse sera were diluted in block buffer (PBS + 2% BSA) starting at 1:100 or 

1:200 followed by 4X serial dilutions and incubated in plates for 2 hr at 25C, followed by 

detection with 1:5000 goat anti-mouse IgG-HRP (BioRad) in block buffer for 1 hr. Plates were 

developed using TMB substrate for 1-20 min and stopped with 2N sulfuric acid. For all titer 

analyses, samples directly compared across groups were developed for the same amount of 
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time. Cut-off titers are reported as inverse dilutions giving a 0.2 HRP absorbance (A450 – 

A540). 

 

Immunization of mice for RBD adjuvant studies 

The immunogenicity of RBD-L452K-F490W in combination with various adjuvants was 

evaluated in 7-8 week-old C57BL/6J female mice (Charles River, strain: 000634) at the Vaccine 

Formulation Institute (VFI, Switzerland). All animal work was performed in accordance with the 

Swiss Federal Animal Protection Act. Mice were immunized IM with RBD antigen and adjuvants 

including aluminum Hydroxide (AlOH, Croda, Denmark), SWE11 (squalene-in-water emulsion, 

Seppic, France), SQ (SWE + QS21 saponin, VFI), SMQ12 (squalene-in-water emulsion + 

synthetic TLR4L and QS21, VFI), LQ12 (neutral liposomes + QS21, VFI) or LMQ12 (neutral 

liposome + synthetic TLR4L and QS21 saponin, VFI). The TLR4 agonist was used at a final 

concentration of 2 µg/dose and the QS21 saponin at 5 µg/dose. The Spike prefusion trimer 

(produced previously13) adjuvanted with SWE was used as a benchmark in this experiment as it 

has been shown to induce high titers of neutralizing antibodies. All formulations were fully 

characterized for adjuvant physico-chemical properties and antigen integrity. Blood samples 

were collected on day 42 and sera tested for RBD specific antibodies in ELISA with the 

following modifications: Plates were coated with 1.25µg/mL soluble RBD (produced 

previously13)  and mouse serum Ig was detected using a goat anti mouse Ig coupled to HRP 

(Southern Biotech) diluted at 1/6000.   

 

Production of RBD nanoparticles 

I3-01-spycatcher nanoparticles were manufactured in E. coli using standard methods.  

Protein was expressed using standard IPTG methods, using pet29B expression vector and NEB 

Lemo21 expression strain.  Cells were lysed with a Microfluidics M110P microfluidizer, clarified 

by centrifugation, and captured from soluble lysate by IMAC, using Cytiva IMAC-FF Sepharose 
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resin charged with NiSO4 . Protein of interest was eluted from resin using imidazole, 

concentrated, and polished using Size Exclusion Chromatography on a Cytiva Superose 6 

Increase column.  Assembly of the nanoparticle was confirmed using Dynamic Light Scattering 

and nsEM, in conjunction with the observed SEC retention time.  Endotoxin was removed using 

Pierce™ High Capacity Endotoxin Removal Spin Columns (Thermo Scientific) to below 10 

EU/mL and quantified using Pierce™ Chromogenic Endotoxin Quant Kit (Thermo Scientific). I3-

01-spycatcher and RBD-spytag were conjugated by incubation overnight at 4°C in 20mM 

sodium phosphate, 150mM NaCl, pH 8 buffer, with a 1:1.5 I3-01-spycatcher:RBD-spytag molar 

ratio. Excess RBD was removed with a 100 kDa molecular weight cutoff Amicon® Ultra-4 

centrifugal filter (Millipore). RBD valency was determined using SDS-PAGE densitometry in 

ImageJ.  

 

Negative-stain electron microscopy 

 Solution with conjugated RBD-VLP nanoparticles (7 µL) was incubated on a 200 meshes 

copper grid coated with a continuous carbon film for 60 seconds. Excess liquid was removed, 

and the film was incubated in 10 µL of 2% uranyl acetate. The grid was dried at room 

temperature and mounted on a JEOL single tilt holder in the TEM column. The specimen was 

cooled by liquid nitrogen, and imaged on a JEOL 2100 FEG microscope with a minimum dose 

to avoid sample damage. The microscope was operated at 200 kV with magnification at 10,000-

60,000x. Images were recorded on a Gatan 2Kx2K UltraScan CCD camera.  

 

Immunization of mice for RBD-VLP studies 

Balb/cJ female mice, ages 6-8 weeks were purchased from The Jackson Laboratory 

(strain: 000651). Mice were immunized on day 0 and day 21 with the indicated doses of RBD-

VLPs or soluble RBD-L425K-F490W monomer as a control; all groups were adjuvanted with 

40µg Alum + 10µg CpG. Immunizations were administered via bilateral intra-muscular injection. 
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Peripheral blood was collected via the submandibular route at day 0, day 21, and day 35, and 

serum was isolated for immunologic assays. Studies were conducted in compliance with all 

relevant local, state and federal regulations and were approved by the Beth Israel Deaconess 

Medical Center Institutional Animal Care and Use Committee. 

 

Spike protein-specific ELISA assays 

Nunc Immuno MaxiSorp 96-well plates (Thermo Scientific) were coated with SARS-CoV-

2 Spike protein (Sino Biological) at 1µg/mL in PBS and incubated overnight at 4C. After 

incubation, plates were washed once with wash buffer (0.05% TWEEN-20 in 1X PBS), then 

blocked with casein for 2-3 hours at 25C. Mouse or hamster sera were diluted in casein block 

buffer starting at 1:25 followed by 3X serial dilutions and incubated in plates for 1 hr at 25C. 

Plates were then washed three times, and incubated with either rabbit anti-mouse IgG-HRP 

(Jackson Immuno) or goat anti-hamster IgG(H+L)-HRP (SouthernBiotech) diluted in casein for 

mouse or hamster samples, respectively. After 1 hour incubation at 25C, plates were wsaahed 

three times, then developed using TMB substrate (SeraCare). Development was halted using 

stop solution (SeraCare). For each sample, ELISA endpoint titer was calculated in Graphpad 

Prism software, using a four-parameter logistic curve fit to calculate the reciprocal serum dilution 

that yields an absorbance value (450nm) of 0.2. 

 

 Pseudovirus neutralization assays 

 The SARS-CoV-2 pseudoviruses expressing a luciferase reporter gene were generated 

in an approach similar to as described previously.14–16 Briefly, the packaging plasmid psPAX2 

(AIDS Resource and Reagent Program), luciferase reporter plasmid pLenti-CMV Puro-Luc 

(Addgene), and spike protein expressing pcDNA3.1-SARS CoV-2 SΔCT were co-transfected 

into HEK293T cells by lipofectamine 2000 (ThermoFisher). The supernatants containing the 

pseudotype viruses were collected 48 h post-transfection, which were purified by centrifugation 
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and filtration with 0.45 µm filter. To determine the neutralization activity of the plasma or serum 

samples from animals, HEK293T-hACE2 cells were seeded in 96-well tissue culture plates at a 

density of 1.75 x 104 cells/well overnight. Three-fold serial dilutions of heat inactivated plasma 

samples were prepared and mixed with 50 µL of pseudovirus. The mixture was incubated at 

37oC for 1 h before adding to HEK293T-hACE2 cells. 48 h after infection, cells were lysed in 

Steady-Glo Luciferase Assay (Promega) according to the manufacturer’s instructions. SARS-

CoV-2 neutralization titers were defined as the sample dilution at which a 50% reduction in 

relative light unit (RLU) was observed relative to the average of the virus control wells. 

 

Immunization of hamsters 

Male and female Syrian golden hamsters (Envigo), 7-8 weeks of age, were randomly 

distributed into three groups. Hamsters were immunized via intramuscular injection with a prime 

at week 0, followed by a boost at week 3 of i) RBD-J-ST-i3 VLPs containing 2µg of RBD protein 

+ 40µg of Alum, ii) RBD-J-ST-i3 VLPs containing 2µg of RBD protein + 40µg of Alum + 100µg of 

CpG, or iii) sham. Peripheral blood was drawn via the retro-orbital route at baseline (week 0), 

week 3, and week 5 to collect serum for immunologic assays. At week 5, hamsters were 

challenged with 1.99 x 104 TCID50 SARS-CoV-2, derived from USA-WA1/2020 (NR-53780, BEI 

Resources). Challenge virus was administered in 100µL of total volume by the intranasal route 

(50µL in each nare). After challenge, body weights of hamsters were monitored daily. Studies 

were conducted in compliance with all relevant local, state and federal regulations and were 

approved by the Bioqual Institutional Animal Care and Use Committee. 
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