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Abstract 
Recent studies have suggested close functional links between visual attention and decision 

making. This suggests that the corresponding mechanisms may interface in brain regions 

known to be crucial for guiding visual attention – such as the frontal eye field (FEF). Here, we 

combined brain stimulation, eye tracking and computational approaches to explore this 

possibility. We show that inhibitory transcranial magnetic stimulation (TMS) over the right FEF 

has a causal impact on decision-making, reducing the effect of gaze dwell time on choice 

while also increasing reaction times. We computationally characterize this putative 

mechanism by using the attentional drift diffusion model (aDDM), which reveals that FEF 

inhibition reduces the relative discounting of the non-fixated option in the comparison process. 

Our findings establish an important causal role of the right FEF in choice, elucidate the 

underlying mechanism, and provide support for one of the key causal hypotheses associated 

with the aDDM. 
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Introduction 
Despite the fact that decision-making and visual attention are both central features of 

cognition, we still know relatively little about how they interact.  A prominent view in decision 

neuroscience is that the decision process consists of sequential sampling of information, with 

the choice implemented once the decision-maker accumulates enough net evidence in favor 

of one of the options (Ratcliff et al., 2016; Shadlen & Shohamy, 2016).  Furthermore, 

experimental and theoretical accounts support the idea that such evidence accumulation is a 

domain-general mechanism underlying judgments about both the objective state of the 

physical world (perceptual decisions) (Bogacz et al., 2009; Forstmann et al., 2016; Gold & 

Heekeren, 2014; Hanks & Summerfield, 2017; O’Connell et al., 2018) and the subjective 

reward value of different choice options (Basten et al., 2010; Bhatia, 2013; Clithero, 2018; De 

Martino et al., 2013; Diederich, 2003; Fudenberg et al., 2018; Gluth et al., 2012; Hare et al., 

2011; Hayden et al., 2011; Hunt et al., 2012; Hutcherson et al., 2015; Krajbich et al., 2015; 

Mormann et al., 2010; Philiastides & Ratcliff, 2013; Polania et al., 2014; Rodriguez et al., 2014; 

Roe et al., 2001; Tajima et al., 2016; Trueblood et al., 2014; Webb, 2018; Woodford, 2014; 

Zhao et al., 2020). 

Visual attention allows us to selectively process the information in our environment,   

allocating greater computational resources to elements of interest in the visual scene, at the 

cost of diminishing the processing of unattended components (Carrasco, 2011; Chelazzi et 

al., 2011; Failing & Theeuwes, 2018; Itti & Koch, 2001).  Thus, the sequential orienting of 

attention towards different stimuli is crucial for understanding the whole visual scene and 

guiding our gaze through it (Eimer, 2014).  Attention can either be directed overtly (i.e., by eye 

fixation) or covertly (during constant fixation), but the effects on neural processing and the 

underlying causal mechanisms are thought to be strongly related (Moore & Zirnsak, 2017).   

Investigations into the link between attention and decision making have shown that, 

during decision-making, subjects shift their gaze between the options until one of them is 

selected.  These findings have led to proposals that overt visual attention may influence the 

evidence comparison process that guides choice behavior (Amasino et al., 2019; Ashby et al., 

2016; Cavanagh et al., 2014; Folke et al., 2016; Hunt et al., 2018; Ian Krajbich et al., 2010; 

Shimojo et al., 2003; Towal et al., 2013). This proposed mechanism has been formalized by 

the attentional drift diffusion model (aDDM; (Fisher, 2017; Konovalov & Krajbich, 2016; 

Krajbich & Rangel, 2011; Krajbich et al., 2010;  Krajbich, 2019; Smith & Krajbich, 2019; 

Tavares et al., 2017) and is supported by several reports of reliable correlations between gaze 

patterns and choice (Kovach et al., 2014; Smith & Krajbich, 2018; Stewart et al., 2015; Vaidya 

& Fellows, 2015) as well as experimental manipulations of attention that affect choice (Armel 

et al., 2008; Colas & Lu, 2017; Gwinn et al., 2019; Lim et al., 2011; Milosavljevic et al., 2012; 
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Pärnamets et al., 2015), but see (Ghaffari & Fiedler, 2018; Newell & Le Pelley, 2018). 

However, most of the existing studies have manipulated attention by means of salient stimulus 

changes or direct experimental instruction, which may possibly induce experimenter demand 

effects on choice.  

In the present study, we investigated the possible neural interface between attention 

and value-based choice using non-invasive brain stimulation, which offers a unique 

opportunity to test the functional contributions of brain areas reported to guide visual attention, 

without altering the experimental setup.  We employed transcranial magnetic stimulation 

(TMS) and targeted the right human Frontal Eye Field (FEF) – a brain region often reported 

to be activated during the control of both eye movements and selective visual attention 

(Corbetta & Shulman, 2002; Hung et al., 2011; Juan & Muggleton, 2012; Marshall et al., 2015; 

Moore & Zirnsak, 2017; Schall, 2015) (Methods). We combined TMS with a value-based 

choice task, eye tracking, and the aDDM, to investigate how neural excitability modulations in 

the FEF affect both overt visual attention and the variables underlying the value-based choice 

process.  Our choice task capitalizes on an important feature of the aDDM, namely that overt 

gaze has an amplifying effect on subjective values and so has a stronger effect on decisions 

between high-value items than low-value items (Shevlin & Krajbich, 2020; Smith & Krajbich, 

2019; Westbrook et al., 2020).  Thus, we employed a task with two overall-value conditions 

(low-value and high-value). This allowed us to test whether the FEF plays a causal role in the 

value-comparison process, and whether this effect is indeed stronger for higher-valued items, 

thereby indicating value amplification rather than just an attentional bias.   

 

Materials and methods 

Participants. Forty-five right-handed subjects (20 females, mean age ± SD = 23.14 ± 2.39) 

without a history of implanted metal objects, seizures or any other neurological or psychiatric 

disease participated in the experiment. No power analysis was used but the sample size was 

based on comparable TMS and eye-tracking studies at the time of data collection. Only 

subjects who reported not being on a diet were allowed to participate. Subjects were informed 

about all aspects of the experiment and gave written informed consent. Subjects received 

monetary compensation for their participation, in addition to receiving - at the end of the 

experiment - the chosen food item from a randomly selected choice trial.  The experiments 

conformed to the Declaration of Helsinki and the Ethics Committee of the Canton of Zurich 

approved the experimental protocol. 

Experimental design.  In a first task, subjects rated 148 food items (average duration of 10 

minutes and 16 seconds, SD = 1 minute and 5 seconds). Every food item was presented 
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individually on a computer screen for 2 seconds, followed by a rating screen (free response 

time).  Subjects were instructed to press the space bar for those food items that they did not 

like at all, and to rate the remaining items on a scale from 0 to 10 based on how much they 

would like to eat that food at the end of the experiment. This rating task gave us a measure of 

the subjective value for each food item and allowed us to exclude disliked items (Fig. 1a).   

After the rating task, subjects received inhibitory TMS (see below) on the right Frontal Eye 

Field or control stimulation on the vertex. We chose the right Frontal Eye Fields because this 

structure is one part of the well-established “dorsal attention network” (Corbetta & Shulman, 

2002) and is known to contain neurons involved in target discrimination, saccadic eye 

movements, and covert attention towards specific visual field locations (Moore & Zirnsak, 

2017; Schall, 2015). Moreover, FEF neurons have been shown to encode the reward value of 

objects in the current visual scene (Ding & Hikosaka, 2006; Glaser et al., 2016; Roesch & 

Olson, 2007; Serences, 2008) and are modulated in their attention-guiding function by 

dopaminergic neuromodulation (Noudoost & Moore, 2011). This suggests close functional 

interactions of the FEF with value-coding and dopaminergic reward systems, making this 

region an ideal candidate to house brain mechanisms responsible for top-down influences of 

attention on value computations during goal-directed choice. Due to the well-established right-

hemispheric dominance for the orienting of spatial attention in humans (Heilman & Van Den 

Abell, 1980; Mesulam, 1981; Ruff et al., 2009), we chose the right FEF as our target region.  

 Subjects were randomly assigned either to the control stimulation group or the experimental 

stimulation group (FEF-TMS) before showing up to the experiment.  Subjects were blind to 

their stimulation site, but the experimenters were not (at any part of the experiment or 

analysis).  In the second task, immediately after the stimulation procedure, participants made 

180 decisions between pairs of positively rated food items (average duration of 20 minutes 

and 36 seconds, SD = 5 minutes and 18 seconds) (Fig. 1b).  The food items we presented 

were selected such that – for each participant – the difference in ratings between the left and 

right items (VD = left item value - right item value) was constrained to be -1, 0 or +1.  This was 

done to focus on difficult choice problems where attention is most likely to affect the choice 

outcomes.   

The task had two conditions, differing with respect to overall value (OV = left item value + right 

item value).  In the high OV condition, subjects had to choose between two very appetitive 

(highly rated) foods, whereas decisions in the low OV condition only involved slightly appetitive 

(low rated) options (Fig. 1c).   

During the binary choice task, we recorded subjects’ gaze at 250 Hz with an EyeLink-1000 

(http://www.sr-research.com/).  Choice trials with no gaze time on any food item were 
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excluded from the analysis (0.008% of the pooled data from the 45 subjects). The mean 

(s.e.m.) number of trials dropped per subject was 1.44 ± 0.67.  Both tasks were programmed 

in Matlab 2013b (Matworks), using the Psychophysics Toolbox extension (Brainard, 1997).  

We used R for statistical analysis as well as the HDDM analysis package for diffusion modeling 

(Wiecki et al., 2013). 

Transcranial magnetic stimulation.  Subjects performed the binary choice task after receiving 

continuous theta burst TMS (cTBS) on the FEF (experimental group, n = 23) or the Vertex 

(control group, n = 22).  In this TMS protocol – known to reduce neural excitability in the 

targeted area for up to 30 minutes - 600 magnetic pulses are administered over 40 seconds 

in bursts of 3 pulses at 50 Hz (20ms) repeated at intervals of 5 Hz (200 ms) (Huang et al., 

2005). TMS pulses were delivered using a biphasic repetitive stimulator (Superapid2, 

Magstim, Withland, UK) with a 70 mm diameter eight-figure coil, and stimulation intensity was 

calibrated, for each subject, at 80% of active motor threshold.   Prior to the experimental tasks, 

a structural T1-weighted anatomical MRI scan was acquired for every subject and 

reconstructed in 3-D for online neuro-navigation and precise placement of the TMS coil, with 

the Brainsight system (Rogue research, Montreal, Canada).  

To stimulate the right FEF, the center of the coil was located on the right hemisphere, 

just anterior to the junction between the pre-central sulcus and superior frontal sulcus (MNI 

coordinates: xyz = 35.6 (+/-2.5 ),3.9 (+/- 2.7), 64 (+/-2.3)).  During the stimulation procedure, 

the coil was positioned tangential to the targeted site and kept steady with a mechanical arm, 

with its handle oriented ~ 45˚ in a rostral-to-caudal and lateral-to-medial orientation (i.e., 

parallel to the central sulcus).  For stimulation on the vertex, the procedure was as above 

except that the center of the coil was located over the central fissure, at the intersection of the 

left and right central sulci, with the handle pointing backwards (Fig. 1d). 
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Figure 1. Experiment setup (a) Rating-task timeline: Subjects saw each food item for 2 s 
and then rated how much they would like to eat it on a scale from 0 to 10, or excluded the item 
by pressing the space bar (no time limit). (b) Choice-task timeline: Subjects first had to fixate 
a central cross for 2 s.  They then had to choose between the two presented food items using 
the keyboard.  The chosen food was then highlighted for 1 s. (c) Histogram of overall value 
(OV) in the choice task: Trials were constructed to have either very high or low OV.  (d) 
Stimulation: After the rating task, subjects received continuous theta-burst TMS over the 
vertex (left panel) or right FEF (right panel), depicted here schematically by the small green 
TMS coil symbol over one subject’s brain reconstruction.     
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Computational modeling.  Our theoretical framework is the attentional drift diffusion model 

(aDDM) (Krajbich et al., 2010), though we also demonstrate that our results are robust to the 

modeling framework.  In the standard DDM, decision makers accumulate noisy evidence for 

the options until the net evidence reaches a predefined threshold.  In a value-based DDM, the 

rate of evidence accumulation (“drift rate”) thus reflects the subjective values of the options.  

The aDDM extends this model by allowing the drift rate to change within a trial, based on 

which option is fixated.  In particular, the model assumes that gaze amplifies the value of the 

fixated (relative to non-fixated) option, shifting the drift rate towards that choice option and 

increasing the likelihood that it is chosen. Because of this amplifying (multiplicative) 

mechanism in this model, gaze has a stronger effect on the drift rate for high-value options, 

leading to shorter RTs and a larger effect of dwell time on choice probability (Shevlin & 

Krajbich, 2020; Smith & Krajbich, 2019; Westbrook et al., 2020) (Fig. 2a-b).    

 

 
 

Figure 2. Simulations of the aDDM. To provide an intuition for why the aDDM makes different 
predictions for low and high OV, we simulated the aDDM, once with low values (a) and once 
with high values (b).  The simulations were run for a subject with a typical gaze discount factor 
(low θ-value, cyan line) (θ = 0.3) and a subject with less of a discount (red line) (θ = 0.5). Dark 
(light) gray areas indicate periods where the subject is looking at the left (right) item. The 
relative decision value (V) evolves over time with a slope that is biased toward the item that is 
being fixated. The left item is selected when V reaches 1 and the right item is selected when 
V reaches -1. The first thing to note is that holding OV constant (i.e. within a panel), a lower θ 
results in bigger changes in the slope (drift rate) when gaze shifts between Left and Right.  
The second thing to note is that holding θ constant, higher OV also results in bigger changes 
in drift rate when gaze shifts between Left and Right.  Taken together, this means that the 
behavioral difference between low and high θ is much more pronounced for high vs. low OV. 
In particular, larger changes in drift rate lead to faster decisions and a stronger propensity to 
choose the longest attended option. 
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Formally, the aDDM captures the evidence accumulation process with a relative 

decision value (RDV) that evolves stochastically as follows. Let Vt be the value of the RDV at 

time t while d is a constant that controls the speed of change (in units of ms−1), and let rleft and 

rright denote the values of the two options.  Let θ (between 0 and 1) be a weight that discounts 

the value of the unattended alternative and, therefore, biases the RDV in favor of the attended 

one. ξ is white Gaussian noise with variance σ2, randomly sampled once every millisecond. 

Then, when a subject fixates on the left option, the RDV progresses according to  

Vt = Vt-1 + d (rleft – θ rright) + ξ, 

and when the subject fixates on the right option, the RDV changes according to  

Vt = Vt-1 + d (θ rleft - rright) + ξ. 

If the RDV reaches the +1 threshold the left reward is chosen and if it reaches the −1 threshold 

the right reward is chosen. 

The parameter θ captures the degree to which the value of the fixated option is 

amplified by attention.  A lower value of θ (closer to 0) indicates a stronger attentional 

influence, meaning that the decision maker is more likely to choose the longer-attended option 

and to respond faster (Fig. 2).   

 

Behavioral analysis and model fitting. We first investigated whether TMS had any effect on 

the gaze patterns in the data.  We first conducted a logistic regression with clustered standard 

errors (mixed-effects models would not converge) in which first spatial fixation location (left 

=1, right = 0) was the dependent variable, regressed on OV interacted with a dummy variable 

for FEF-TMS group.  We then conducted a mixed-effects logistic regression where first fixation 

location (coded as higher-rated item = 1, lower-rated item = 0) was regressed on OV interacted 

with a dummy variable for FEF-TMS group.  Finally, we also conducted three regressions with 

clustered standard errors (mixed-effects models would not converge) to analyze the length of 

first, middle (all but first and last), and last dwell times.  In each regression, log dwell time was 

regressed on TMS condition, position (left or right), OV, and value difference (VD) (left – right), 

all interacted together. 

We next tested specific hypotheses about choices and RTs based on our theoretical 

framework. First, we conducted standard generalized linear model (GLM) analyses.  

Specifically, we conducted a trial-level logistic mixed-effects regression in which the chosen 

litem (left =1, right = 0) was the dependent variable, regressed on the value difference (left – 

right), a dummy variable for FEF-TMS group, a dummy variable for the OV condition, dwell-

time advantage (total gaze dwell time spent on left – right item), and the interactions between 
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the last three variables. The dwell-time advantage is our variable of interest as it captures the 

effect of increased attention on choice; value difference is included as a control variable to 

account for the difficulty of the decision.  The model with full random effects would not 

converge, so we report the model with a random intercept and random slopes for value 

difference and dwell-time advantage; we obtain nearly identical results if we instead simply 

omit the random intercept from the full model.  Additionally, we report the same logistic 

regression model but with clustered standard errors, which is an alternative way to account 

for repeated observations within subjects (Table S1).   

 To examine differences in RTs, we first computed median RTs in high and low OV 

trials for each subject and then compared them using paired t-tests.  For a more sensitive 

analysis, we additionally performed non-parametric Kolmogorov-Smirnov tests between the 

pooled RT distributions. 

 Second, to test for differential effects in how TMS affected attention-based choice 

mechanisms, we utilized the hierarchical drift diffusion model (HDDM) package (Wiecki et al., 

2013).  This package uses Bayesian methods to estimate both group-level and subject-level 

DDM parameters.  The package has a very useful regression feature, allowing the user to 

regress DDM parameters on trial-level features.  A recent paper noted that one can use this 

feature to estimate gaze effects on drift rate (Cavanagh et al., 2014).  A simple trick allows us 

to actually recover the attentional discounting parameter θ directly using this technique.  In 

particular we run the following regression: 

𝑣 = 𝛽$ + 𝛽&'𝑟)*+𝑔)*+ − 𝑟./0𝑔./01 + 𝛽2'𝑟)*+𝑔./0 − 𝑟./0𝑔)*+1 + 𝛽3(𝑔)*+ − 𝑔./0) + 𝜀     

Where 𝑣 is the drift rate, 𝑟 are the values of the options, 𝑔 is the fraction of the trial spent 

looking at the option, and the subscripts opt and sub indicate the higher and lower rated 

options, respectively.  In the case of trials with equal-value options, we randomly assigned 

one of them to be opt and the other to be sub.  𝛽& = 𝛽2 is the special case where gaze has no 

effect on drift rate; in that case the model reduces to simply 𝑣 = 𝛽$ + 𝛽&'𝑟)*+ − 𝑟./01 + 𝜀 which 

is the standard DDM.  When 𝛽& > 𝛽2, gaze has an amplifying effect on drift rate, as predicted 

by the aDDM, and 𝛽2/𝛽& = θ.  We include the third term (𝛽3) to account for any possible 

additive effects of gaze on choice (Cavanagh et al., 2014; Westbrook et al., 2020). 

 

Results 

Does TMS affect the orienting of overt visual attention? 
Before turning to the behavioral results, we first investigate whether FEF TMS had any 

effect on the gaze patterns, i.e., the deployment of overt attention. Any such effects would 
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need to be accounted for in our subsequent analyses. Our subjects had a strong tendency to 

look first at the left food item (69.3%, 95% CI = [62.4%, 76.1%], p = 10-6) (Fig. 3). A logistic 

regression revealed that this tendency was reduced for high compared to low OV trials (OV: 

𝛽 = –0.194, CI = [–0.297, –0.091], p = 0.0002) in the Vertex group, but that this difference 

between OV conditions was eliminated in the FEF group (FEF x OV: 𝛽 = 0.222, CI = [0.058, 

0.385], p = 0.008) (Table S2).   

 A potential explanation for this effect is that for high OV trials, subjects are less likely 

to look left first because they are more likely to first look at the better item.  We tested this idea 

with another logistic (mixed-effects) regression, looking at the probability of fixating the higher-

rated item first. Consistent with prior work (Krajbich et al., 2010), a subject’s first gaze was no 

more likely than chance to go to the higher-rated item (50.2%, CI = [49.0%, 51.3%], p = 0.78). 

Moreover, we found no evidence for any OV or TMS effects.  If anything, the probability of 

fixating the better item was numerically lower for high OV trials in the Vertex group (OV: 𝛽 = 

–0.100, CI = [–0.253, 0.053], p = 0.2) and this effect was abolished under FEF TMS (FEF x 

OV: 𝛽 = 0.126, CI = [–0.089, 0.340], p = 0.25) (Table S3).    

 In sum, the only effect of FEF TMS on first fixation location seems to be that it keeps 

subjects looking left first at the same rate in high (69.5%) and low (69.0%) OV trials, compared 

to Vertex TMS, which slightly reduces the rate of looking left first in high (68.4%) vs. low 

(71.4%) OV trials.  We account for these effects in our later modeling to ensure that what we 

observe in the model parameters is not due to these differences in initial gaze allocation.    

We also examined whether FEF TMS affected the gaze dwell times.  In keeping with 

prior work (Krajbich et al., 2010, 2012), we separately analyzed first, middle, and last dwells.  

The basic reasoning is that first dwells cannot yet incorporate information about the non-

fixated option, while subsequent dwells can.  These first dwells also tend to be shorter than 

the rest.  The last dwell of the trial is also different from the rest in that it is cut short by the 

crossing of the decision threshold.   

In the regression analyses, we found no hint of any simple TMS effects or interaction 

effects (all p > 0.2) (Tables S4-6).  Therefore, we conclude that FEF TMS did not induce any 

observable changes in dwell times relative to Vertex TMS. 
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Figure 3. FEF effects on gaze patterns. Probability of looking first at the left food item during 
a trial. Subjects had a strong tendency to look left first.  This tendency was slightly reduced in 
high vs. low OV trials for the Vertex group (in blue) but not the FEF group (in red). Bars are 
s.e.m. 
 
 
How does TMS affect choices and reaction times? 

To test the aDDM predictions about how the right FEF should contribute to value-based 

choices, we compared trials with high or low OV, since the aDDM predicts stronger attentional 

effects (and therefore TMS modulation) for trials with high OV. Based on our theoretical 

framework, we tested several specific hypotheses with regard to choices and reaction times 

(RTs).   

First, the aDDM predicts that subjects should select the longest attended alternative, 

and this effect should be stronger for high-OV trials. If the right FEF play a role in bringing 

about this effect, then the FEF (compared to Vertex) group should show a weaker effect of 

gaze on choice, particularly for the high-OV trials. We tested this hypothesis with a trial-level 

logistic mixed-effects regression in which the choice of the left item was the dependent 

variable, as a function of VD, TMS condition, OV, dwell-time advantage, and the interactions 

between the last three variables. The results confirmed all the predictions.  During low-OV 

trials, subjects in the Vertex group were more inclined to choose the left food item as its dwell-

time advantage increased (dwell-time advantage: 𝛽 = 1.033, CI = [0.551, 1.515], p = 10-5).  

This effect increased strongly for high-OV trials (OV*dwell-time advantage: 𝛽 = 0.625, CI = 

[0.376, 0.873], p = 10-6; Fig. 4a).  The FEF group showed no difference to the Vertex group 

for the dwell-time-effect in low-OV trials (FEF x dwell-time advantage: 𝛽 = 0.174, CI = [–0.489, 

0.837], p = 0.61) but showed a substantial decrease relative to the Vertex group in high-OV 

trials (FEF x OV x dwell-time advantage: 𝛽 = –0.709, CI = [–1.019, –0.400], p = 10-5), In fact, 
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the difference in dwell-time effects between low and high OV was eliminated in the FEF 

subjects (Fig. 4a, Table S1).  

 Second, the aDDM also predicts that subjects should have shorter RTs for high-OV 

trials compared to low-OV trials.  Again, this effect should be reduced for the FEF (relative to 

Vertex) group if FEF TMS reduces the attentional value-discounting effect on the choice 

process. We tested this with a trial-level mixed-effects regression in which log(RT) was the 

dependent variable, as a function of |VD|, TMS condition, OV, and the interaction between the 

last two variables.  We included |VD| as a measure of decision difficulty, as is standard; here 

the effect was only marginal (|VD|: 𝛽 = -0.02, CI = [–0.046, 0.007], p = 0.15) presumably 

because of the very narrow range of |VD| in our task.  As expected, subjects in the Vertex 

group were faster in high-OV compared to low-OV trials (OV: 𝛽 = -0.1, CI = [–0.149, –0.052], 

p = 0.0006), and this was not changed by TMS for low-OV trials (TMS: 𝛽 = 0.021, CI = [–

0.136, 0.178], p = 0.79).  The expected interaction between TMS and high-OV was not 

significant, but pointed in the correct direction and numerically cut the effect of OV on RT by 

about half (TMS x OV: 𝛽 = 0.06, CI = [–0.019, 0.139], p = 0.15).   

For a more sensitive analysis of the RTs, we utilized the Kolmogorov-Smirnov (K-S) 

method to test for differences between the RT distributions. K-S tests revealed no difference 

between stimulation groups for low-OV trials (D = 0.022, p = 0.71) but a significant difference 

for high-OV trials (D = 0.064, p = 0.005) (Fig. 4b). They also revealed significant differences 

between high and low-OV trials in both groups, though the difference was numerically larger 

for the Vertex group (D = 0.097, p = 10-8) than for the FEF group (D = 0.091, p = 10-7).  

Admittedly, these tests do not account for repeated measures per subject, so they should be 

treated with caution. 

 

Model fitting 

According to our hypothesis, inhibitory TMS on the right FEF should decrease the gaze 

discount (i.e., increase θ) on the unattended option during the evidence accumulation process. 

The behavioral analyses reported above are consistent with this hypothesis.  Next, we made 

simultaneous use of choice and RT data, using diffusion modeling, to provide more direct 

evidence for this hypothesis, by showing that the estimated θ parameters were indeed higher 

for subjects in the FEF-TMS group compared to the Vertex-TMS group. 

 To do so, we used HDDM to fit a hierarchical diffusion model that accounts for the 

effects of gaze on choice.  In addition to the standard threshold separation (a) and non-

decision time (Ter) parameters, we also estimated drift rate as a function of the food ratings 

and dwell-time proportion (see Methods).   
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Figure 4. Behavioral results. The left panels are for low OV trials, the right panels are for 
high OV trials, and Vertex subjects are displayed in blue, FEF subjects in red. (a) Choice data: 
The probability of choosing the left item as a function of the total dwell time difference between 
the left and right items. Quintiles were determined at the subject level.  Quintile 0 represents 
decisions where both items had similar total dwell times. Negative quintiles indicate more dwell 
time for the right item and positive quintiles indicate more dwell time for the left item. Bars are 
s.e.m. (b) Density plots of log RT.  

 

 Looking first at threshold separation, we found no difference between the Vertex group 

(a = 2.63, CI = []) and the FEF group (a = 2.68, CI = [2.43, 2.93]) (t(40.2) = 0.30, p = 0.77).  

This clearly indicates that there was no change in response caution between the two groups. 

Looking next at the non-decision-time parameter, we again found no difference between the 

Vertex group (Ter = 664 ms, CI = [611, 718]) and the FEF group (Ter = 695 ms, CI = [637, 752]) 

(t(42.9) = 0.76, p = 0.45).  This indicates that there was also no change in general RT 

components that are separate from the decision process. In the model, we also accounted for 

potential additive effects of gaze on choice (i.e., changes that do not reflect modulation of 
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value evidence but that are constant and independent of item values).  We did observe 

significant additive effects of gaze direction, but importantly, these effects did not significantly 

differ between the Vertex group (𝛽3 = 0.551, CI = [0.415, 0.688]) and the FEF group (𝛽3 = 

0.695, CI = [0.48, 0.91]) (t(37.1) = 1.10, p = 0.28).   

 Having established that FEF TMS does not affect general, value-independent 

response processes, we turn to our key test. Comparing the two groups on the θ estimates 

we found that the estimated θ was significantly lower for the Vertex group (θ = 0.776, CI = 

[0.708, 0.844]) than for the FEF group (θ = 0.937 CI = [0.818, 1.055]) (t(34.9) = 2.30, p = 0.03). 

This demonstrates that the effects on choice behavior induced by TMS on the right FEF were 

specifically due to the multiplicative aDDM effects, and not due to changes in response 

caution, non-decision-time, or additive gaze effects.   

It is important to note that the results that we have presented demonstrate that FEF-

TMS reduces the effect of gaze on choice even when the observed gaze patterns are 

accounted for. Thus, FEF-TMS has effects on value discounting during choice that are 

independent of any effects the stimulation may have on gaze patterns themselves.   

 

Discussion 
Based on our computational modeling framework, we developed a paradigm that allowed us 

to causally manipulate value-based choice by inhibiting the right FEF.  Formal computational 

modeling using HDDM confirmed that the sole effect of the FEF inhibition was to reduce 

attentional effects on choice, i.e., to increase the gaze discount factor θ.  Importantly, this 

change was measured after accounting for the limited effects of the FEF stimulation on the 

gaze patterns themselves as well as on value-independent decision processes.   

Our results provide a neural validation for a central assumption in the aDDM, namely that 

attention amplifies the subjective values of the items, leading to larger effects on choice for 

higher-valued items (Smith & Krajbich, 2019).  In designing our experiment, we capitalized on 

this feature of the model by contrasting low- and high-value trials.  By showing that FEF 

stimulation affected choices and RTs in high-value but not low-value trials, we confirmed a 

role for right FEF in attention-based value modulation during choice, and further validated the 

multiplicative nature of the aDDM (Westbrook et al., 2020). 

More generally, our results build on a literature documenting the DDM-like neural mechanisms 

underlying value-based choice.  These papers have used EEG (Polania et al., 2014), fMRI 

(Basten et al., 2010; Gluth et al., 2012; Hare et al., 2011; Lim et al., 2011; Rodriguez et al., 

2015) and their combination (Pisauro et al., 2017) to identify neural signatures of evidence 

accumulation in structures such as the dorsal/posterior medial prefrontal cortex, dorsolateral 
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prefrontal cortex, and intraparietal sulci.  Our results suggest that the right FEF may play a 

critical role in modulating the resulting activity in this set of regions, through its effects on 

attention.    

Our results also suggest some interesting parallels in how attention may operate, by 

means of FEF and its feedback projections, in both perceptual and value systems in the 

human brain. As for perception, previous psychophysical studies have shown that, relative to 

unattended visual stimuli, perceptual sensitivity is enhanced for attended elements of the 

visual scene (Barbot et al., 2011; Herrmann et al., 2010; Montagna et al., 2009; Pestilli et al., 

2007; Pestilli & Carrasco, 2005). These investigations suggest that attended visual stimuli may 

have stronger neural representations than unattended ones, and this view has been supported 

by neurophysiological reports in humans (Kastner et al., 1998; Liu et al., 2005; O’Craven et 

al., 1997) and non-human primates (Connor et al., 1997; Martıńez-Trujillo & Treue, 2002; 

Reynolds et al., 2000; Reynolds & Desimone, 2003).  More precisely, these investigations 

have shown that neuronal populations that code for attended locations of the visual scene 

display enhanced activity, relative to neurons representing unattended locations. Importantly, 

the FEF is a possible source of these attention-dependent modulations: Investigations 

combining brain stimulation with neuroimaging techniques have shown that modulations of 

neuronal activity in the FEF induce top-down modulatory effects on both behavior and 

neuronal activity in early visual areas that resemble effects of attention (Moore & Armstrong, 

2003; Moore & Fallah, 2004; Ruff et al., 2006; Silvanto et al., 2006).   Additionally, it has been 

suggested that attention-dependent behavioral effects are due to a boost in synchronization 

between FEF and V4 at the gamma-band frequency (Gregoriou et al., 2009).   

In light of this information, it is interesting that TMS of the FEF also leads to decreasing 

modulatory effects of attention on the value of non-attended items. Could these behavioral 

effects reflect that the FEF may exert similar top-down modulatory effects on value 

representations? Extensive research indicates that such value representations are found in a 

large network of brain areas including the ventromedial prefrontal cortex (vmPFC), 

orbitofrontal cortex (OFC), ventral striatum (vStr) and the posterior parietal cortex (PPC) 

(Bartra et al., 2013; Boorman et al., 2009; Clithero & Rangel, 2014; Cromwell & Schultz, 2003; 

Kahnt et al., 2014; Knutson et al., 2001; Padoa-Schioppa & Assad, 2006; Plassmann et al., 

2007; Platt & Glimcher, 1999).  Moreover, these value-related BOLD signals are increased 

when attention is directed to the value (rather than other aspects) of objects (Grueschow et 

al. 2015; Grabenhorst & Rolls 2008),  or when participants attend to specific value-relevant 

aspects of a given stimulus (Lim et al., 2011). Interestingly, in another analogy to the 

perceptual domain, attending to the value of items leads to increases in fronto-posterior 

synchronization in the gamma frequency (Polania et al., 2014), and decreasing the degree of 
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this coherence by brain stimulation leads to inaccurate value-based choices (Polanía et al., 

2015). None of these studies have explicitly examined to what degree these attentional effects 

on value-based choices may involve the FEF, but our current results suggest that this should 

be a fruitful area for future studies. 

Taking together, our findings demonstrate the relevance of the FEF for attention-

dependent modulations of value-based decision processes, and they suggest directions for 

future investigations on the interaction between visual-attention brain networks and areas 

coding value-signals. 
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Estimate Standard 

Error 
Z value P value 

Intercept -0.027 0.056 -0.49 0.63 
VD  0.637 0.049 13.12 10-16 

TMS (FEF = 1, Vertex = 0) 0.029 0.078 0.37 0.71 
Dwell-time advantage (ms) 1.033 0.246 4.20 10-5 
OV condition (high = 1, low = 0) -0.002 0.070 -0.02 0.98 
TMS x dwell-time advantage 0.174 0.338 0.51 0.61 
TMS x OV condition -0.019 0.098 -0.19 0.85 
OV condition x dwell-time advantage 0.625 0.127 4.93 10-6 
TMS x OV condition x dwell-time 
advantage 

-0.709 0.158 -4.49 10-5 

 
Table S1. Choice behavior 
Logistic mixed-effects regression for the probability of choosing the left item.  The 
baseline condition in this regression is Vertex stimulation with low OV decisions.  
 
  

Estimate Standard 
Error 

Z value P value 

Intercept 0.091 0.0223 4.09 10-5 

VD 0.036 0.047 0.76 0.45 
TMS (FEF = 1, Vertex = 0) -0.111 0.329 -0.34 0.74 
OV condition (high = 1, low = 0) -0.194 0.053 -3.69 0.0002 
VD x TMS -0.016 0.072 -0.22 0.83 
VD x OV -0.119 0.061 -1.95 0.052 
TMS x OV 0.222 0.084 2.65 0.008 
VD x VD x OV 0.150 0.106 1.41 0.16 

 
Table S2 First gaze left 
Logistic regression for the probability that the first gaze is to the left item.  Clustered 
standard errors were used to account for repeated observations within-subject. The 
baseline condition in this regression is Vertex stimulation with low OV decisions.  
 
  

Estimate Standard 
Error 

Z value P value 

Intercept 0.029 0.055 0.52 0.60 
TMS (FEF = 1, Vertex = 0) -0.011 0.077 -0.15 0.88 
OV condition (high = 1, low = 0) -0.100 0.078 -1.29 0.20 
TMS x OV condition 0.126 0.109 1.15 0.25 

 
Table S3 First gaze to better item 
Logistic mixed-effects regression for the probability that the first gaze is to the better 
item.  The baseline condition in this regression is Vertex stimulation with low OV 
decisions.  For this analysis we excluded trials with VD equal to 0 because then there 
is no better food item.  The model includes full random effects at the subject level. 
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Estimate Standard 

Error 
Z value P value 

Intercept 5.700 0.080 71.67 10-16 

ROI (left = 1, right = 0) 0.115 0.098 1.17 0.24 
TMS (FEF = 1, Vertex = 0) 0.074 0.117 0.63 0.53 
OV condition (high = 1, low = 0) 0.012 0.034 0.35 0.72 
VD 0.002 0.036 0.06 0.95 
ROI x TMS -0.049 0.124 -0.39 0.70 
ROI x OV 0.006 0.043 0.13 0.90 
TMS x OV -0.021 0.045 -0.47 0.64 
ROI x VD 0.009 0.041 0.22 0.83 
TMS x VD 0.013 0.047 0.27 0.79 
OV x VD -0.0006 0.053 -0.01 0.99 
ROI x TMS x OV 0.017 0.056 0.31 0.76 
ROI x TMS x VD 0.016 0.054 0.30 0.76 
ROI x OV x VD -0.036 0.060 -0.60 0.55 
TMS x OV x VD 0.055 0.073 0.75 0.45 
ROI x TMS x OV x VD -0.049 0.081 -0.60 0.55 

 
Table S4 First gaze dwell time 
Linear regression for the first gaze log(dwell time).  Clustered standard errors were 
used to account for repeated observations within-subject. The baseline condition in 
this regression is Vertex stimulation with low OV decisions.  
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Estimate Standard 

Error 
Z value P value 

Intercept 6.382 0.054 118.84 10-16 

ROI (left = 1, right = 0) -0.022 0.043 -0.51 0.61 
TMS (FEF = 1, Vertex = 0) 0.022 0.086 0.26 0.80 
OV condition (high = 1, low = 0) -0.064 0.021 -3.08 0.002 
VD -0.039 0.016 -2.43 0.02 
ROI x TMS 0.056 0.054 1.04 0.30 
ROI x OV -0.029 0.023 -1.25 0.21 
TMS x OV 0.041 0.032 1.28 0.20 
ROI x VD 0.063 0.029 2.19 0.03 
TMS x VD 0.008 0.024 0.33 0.74 
OV x VD 0.039 0.023 1.70 0.09 
ROI x TMS x OV 0.044 0.042 1.06 0.29 
ROI x TMS x VD 0.023 0.040 0.58 0.56 
ROI x OV x VD -0.064 0.035 -1.84 0.07 
TMS x OV x VD 0.029 0.037 0.78 0.43 
ROI x TMS x OV x VD -0.038 0.057 -0.65 0.51 

 
Table S5 Middle gaze dwell time 
Linear regression for the middle gaze log(dwell time).  Clustered standard errors were 
used to account for repeated observations within-subject. The baseline condition in 
this regression is Vertex stimulation with low OV decisions.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 4, 2021. ; https://doi.org/10.1101/2021.03.03.433716doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.03.433716
http://creativecommons.org/licenses/by/4.0/


 
Estimate Standard 

Error 
Z value P value 

Intercept 6.002 0.045 133.43 10-16 

ROI (left = 1, right = 0) -0.144 0.072 -2.01 0.045 
TMS (FEF = 1, Vertex = 0) 0.052 0.067 0.78 0.44 
OV condition (high = 1, low = 0) -0.031 0.041 -0.77 0.44 
VD -0.033 0.032 -1.02 0.31 
ROI x TMS 0.032 0.091 0.36 0.72 
ROI x OV 0.020 0.067 0.29 0.77 
TMS x OV -0.017 0.059 -0.29 0.77 
ROI x VD -0.013 0.058 -0.22 0.83 
TMS x VD 0.025 0.046 0.54 0.59 
OV x VD 0.047 0.066 0.71 0.48 
ROI x TMS x OV 0.003 0.084 0.04 0.97 
ROI x TMS x VD -0.014 0.079 -0.18 0.86 
ROI x OV x VD 0.047 0.100 0.47 0.64 
TMS x OV x VD -0.071 0.082 -0.87 0.38 
ROI x TMS x OV x VD 0.048 0.123 0.39 0.70 

 
Table S6 Last gaze dwell time 
Linear regression for the last gaze log(dwell time).  Clustered standard errors were 
used to account for repeated observations within-subject. The baseline condition in 
this regression is Vertex stimulation with low OV decisions.  
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