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ABSTRACT 
Understanding the relationships between host range and pathogenicity for parasites, and between the efficiency 
and scope of immunity for hosts are essential to implement efficient disease control strategies. In the case of plant 
parasites, most studies have focused on describing qualitative interactions and a variety of genetic and evolutionary 
models has been proposed in this context. Although plant quantitative resistance benefits from advantages in terms 
of durability, we presently lack models that account for quantitative interactions between plants and their parasites 
and the evolution of these interactions. Nestedness and modularity are important features to unravel the overall 
structure of host-parasite interaction matrices. Here, we analysed these two features on 32 matrices of quantitative 
pathogenicity trait data gathered from 15 plant-parasite pathosystems consisting of either annual or perennial 
plants along with fungi or oomycetes, bacteria, nematodes, insects and viruses. The performance of several 
nestedness and modularity algorithms was evaluated through a simulation approach, which helped interpretation 
of the results. We observed significant modularity in only six of the 32 matrices, with two or three modules detected. 
For three of these matrices, modules could be related to resistance quantitative trait loci present in the host. In 
contrast, we found high and significant nestedness in 30 of the 32 matrices. Nestedness was linked to other 
properties of plant-parasite interactions. First, pathogenicity trait values were explained in majority by a parasite 
strain effect and a plant accession effect, with no or minor parasite-plant interaction term. Second, correlations 
between the efficiency and scope of the resistance of plant genotypes, and between the host range breadth and 
pathogenicity level of parasite strains were overall positive. This latter result questions the efficiency of strategies 
based on the deployment of several genetically-differentiated cultivars of a given crop species in the case of 
quantitative plant immunity. 
 
Keywords: Plant resistance, pathogenicity, plant parasite, bipartite network, nestedness, modularity 

 

Introduction 

The effectiveness of strategies of disease control based on host immunity depends on the underlying 

capabilities of hosts to resist infection, of parasites to overcome this resistance and on the potential of these 

traits to evolve. Parasites and hosts can be specialists or generalists in, respectively, their capacity to infect and 

their immunity. Confronting multiple genotypes of a parasite with multiple genotypes of a host reveals their 

interaction patterns, i.e. the magnitude and arrangement of their mutual specialization or generalism, which 

gives insights into the underlying genetic bases of these characters and allows implementing strategies of 

disease management based on host diversification. 

Importantly, the word “interaction” has different meanings in this context. In ecology, interactions between 

hosts and parasites are the effects that each of these two categories of living organisms have on each other. 

These host-parasite interactions can involve molecular interactions, which are attractive or repulsive forces 

between molecules, for example between parasite elicitors or effectors and host receptors. Finally, 

quantitative pathogenicity traits can be analysed thanks to statistical models that include, or not, a significant 
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interaction between variables representing hosts and parasites. In the latter acception, “interaction” means 

that the model departs significantly from a purely additive model, including only a parasite effect and a host 

effect. Statistical interactions are used in the context of quantitative data and linear regression models, but 

not for qualitative binary data. 

The structure of any host-parasite interaction can be represented as a matrix where columns correspond 

to host genotypes (either inbred lines, clones or F1 hybrids) and rows to parasite strains (either isolates, clones 

or populations depending on the considered parasite). Each cell in the matrix indicates the result of the 

pairwise confrontation between the corresponding host genotype and parasite strain. Qualitative interactions 

generate binary matrices with “1” and “0” grades, which correspond to successful and unsuccessful infections. 

These matrices are equivalent to networks, where links are represented between pairs of hosts and parasites 

that correspond to “1” grade in the matrix. Network theory has its origins in the study of social networks and 

in ecology of interacting organisms (Patterson and Atmar 1986). Ecological networks are typically identified by 

counting in natura the interactions between (or co-occurrence of) two sets of taxa. These analytical methods 

were recently used to analyse host-symbiont interactions resulting from cross-inoculation experiments, where 

every host taxon was inoculated with every symbiont taxon, and the compatibility of each host-symbiont pair 

was reported in the matrix (Flores et al. 2011; Flores et al. 2013; Weitz et al. 2013). The structural patterns of 

such matrices, where all host-symbiont pairs are evaluated under the same experimental and environmental 

conditions, are mainly the result of intrinsic, mostly genetic, differences between host or symbiont taxa. 

Nestedness and modularity are two quantitative properties that reveal non-random distributions of “1” and 

“0” grades in such matrices or networks (Weitz et al. 2013). Nestedness measures the tendency of the hosts 

of a parasite to have a hierarchical organization, where the set of hosts of a given parasite (a species or a 

genotype) is a subset (respectively superset) of that of the parasites of broader (respectively narrower) host 

ranges. Here, the breadth of the host range of a given parasite is defined as the percentage of host species (or 

genotypes) that are infected by this parasite. The same tendency is observed for host immunity (Fig. 1A): the 

set of parasites that are controlled by the immunity of a given host is a subset (respectively superset) of that 

of hosts with broader (respectively narrower) scopes of resistance. Here, the scope of the resistance of a given 

host is defined as the percentage of parasite species (or strains) that are targeted by this resistance. 

Modularity measures the strength by which a matrix can be subdivided into a number of groups (i.e. 

modules) of hosts and parasites characterized by successful infections, while infections are rare between hosts 

and parasites that belong to different modules (Fig. 1B). Depending on the genetic, evolutionary and 

mechanistic patterns of host-parasite interactions, contrasted scores for nestedness and modularity are 

expected. 

Evidence of nestedness is frequent for all kinds of matrices, including interactions between hosts and 

symbionts, either mutualistic or parasitic (Bascompte et al. 2003; Joppa et al. 2010; Dormann et al. 2017). A 

number of factors that are external to the interacting organisms can affect properties of such ecological 

networks. For example, nestedness increases with the abundance of taxa (Joppa et al. 2010; Staniczenko et al. 

2013; Suweis et al. 2013; Valverde et al. 2018), with heterogeneous distribution of connections (i.e. numbers 

of links between interacting taxa; Jonhson et al. 2013), with the occurrence of broad connectivities (Feng and 

Takemoto 2014) and with spatially-limited interactions between taxa (Valverde et al. 2017).Three main models 

of host-parasite interactions have been proposed for qualitative plant-parasite interactions (Fig. 1C to F; see   
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Figure 1. Matrices corresponding to different mechanistic, genetic and evolutionary models of qualitative or 

quantitative host-parasite interactions. In each case, host genotypes correspond to different columns and 

parasite genotypes to different rows) and black and white cells (or “1” and “0” grades) correspond to 

infection or lack of infection, respectively. A: Illustration of an imperfectly nested pattern. B: Illustration of a 

perfectly modular pattern (modules are delimitated with red lines). C and D: Gene-for-gene (GFG) models 

with partial or perfectly nested patterns. C: Case of two genes with two alleles in both hosts and parasites. 

Infection occurs only when no elicitor in the parasite is recognized by a product of the resistance alleles in 

the host. In the other situations, resistance is induced and there is no infection. D: Case of a single gene with 

five alleles in both hosts and parasites. Resistance alleles have various levels of specificity: in some plant 

accessions resistance can be induced by several parasite strains. E: Matching-allele model. Infection occurs 

only if the product of the pathogenicity allele is recognized by the product of the susceptibility allele in the 

host. F: Variation of D with higher specificity: resistance is induced by a specific product present in a single 

parasite genotype. This model was named "inverse matching-allele" model (Thrall et al. 2016) and has an 

anti-modular structural pattern. G: Additive QTL model with no plant-parasite QTL × QTL interaction. For 

each parasite strain i with pathogenicity level Pi and each plant accession j with resistance level Rj, infection 

score corresponds to Pi x (1-Rj). 
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also Dybdahl et al. 2014 and Thrall et al. 2016). These models represent the mutual specialization of hosts and 

parasites in terms of underlying molecular mechanisms and genetic determinism and have consequences on 

the host-parasite coevolution pattern. Each model generates a specific structural pattern in the corresponding 

interaction matrix. 

Historically, the first model was the gene-for-gene (GFG) model proposed to describe interactions between 

crop plants and their parasites (Flor 1956). In this model, immunity is induced upon recognition of a parasite 

elicitor by a host receptor, each encoded by a single gene. The loss or alteration of the elicitor in the parasite 

or the absence of a cognate resistance allele in its host results in infection. This model is coherent with 

dominant resistance that involves plant proteins containing nucleotide-binding and leucine-rich-repeat 

domains as receptors, and that mounts hypersensitive reactions (programmed cell death) upon recognition of 

parasite elicitors. The corresponding host-parasite matrix has a global nested pattern, with partial or complete 

overlap of the host ranges of the parasite strains and of the resistance spectra of the host genotypes (Fig. 1C,D; 

Gallet et al. 2016). Secondly, the matching-allele (MA) model was proposed to describe the self/non-self 

recognition system of invertebrate immunity (Grosberg and Hart 2000). In that case, infectivity requires a 

specific match between the host genotype and the parasite strain and, accordingly, universal infectivity is 

impossible. The corresponding host-parasite matrix has a modular structure. Cross-infections are frequent 

between hosts and parasites belonging to the same module but rare between hosts and parasites belonging 

to distinct modules. In extreme cases of specialization, modules can be as small as a single host-parasite pair 

(Fig. 1E). Mechanistically, this model is coherent with recessive plant resistance to viruses mediated by 

eukaryotic translation initiation factors (e.g. Sacristán and García-Arenal 2008) and with necrotrophic fungi 

which secrete elicitors of programmed cell death that increase plant susceptibility by allowing the fungus to 

feed on dying cells. In the context of plant necrotrophic parasites, this model is also confusingly named ‘inverse 

gene-for-gene’ (Peters et al. 2019). Thirdly, the inverse-matching-allele (IMA) model was proposed to reflect 

the adaptive immune system of vertebrates, where the host resists through recognition of the parasite and 

infections occur when the parasite mismatches the host (Kidner and Moritz 2013; Thrall et al. 2016). The IMA 

model was defined in the context of multi-allelic series of resistance and pathogenicity genes. Mechanistically 

very similar to the GFG model, it assumes that recognition between host and parasite genotypes is highly 

specific. The corresponding host-parasite matrix is therefore similar to the matching-allele model but with “0” 

and “1” grades replaced by “1” and “0” grades, respectively (Fig. 1F). Hence, a modular pattern is the expected 

result when immunity levels (instead of the degree of pathogenicity) are indicated in the matrix. 

The distinguishing feature of the genetic models described above is that they describe qualitative binary 

interactions, where each host-parasite pair is characterized by its compatibility or non-compatibility. Models 

that describe quantitative host-parasite interactions are rare and their adequacy to represent empirical data 

have not been extensively tested (Lambrechts 2010; Boots et al. 2014; Wang et al. 2018). Analysis of 

quantitative plant immunity has mostly been confined to the framework of quantitative genetics and QTL 

(quantitative trait loci) mapping. These methods usually assume that resistance is determined by the additive 

effect of QTLs. More complex effects (dominance, epistasis) are rarely considered (Gallois et al. 2018). 

Furthermore, there are few studies of quantitative genetics and QTL mapping of parasite pathogenicity traits, 

especially in the case of plant parasites (Wang et al. 2018). Most importantly, these few analyses were 

conducted either with a set of hosts confronted to a single parasite or with a set of parasites confronted to a 
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single host. In any case, there is a clear need for new models describing quantitative host-parasite interactions 

while properly accounting for the variability of both partners (Lambrechts 2010; Bartoli and Roux 2017). 

Moreover, previous work has shown that the outcome of analysis of matrix structure is markedly impacted 

when quantitative interactions are considered. Quantitative data are especially influencing the significance of 

nestedness (Staniczenko et al. 2013). 

These considerations motivated us to conduct a comprehensive analysis of the nestedness and modularity 

of interaction matrices to deepen our knowledge in the specialization between plants and diverse parasites 

using quantitative data. The objectives of this work are (i) to assess the performance of available algorithms to 

identify nested and modular patterns in matrices of quantitative data and (ii) to determine if these patterns 

are specific to each pathosystem or show a general trend. In addition, our work provides a new perspective 

and insight into appropriate genetic and evolutionary models for representing quantitative plant-parasite 

interactions and for outcomes for plant resistance management. 

Results 

We gathered 32 matrices corresponding to 15 plant-parasite pathosystems and containing quantitative 

pathogenicity trait values (Table 1; Fig. 2; Supplementary Methods 1). Among the 13 parasite species included, 

most were fungi or oomycetes (five and four, respectively), while bacteria, nematodes, insects and viruses 

were represented only once. Only three pathosystems included perennial (tree) plants and all plant species 

were temperate-climate crops (or crops adapted to both temperate and tropical climates). Each pathosystem 

included a set of strains belonging to the same parasite species and a set of accessions belonging to the same 

plant species with four exceptions, matrices 9, 18, 19 and 26, where accessions belonged to several closely-

related plant species. Among the matrices, the number of plant accessions varied from seven to 53 (median 

12) and the number of parasite strains varied from six to 98 (median 11.5). The number of matrix cells varied 

from 49 to 1470 (median 180). For most pathosystems, we analyzed several matrices corresponding to either 

different pathogenicity traits, different plant-parasite sets or different experiments. In order to meet the 

requirements of methods that allow the estimation of nestedness and modularity of matrices, the 

pathogenicity traits in each matrix were standardized into integer values ranging from 0 (minimal plant 

resistance and/or maximal parasite pathogenicity) to 9 (maximal plant infection and/or minimal parasite 

pathogenicity). We then tested for the occurrence of nestedness and modularity. For significance assessment, 

the nestedness/modularity scores of the matrices derived from experimental data were compared to those of 

simulated null-model matrices that are not expected to possess any nested or modular pattern 

(Supplementary Tables S1 to S18 in Supplementary Methods 2). Nestedness (or modularity) is significant if the 

actual matrix is more nested (or modular) than at least 95% of the matrices simulated under a given null model 

(black numbers on grey background in Tables 2 and 3 and in Supplementary Tables S19 and S20). As there are 

many possible null models and because their choice is crucial to conclude about the significance of nestedness 

or modularity, we analyzed the performance of the two available nestedness algorithms and of seven 

modularity algorithms in combination with different null models by estimating their type I and type II error 

rates through a simulation approach. A brief description of null models is provided in the Materials and Meth- 
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Table 1: Datasets used to analyze the structure of quantitative plant-parasite interaction matrices. AUDPC : Area under the disease progress curve. 

Matrix 
number 

Parasite Host plant Matrix size 
(host × parasite) 

Phenotype Part of 
variance 

explaineda 

Reference or source 

Bacterium  
1 Pseudomonas 

syringae 
Prunus armeniaca 

(apricot) 
20 × 9 Length of flat zone around the inoculation 

point at the surface of the shoot 
0.63 Omrani et al., unpublished 

2 P. syringae P. armeniaca 20 × 9 Length of flat zone around the inoculation 
point at the surface of the shoot 

0.81 Omrani et al., unpublished 

3 P. syringae P. armeniaca 20 × 9 Length of browning zone around the 
inoculation point below the bark of the shoot 

0.62 Omrani et al., unpublished 

4 P. syringae P. armeniaca 20 × 9 Length of browning zone around the 
inoculation point below the bark of the shoot 

0.70 Omrani et al., unpublished 

Fungi  
5 Puccinia hordei Hordeum vulgare (barley) 12 × 14 Relative latent period 0.81 González et al., 2012 
6 Venturia inaequalis Malus domestica (apple) 14 × 10 % sporulating leaf area (AUDPC) 0.57 Laloi et al., 2017 
7 V. inaequalis M. domestica 12 × 14 % sporulating leaf area (AUDPC) 0.40 Caffier et al., 2016 
8 V. inaequalis M. domestica 8 × 24 % sporulating leaf area 0.65 Caffier et al., 2014 
9 Botrytis cinerea Tomatob 12 × 94 Lesion size on leaves 0.55 Soltis et al., 2019 

10 Podosphaera xanthii Cucumis melo (melon) 19 × 26 Sporulation surface on leaf disks 0.92 Dogimont et al., unpublished 
11 P. xanthii C. melo 19 × 31 Sporulation surface on plants 0.93 Dogimont et al., unpublished 
12 Zymoseptoria tritici Triticum turgidum subsp. 

durum (durum wheat) 
12 × 15 % necrotic leaf area (AUDPC) 0.73 Marcel et al., unpublished 

13 Z. tritici T. turgidum subsp. durum 12 × 15 % sporulating leaf area (AUDPC) 0.72 Marcel et al., unpublished 
14 Z. tritici Triticum aestivum (bread 

wheat) 
15 × 98 % necrotic leaf area 0.59 Marcel et al., unpublished 

15 Z. tritici T. aestivum 15 × 98 % sporulating leaf area 0.59 Marcel et al., unpublished 
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Oomycetes  
16 Phytophthora capsici Capsicum annuum 

(pepper) 
10 × 6 Necrosis length on stem (15 days post 

inoculation) 
0.98 Messaouda et al., 2015 

17 P. capsici C. annuum 53 × 6 Necrosis length on stem (AUDPC) 0.73 Cantet et al., unpublished 
17bc P. capsici C. annuum 42 × 6 Necrosis length on stem (AUDPC) - Cantet et al., unpublished 
18 Phytophthora 

infestans 
Solanum lycopersicum 

(tomato), S. 
pimpinellifolium, S. 
habrochaites and S. 

pennellii 

8 × 7 Necrosis length on stem (AUDPC) 0.86 Ruellan et al., unpublished 

19 Aphanomyces 
euteiches 

Fabaceaed 8 × 35 Root disease severity 0.82 Quillévéré-Hamard et al., 2018 

20 A. euteiches Pisum sativum 10 × 43 Root disease severity 0.84 Quillévéré-Hamard et al., 2021 
21 Plasmopara viticola Vitis vinifera (grapevine) 8 × 33 Necrosis on leaves 0.72 Paineau and Delmotte, 

unpublished 
22 P. viticola V. vinifera 8 × 33 Sporulation on leaves 0.76 Paineau and Delmotte, 

unpublished 

Insect  
23 Aphis gossypii C. melo 13 × 9 Acceptance of plants 0.52 Boissot et al., 2016 
24 A. gossypii C. melo 13 × 9 Ability to colonize plants 0.50 Boissot et al., 2016 

Nematode  
25 Globodera pallida Solanum tuberosum 

(potato) 
10 × 20 Cyst number (relative values) 0.51 Fournet et al., unpublished 

26 G. pallida Wild potato species 12 × 13 Cyst eclosion rate 0.78 Gautier et al., 2020 

Virus  
27 Potato virus Y (PVY) C. annuum 7 × 8 Virus load 0.72 Doumayrou et al., unpublished 
28 PVY C. annuum 7 × 9 Virus load 0.55 Doumayrou et al., unpublished 
29 PVY C. annuum 7 × 8 Symptom intensity (AUDPC) 0.71 Doumayrou et al., unpublished 
30 PVY C. annuum 7 × 7 Symptom intensity (AUDPC) 0.75 Doumayrou et al., unpublished 
31 PVY C. annuum 7 × 8 Relative dry matter weight 0.55 Doumayrou et al., unpublished 
32 PVY C. annuum 7 × 7 Relative dry matter weight 0.26 Doumayrou et al., unpublished 

a Unbiased estimator ² = ²host + ²parasite, with ²effect= (SSeffect – dfeffect × MSerror) / (SStotal + MSerror) where SS is the sum of squares, df the number of degrees of freedom and MS the mean squares of the 
linear model: pathogenicity ~ ‘parasite strain’ + ‘plant accession’. 
b Two species: cultivated tomato (Solanum lycopersicum) and wild tomato (S. pimpinellifolium). 

c Matrix 17b is identical to matrix 17 except that columns entirely made of zero-valued cells and redundant columns were removed. 
d Four species: three pea (Pisum sativum) accessions, two vetch (Vicia sativa) accessions, two faba bean (Vicia faba) accessions and one alfalfa (Medicago sativa) accession. 
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-ods section. Details of null models and method performance analysis are provided in Supplementary Methods 

2 and Supplementary Tables S1 to S18). 

Ubiquitous nestedness in quantitative plant-parasite interactions 

First, we evaluated the performance of two algorithms, WINE and wNODF (Galeano et al. 2009; Almeida-

Neto and Ulrich 2011), to estimate the nestedness of the 32 matrices. Simulations revealed that statistical 

significance with both null models C1 and R1 (or C2 and R2) provided the lowest false positive rates for 

nestedness (named null models CR1 or CR2; Supplementary Methods 2; Supplementary Tables S1 and S2). 

Moreover, the rates of false positive nestedness were similar for WINE and wNODF with null models CR1 or 

CR2. In contrast, a higher power was observed for WINE than wNODF for all null models (Supplementary Tables 

S5 and S6). Consequently, for the actual matrices, we focused mainly on the results of the WINE algorithm 

(Table 2).With the WINE algorithm, nestedness values were quite high in general (from 0.46 to 1.04; mean 0.77 

on a scale varying from 0 to ≈1). The huge majority of the matrices (30/32; 94%) showed significant nestedness 

(p-values ≤ 0.05) with null models C1, R1, C2 and R2 (Table 2). Only matrices 21 and 32 were not significantly 

nested with either null model C1, R1, C2 or R2.  

Fewer matrices showed significant nestedness with the wNODF algorithm (Supplementary Table S19), 

which is consistent with the lower statistical power of wNODF compared to WINE. 

Investigation of the biological significance of nestedness 

Adequacy of an additive linear regression model for pathogenicity matrices 

The high and significant nestedness observed among most of the analysed matrices suggests that an 

additive model combining pathogenicity QTLs in the parasites and resistance QTLs in the hosts, but omitting 

QTL x QTL interactions between hosts and parasites, would fit well with the data (Fig. 1G). We evaluated the 

performance of the linear regression model: ‘pathogenicity’ ~ ‘parasite strain’ + ‘plant accession’, with no 

interaction term, on the datasets. For each plant accession-pathogen strain pair, the mean pathogenicity value 

was considered for the ‘pathogenicity’ variable. The ‘parasite strain’ and ‘plant accession’ effects were highly 

significant (p-value < 0.0012), except for matrices 21 and 32 which were the only ones not significantly nested 

according to the WINE method (Table 2). Omitting these two matrices, the unbiased estimate of the part of 

variance explained by the ‘parasite strain’ and ‘plant accession’ effects (²; Kirk 1982) varied from 0.40 to 0.98 

(mean 0.69) (Table 1), which lends support to the suggested genetic model. Only one ² value was below 0.50 

(matrix 7). Moreover, the ² values of the linear regression model were significantly correlated with the 

nestedness scores obtained with the WINE algorithm (Pearson’s r = 0.74; p-value = 1.5e-06) across the 32 

matrices. They were only marginally correlated with the nestedness scores of the wNODF algorithm (r = 0.31; 

p-value = 0.087). 

To confirm these results, we estimated the part of phenotypic variance explained by the ‘parasite × plant’ 

interaction effects for the different matrices using the linear regression model: ‘pathogenicity’ ~ ‘parasite 

strain’ + ‘plant accession’ + ‘parasite strain × plant accession’. To disentangle the interaction effect from the 
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uncontrolled environmental and experimental variance, several independent phenotypic values should be 

available for each plant-parasite genotype pair. Such values are not available for all published data and for 

some of our experimental data. Consequently, we obtained estimates of the parasite × plant interaction for 26 

of the 32 matrices and Soltis et al. (2019) provided an estimate for a 27th matrix (Supplementary Table S20). 

For five of these matrices (1, 2, 9, 12 and 13), the parasite × plant interaction was not significant 

(Supplementary Table S20 and Soltis et al. 2019). In the 24 significantly-nested matrices among the 26 

analyzed, the plant-parasite interaction term explained on average ² = 17.5% (minimum 0% ; maximum 41%) 

of the phenotypic variance, relatively to the total phenotypic variance that could be collectively explained by 

the plant, the parasite and the plant-parasite effects. The average ² was 18.9% for the 27 analyzed matrices. 

Figure 2. Overview of the 32 analyzed plant-parasite matrices (Table 1). Different plant accessions and 

parasite strains correspond to different columns and rows, respectively. White to black shades in each cell 

correspond to an increasing gradient of pathogenicity or infectivity (corresponding to 0 to 9 values in the 

analysed matrices) for a given plant and parasite pair. Rows and columns were ordered by increasing 

marginal totals, revealing the nested patterns. Colored numbers (red or green) correspond to significant 

nestedness (WINE algorithm) (Table 2). Green numbers correspond to significant modularity (spinglass 

algorithm), while numbers between parentheses correspond to significant modularity (spinglass algorithm) 

detected in reverse matrices. 
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Table 2: Analysis of nestnedness of plant-parasite interaction matrices with the WINE method. 

Matrix 
number 

Nestedness 
scorea 

Null modelb 

B N C1 R1 S C2 R2 

1 0.78 0c 0 0 0 0 0 0 
2 0.81 0.01 0 0 0 0 0 0 
3 0.82 0 0 0 0 0 0 0 
4 0.82 0 0 0 0 0 0 0 
5 0.83 0 0 0 0 0 0 0 
6 0.70 0.12 0 0 0 0 0 0 
7 0.60 0.49 0 0 0 0 0 0 
8 0.58 0.01 0 0 0 0 0 0 
9 0.46 0 0 0 0 0 0 0 

10 1.01 0 0 0 0 0 0 0 
11 1.04 0 0 0 0 0 0 0 
12 0.69 0 0 0 0 0 0 0 
13 0.73 0 0 0 0 0 0 0 
14 0.76 0 0 0 0 0 0 0 
15 0.68 0.12 0 0 0 0 0 0 
16 0.84 0 0 0 0 0 0 0 
17 0.84 0 0 0 0 0 0 0 
18 0.93 0 0 0 0 0 0 0 
19 0.79 0 0 0 0 0 0 0 
20 0.80 0 0 0 0 0 0 0 
21 0.75 0.90 0 0.07 0 0 0.46 0 
22 0.91 0 0 0 0 0 0 0 
23 0.75 0 0 0 0 0 0 0.04 
24 0.68 0.12 0 0 0.01 0 0 0.02 
25 0.82 0.01 0 0 0 0 0 0 
26 0.86 0 0 0 0 0 0 0 
27 0.69 0.37 0 0 0 0 0 0 
28 0.63 0.46 0 0.01 0 0 0 0 
29 0.78 0.01 0 0 0 0 0 0 
30 0.84 0.03 0 0 0 0 0 0 
31 0.77 0 0 0 0 0 0 0.01 
32 0.52 0.31 0.06 0 0.36 0.06 0.01 0.71 

a Mean of 100 estimates. 
b See Supplementary Methods 2 for details of the null models. 
c Nestedness significance: the probability value (p-value) indicates the frequency of null-model matrices showing a strictly higher 
nestedness score than that of the actual matrix. P-values ≤ 0.05 (significant nestedness) are in bold on grey cells and p-values > 0.95 
(significant anti-nestedness) are in white on black cells. 

 

Finally, for matrices 5, 10, 11 and 16, for which no estimate of the plant-parasite interaction effect could be 

obtained, the plant and parasite effects alone explained 81%, 92%, 93% and 98% of the phenotypic variance, 

respectively (Table 1). Hence, a minor interaction effect, if any, is also expected for these latter four matrices. 

For a single significantly-nested matrix (number 7), the plant and parasite effects alone explained a minor part 

of the phenotypic variance (40%; Table 1) and we were unable to obtain an estimate of the plant-parasite 

interaction effect. 
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Collectively, these results support the fact that the parasite × plant interaction determines a minor part, if 

any, of the variation of quantitative pathogenicity traits. 

Evaluating potential trade-offs: Host range breadth vs. pathogenicity in parasites and scope vs. 

efficiency of resistance in host plants 

The ubiquitous nestedness detected suggests a positive correlation between the host range breadth, i.e. 

the percentage of host accessions that a parasite can efficiently infect, and the pathogenicity level of the 

parasite. Similarly, a positive correlation is expected between the scope of the resistance and the resistance 

efficiency of the plants. Given the continuous distribution of the quantitative pathogenicity traits, we defined 

arbitrary pathogenicity thresholds to distinguish host and non-host accessions for a given parasite strain, and 

to distinguish parasite strains included or not included in the scope of the resistance of a given plant accession. 

Nine thresholds were defined, varying from 10% to 90% of the maximal pathogenicity value in the whole matrix 

by increments of 10%, and allowed estimating the percentage of plant accessions included in the host range 

of each parasite strain (i.e. the host range breadth) and the percentage of parasite strains included in the scope 

of resistance of each plant accession. The mean Pearson’s coefficient of correlation (r) between host range 

breadth and pathogenicity varied from 0.20 to 0.38 across the different threshold values (mean 0.31). 

Depending on the threshold, from 23.1% (6/26 matrices) to 40.6% (13/32) (mean 31.9%) of the matrices 

showed significantly positive r values, whereas from 0 (0/11) to 9.7% (3/31) (mean 4.8%) of the matrices 

showed significantly negative r values (Fig. 3; Supplementary Table S21). Note that the coefficient of 

correlation could not be calculated for several matrices for some of the thresholds because of the lack of 

pathogenicity values above (for correlation between host range breadth and pathogenicity) or below (for 

correlation between resistance scope and efficiency) that threshold. The mean r between resistance scope and 

efficiency varied from 0.18 to 0.59 across the different threshold values (mean 0.39). Depending on the 

threshold, from 25.0% (6/24) to 48.4% (15/31) (mean 36.6%) of the matrices showed significantly positive r 

values, whereas from 0 (0/32) to 9.4% (3/32) (mean 3.0%) of the matrices showed significantly negative r 

values (Fig. 3). 

Rare cases of modularity in quantitative plant-parasite interactions 

As for nestedness, thanks to a simulation approach we could evaluate the performance of four of the 

modularity algorithms: edge betweenness (Newman and Girvan 2004), fast greedy (Clauset et al. 2004), louvain 

(Blondel et al. 2008) and spinglass (Newman and Girvan 2004; Reichardt and Bornholdt 2006; Traag and 

Bruggeman 2009) (Supplementary Methods S2). By maximizing a modularity score, these algorithms estimate 

the optimal number of modules and the distribution of plant and parasite genotypes in the modules. In terms 

of type I error rate, the spinglass method was by far the most efficient for all null models (Supplementary 

Tables S7 to S10). For the other three methods, the type I error rate varied greatly depending on the null 

models, S, C2, R2 and CR2 being the most efficient. The spinglass method had also the lowest false positive 

rate to detect anti-modularity, i.e. a situation where a matrix is less modular than at least 95% of the matrices 

simulated under a given null model (Supplementary Tables S11 to S14). Consequently, we focused on the 

spinglass method to detect modularity in the 32 actual matrices (Table 3).  
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Figure 3. Distributions of Pearson’s coefficients of correlation (r) between parasites host range breadth and 

pathogenicity (left) or between plant resistance efficiency and scope (right) across the 32 analysed matrices 

for different thresholds separating hosts and non-hosts (or parasites included or not included in the 

resistance scope). Each threshold corresponds to a percentage of the maximal pathogenicity value in each 

matrix (only results obtained with thresholds corresponding to 30%, 50% and 70% of the maximal 

pathogenicity value are shown; results were similar for other thresholds). In blue and red: significantly 

negative or positive r values (p-value < 0.05). For some thresholds and some matrices, the coefficient of 

correlation could not be calculated because too few pathogenicity data remained. 

 

Modularity scores were low overall, with a maximum of 0.130 and a mean of 0.077, on a scale varying from 

0 to 1 (Table 3). Six matrices (numbers 5, 6, 10, 11, 14 and 17b) were significantly modular with a majority of 

null models (Table 3), though their modularity scores were low (≤ 0.102). Depending on the matrix, spinglass 

defined an optimal number of two or three modules, which provided the maximal modularity score (Table 3; 

Fig. 4). In addition, matrices 8 and 22 were only significantly modular with one null model. 
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The edge betweenness, fast greedy and louvain methods did not allow to detect consistently significant 

modularity in any matrix (Supplementary Table S22). 

The spinglass algorithm showed also that matrix 7 was significantly anti-modular with null models N, C1 

and R1 (Table 3). The edge betweenness, fast greedy and louvain methods detected significant anti-modularity 

in most matrices with most null models (Supplementary Table S22) but suffered high rates of false positive 

anti-modularity for many null models (Supplementary Methods 2; Supplementary Tables S11 to S13). 

Investigation of the biological significance of modularity 

We examined the relevance of the detected modules for the six matrices showing significant modularity 

with most null models with spinglass (Table 2) by analysing whether the plant and parasite genotypes 

belonging to each module shared common properties (common resistance gene or QTL for plants; common 

pathogenicity factor for parasites; common origin for plants or parasites). 

For matrix 5 (Puccinia hordei-barley), two modules were detected (Fig. 4). The first one grouped the five 

accessions with resistance QTLs Rphq3 and Rphq11, showing delayed infection with most isolates of the second 

module, and one accession carrying QTLs Rphq1, Rphq2 and Rphq3, showing delayed infection with almost all 

isolates (González et al. 2012). The second module contained four accessions with either no resistance QTL or 

QTL Rphq18, that were quickly infected by almost all isolates. The country of origin or date of collection of the 

isolates did not explain their distribution in the two modules (Marcel et al., 2008). 

For matrix 6 (Venturia inaequalis-apple), three modules were detected. The first one grouped the eight 

accessions carrying QTL T1 and the four V. inaequalis isolates collected on apple trees carrying T1 (Laloi et al. 

2017). The two other modules grouped (i) the remaining accessions that were either carrying no resistance 

QTL or QTLs F11 or F17 that have only a low effect on disease reduction and (ii) isolates collected on these 

accessions. One of these modules grouped a single isolate and a single accession. Infections were on average 

high within all modules and low between any pair of modules. 

Two modules were also detected for matrix 14 (Zymoseptoria tritici-bread wheat). These modules could be 

partially explained by the interaction between the resistance gene Stb6 (Saintenac et al. 2018), that confers a 

high level of resistance in the absence of a hypersensitive response, and the pathogen avirulence gene AvrStb6 

(Zhong et al. 2017). Six of the eight cultivars in the first module carry Stb6, while at least six of the seven 

cultivars in the second module do not carry Stb6. Moreover, the 44 fungal isolates structuring the first module 

are pathogenic on Stb6 while the 54 isolates from the second module are either pathogenic or not pathogenic 

on Stb6. 

Concerning matrices 10, 11 (Podosphaera xanthii-melon) and 17b (Phytophthora capsici-pepper), three 

modules were detected but there was no evidence of similarity in the genetic composition of accessions, the 

presence of particular resistance genes or QTLs or the origin of isolates belonging to a same module. 

Modularity of reverse matrices 

To test the occurrence of IMA patterns (Fig. 1F), we also analyzed the modularity of the 32 matrices 

transformed such that “0” grade corresponds to the maximal plant susceptibility and “1” to “9” grades 

correspond to the range of increasing plant resistance (hereafter “reverse matrices”). Using the spinglass algo- 
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Table 3. Analysis of modularity of plant-parasite interaction matrices with the spinglass method. 

Matrix 
number 

Modularity 
scorea 

Number of 
modulesb 

Null modelc 

B N C1 R1 S C2 R2 

1 0.058 - 0.69d 0.76 0.79 0.71 0.93 0.89 0.93 
2 0.070 - 0.86 1 1 0.84 1 1 0.92 
3 0.084 - 0.32 0.68 0.38 0.42 0.36 0.20 0.22 
4 0.095 - 0.95 1 1 0.97 0.99 0.98 0.89 
5 0.070 2 0 0 0 0 0 0 0 
6 0.102 3 0 0 0 0 0 0 0 
7 0.079 - 0.97 1 1 1 0.99 0.96 0.95 
8 0.069 - 0.07 0.53 0.35 0.05 0.70 0.66 0.34 
9e 0.069 - 0.96 1 1 0.97 0.89 0.97 0.86 
10 0.077 3 0 0.07 0 0.03 0.01 0.05 0.04 
11 0.086 3 0 0 0 0 0 0 0 
12 0.057 - 0.98 0.98 0.99 0.96 1 0.99 0.91 
13 0.072 - 0.08 0.27 0.23 0.06 0.73 0.43 0.38 
14 0.062 2 0 0 0 0 0 0.01 0 
15e 0.079 - 0.06 0.61 0.14 0.68 0.13 0.08 0.39 
16 0.078 - 0.20 0.39 0.32 0.37 0.66 0.41 0.86 

17bf 0.097 3 0.05 0.25 0.15 0.06 0.05 0.01 0.02 
18 0.097 - 0.77 0.98 0.97 0.93 0.95 0.71 0.97 
19 0.051 - 1 1 1 1 1 1 1 
20 0.040 - 1 1 1 1 1 1 1 
21 0.092 - 0.44 0.97 0.59 1 0.99 0.56 0.98 
22 0.083 - 0.15 NAg 0.06 0.44 NAg 0.02 0.30 
23e 0.072 - 0.41 0.39 0.27 0.36 0.65 0.57 0.54 
24 0.063 - 0.30 0.52 0.58 0.27 0.81 0.77 0.53 
25 0.091 - 0.75 0.99 0.78 0.99 0.75 0.58 0.45 
26e 0.045 - 0.79 0.91 0.86 0.90 1 0.99 1 
27 0.130 - 0.73 0.83 0.74 0.85 0.76 0.74 0.89 
28 0.090 - 0.96 0.98 0.98 1 0.91 1 0.98 
29e 0.078 - 0.89 0.79 0.91 0.79 0.93 1 0.89 
30 0.095 - 0.49 0.80 0.82 0.56 0.59 0.58 0.49 
31 0.061 - 0.98 1 0.98 1 1 1 0.99 
32 0.065 - 1 0.99 1 0.99 0.97 0.97 0.99 

a Maximum of 100 estimates. 
b The optimal number of modules determined by spinglass is indicated only for matrices significantly modular with a majority of null 
models (Fig. 4). 
c See Supplementary Methods 2 for details of the null models. 

d Modularity significance: the probability value (p-value) indicates the frequency of null-model matrices showing a strictly higher 
modularity score than that of the actual matrix. P-values ≤ 0.05 (significant modularity) are in bold on grey cells. Significant anti-
modularity, when ≤ 5% of null-model matrices show a strictly lower modularity degree than that of the actual matrix, are indicated in 
white on black cells. Note that some of the indicated p-values are ≥ 0.95 but do not correspond to significant anti-modularity because 
the modularity degrees of the actual matrix and of some null-model matrices are identical. 
e Rows and/or columns entirely made of zero-valued cells were removed since the spinglass method cannot estimate the modularity 
under such circumstances (unconnected graphs). 
f Matrix 17b is identical to matrix 17 except that columns entirely made of zero-valued cells and redundant columns were removed. 
g NA: not available; many null-model matrices had rows and/or columns entirely made of zero-valued cells and the spinglass method 
could not estimate their modularity. 
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Figure 4. Overview of the six plant-parasite matrices showing significant modularity with the spinglass 

algorithm (Table 3). Rows and columns were ordered by modules, delimited by red lines. See legend of Fig. 2 

for the representation of matrices. 

 

-rithm, four matrices (numbers 10, 11, 14 and 15) showed significant but low modularity (≤0.078) with either 

null models C1 and R1 or C2 and R2. Depending on the matrix, spinglass defined an optimal number of two to 

five modules (Fig. 5). 

The modules identified in reverse matrices 14 and 15 using the spinglass algorithm were biologically more 

meaningfull than the two modules previously identified for matrix 14. Matrices 14 and 15 correspond to two 

different phenotypic traits measured in the same plant-parasite interactions (i.e. necrosis and sporulation, 

respectively). Interestingly, modules identified in the two matrices were similar but not identical since five 

modules were identified in matrix 14 and four modules were identified in matrix 15. This may reflect 

differences in the genetic determinism of the two phenotypic traits measured or differences in the 

mechanisms of various Stb resistance genes. For matrix 14, three modules correspond to the presence of 

resistance genes Stb7 (one cultivar), Stb9 (three cultivars) and Stb6 (four cultivars), one module to cultivars 

carrying various Stb genes (three cultivars), and one module to susceptible (or partially resistant) cultivars (four 

cultivars). For matrix 15, the modules corresponding to the presence of Stb6 and Stb9 are also identified (with 

an additional cultivar in the Stb6 module), the module corresponding to susceptible cultivars as well (with two 

additional cultivars), and the cultivar Salamouni carrying Stb13 and Stb14 forms the fourth module. As above, 

there was no evidence of similarity in the composition of accessions and isolates belonging to the same module 

for reverse matrices 10 and 11. 

Overall, considering both the initial and reverse matrices, our analysis revealed that only a minority of the 

matrices (7/32; 22%) were significantly modular. When several matrices were analyzed for the same patho-  
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Figure 5. Overview of the four plant-parasite matrices showing significant modularity with the spinglass 

algorithm when matrices were transformed such that 0 values correspond to the maximal plant susceptibility 

and 9 values to the maximal plant resistance (but note that the matrices are represented such that 0 to 9 values 

correspond to a plant resistance to susceptibility gradient, as in the original matrices). Rows and columns were 

ordered by modules, delimited by red lines. See legend of Fig. 2 for the representation of matrices. 

 

-system, some discrepancies could be observed between matrices. For nestedness, matrix 21 was not 

significantly nested, whereas matrix 22 was. Similarly, among matrices 27 to 32, only matrix 32 was not 

significantly nested. Similar observations could be made for modularity analyses. These differences could be 

due to the specific pathogenicity trait that vary between matrices and/or to the statistical power to detect the 

nested or modular structures in these matrices. 

Discussion 

There is nothing more fundamental to the concepts in Plant Pathology as a science and to the practical 

strategies used for managing plant health than the host range of a parasite and the scope of resistance of a 

plant (Morris and Moury 2019). Based on the patterns in matrices of plant-parasite interactions, we can 

conceive and test hypotheses about the molecular and evolutionary processes that underlie plant-parasite 

interactions, develop robust diagnostic tools, design breeding programs and strategies for deploying resistant 

cultivars, and construct models to anticipate disease emergence. Given the complexity of the mechanisms 
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involved in disease, it would be reasonable to assume that the particularities of each pathosystem would be 

an impediment to identifying universal principles that can guide these efforts. However, here we have used 

network-based analyses to reveal the quasi-universal principle that the structure of quantitative matrices of 

plant-parasite interactions is nested. Indeed, evidence of nestedness was found in 94% (30/32) of the matrices 

that we analyzed. Our results were based on statistically robust analyses of quantitative assessments of 

compatible interactions between hosts and parasites for large interaction matrices involving from 49 to 1470 

(median 180) host-parasite combinations. Quantitative data are key to the accuracy and genericity of these 

analytical methods. Indeed, in a study of 52 published matrices containing data on plant-pollinator, plant-seed 

disperser and parasitoid-host interactions, Staniczenko et al. (2013) found evidence of nestedness in only 3% 

of matrices including quantitative data, whereas the same matrices considered in a binary manner showed 

evidence of nestedness in 98% of cases. 

Network analyses can also be strongly affected by the choice of null models (Gotelli and Graves 1996). This 

is why we conducted a thorough evaluation of the performance of several null models with simulations 

(Supplementary Methods 2). The null models should keep, as much as possible, everything identical to the 

actual matrix apart from the pattern of interest, nestedness or modularity. Many null models have 

unacceptably loose constraints. For example, null models that do not force row or column marginal sums to 

be constant create distributions of taxa that do not match those usually observed, leading to falsely positive 

nestedness (Brualdi and Sanderson 1999; Joppa et al. 2010). Accordingly, high rates of false positives were 

observed with null models N and S in our simulations (Supplementary Tables S1 and S2). Since parasites 

typically differ greatly in the number of hosts they exploit and the efficiency with which they exploit them, we 

did not want null models to detect significant nestedness when the heterogeneity of infection was shuffled 

randomly among hosts, as was frequently observed for null models N and S with test matrices M1R to M5R 

(Supplementary Tables S1 and S2). Null models R1 and R2 that force row marginal sums to be constant avoided 

this problem (Supplementary Tables S1 and S2). The same was true for the scope and efficiency of resistance 

that differ greatly between plant accessions. In that case, the C1 and C2 null models efficiently avoided an 

excess of falsely positive nestedness due to the hererogeneity of resistance (because C1 and C2 are equivalent 

to R1 and R2 when the rows and columns of the matrix are exchanged, which leaves the nestedness scores 

unchanged; data not shown). Overall, to account for both plant resistance and parasite infection 

heterogeneities, we found that the CR1 (or CR2) null model, that combines null models C1 and R1 (or C2 and 

R2, respectively), is the most efficient as it showed acceptable type I error rates (Supplementary Methods 2). 

Null model B, based on Patefield’s (1981) algorithm, maintains both the row and column marginal sums of the 

actual matrix. However, it does not maintain the connectance (i.e. number of non-zero-valued cells of the 

matrix), which has a strong impact on the estimation of nestedness. Consequently, the type I error rates 

associated with null model B were frequently higher than those obtained with models CR1 or CR2. Moreover, 

using quantitative instead of binary data contributed to lowering the nestedness false positive rate 

(Staniczenko et al. 2013; Dormann et al. 2017). 

Overall, we obtained strong and consistent evidence of nestedness for almost all matrices (except matrices 

21 and 32), whatever the parasite type, the plant species or the pathogenicity trait measured. In this analysis, 

we analysed essentially crop plant systems. The same kind of nested structure could be expected in wild plant-

parasite systems, since quantitative interactions are probably more frequent in natural pathosystems 
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compared to crop plants, where major-effect resistance genes have been primarily bred (Boots et al. 2014). 

Nestedness was linked to two important features of quantitative plant-parasite matrices: (i) low level of 

statistical interactions between plant and parasite genotypes in terms of infection intensity and (ii) lack of 

trade-offs between host range and pathogenicity among parasite strains and between efficiency and scope of 

the resistance among plant accessions. 

The low level of plant-parasite statistical interaction is supported by the fact that an additive linear model 

- containing only a plant accession effect and a parasite strain effect with no interaction term - explained a 

high proportion of the phenotypic variance, ² varying from 0.40 to 0.98 across matrices (mean = 0.69) (Table 

1). In addition, we could estimate the plant-parasite interaction effect for 27 of the 32 matrices (Supplementary 

Table S20). The interaction was not significant for five matrices and it explained, on average, only 11.8% of the 

total trait variance or only 18.9% of the variance that could be explained collectively by the plant, the parasite 

and their interaction effects. 

This result is compatible with a genetic model where pathogenicity in the parasite and resistance in the 

host plant are determined by a varying number of QTLs, but the statistical interaction between effects of QTLs 

from the parasite and QTLs from the host is rare and/or of small magnitude (Table 1; Supplementary Table 

S20; Fig. 1G). In other words, plants and parasites differ by their QTL assemblage (i.e. QTL numbers and/or 

effects) but plant resistance QTLs have similar effects towards all parasite strains and, reciprocally, parasite 

pathogenicity QTLs have similar effects towards all plant genotypes. This model is similar to the one proposed 

in Fig. 1A by Boots et al. (2014), who explored its consequences in terms of host-parasite coevolution. 

Quantitative models usually used to analyse empirical data on plant-parasite interactions are quite simplistic, 

e.g. assuming or not a statistical interaction between plant and parasite genotypes (Parlevliet 1977). Models 

that are more complex have been proposed in the frame of theoretical modelling (e.g. Sasaki 2000; Fenton et 

al. 2009; Fenton et al. 2012; Boots et al. 2014) but their relevance to represent biological data was not 

evaluated. Importantly, we do not argue that evidence of nestedness supports a single genetic model of plant-

parasite interaction. Instead, we suggest that an additive linear model with a plant accession and a parasite 

strain effects is the simplest model that accounts for the empirical data but other models could be suitable, 

like the modified GFG models of Sasaki (2000), Fenton et al. (2009) or Boots et al. (2014). A future challenge, 

requiring more in-depth genetic studies, would be to evaluate the adequacy of these different models to 

represent empirical plant-parasite interactions. New analytical methods can provide a better understanding 

and quantification of host-parasite genetic interactions, such as the host-parasite joint genome-wide 

association analysis recently developed by Wang et al. (2018). Applied to the Arabidopsis thaliana–

Xanthomonas arboricola pathosystem, this model showed that 44%, 2% and 5% of the phenotypic variance 

could be explained respectively by the parasite strain, the host accession and the parasite-host interaction. As 

in our results, only a small parasite-host interaction effect was detected. 

Models of host-parasite interaction, including a few quantitative ones, were extensively used in theoretical 

modelling to analyse their consequences in terms of host-parasite coevolution, a situation that is more 

appropriate to wild pathosystems than to crops, where the host plants are not allowed to evolve freely but are 

chosen by growers. One widely explored question is how the host and parasite diversities are maintained along 

time. In the case of GFG models or quantitative models with no host-parasite interactions, costs to resistance 

in the hosts and infectivity in the parasite are critical to the static polymorphism and to the set up of 
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coevolutionary dynamics in host and parasite populations (Sasaki 2000; Brown and Tellier 2011; Fenton et al. 

2012; Boots et al. 2014). However, we did not observe costs to the scope of resistance in the plants or to the 

host range breadth in the parasites in the present study, but instead globally positive relationships with 

resistance strength and parasite pathogenicity, respectively (see below). 

The lack of trade-offs in plants or parasites is supported by the fact that we observed a majority of positive, 

rather than negative correlations (i.e. trade-offs), between the infectivity and the breadth of host range of 

parasites on the one hand and, especially, between the efficiency and scope of the resistance of plants on the 

other hand (Fig. 3). Few studies have examined the relationships between the scope and efficiency of plant 

resistance. In contrast with our results, Barrett et al. (2015) hypothesized evolutionary trade-offs between 

resistance efficiency and scope because quantitative resistance had a broader scope compared to qualitative 

resistance in the Linum marginale – Melampsora lini interactions. The difference between our studies could 

be that we focussed on quantitative resistance and included few qualitative resistance genes in our dataset (or 

these were overcome by most parasite strains). The positive correlation between parasite infectivity and host 

range breadth contrasts with qualitative host-parasite interactions and especially the GFG model, where the 

expansion of the host range of parasites is associated with a cost in fitness during infection of the previous 

hosts. Such so-called “virulence costs” have been experimentally measured in many plant-parasite systems, 

including viruses (Jenner et al. 2002; Desbiez et al. 2003; Janzac et al. 2010; Poulicard et al. 2010; Fraile et al. 

2011; Ishibashi et al. 2012; Khatabi et al. 2013), fungi (Bahri et al. 2009; Huang et al. 2010; Caffier et al. 2010; 

Bruns et al. 2014), oomycetes (Montarry et al. 2010), bacteria (Vera Cruz et al. 2000; Leach et al. 2001; 

Wichmann and Bergelson 2004) or nematodes (Castagnone-Sereno et al. 2007), and could explain why 

universal pathogenicity is not fixed in pathogen populations (Tellier and Brown 2011). For quantitative plant 

resistance, few studies have estimated the occurrence of pathogenicity costs. Montarry et al. (2012) showed 

a cost for PVY to adapt to a quantitative pepper resistance when inoculated to a susceptible pepper genotype, 

whereas Delmas et al. (2016) showed, on the opposite, that there was no fitness cost associated with the 

adaptation of Plasmopara viticola to partially resistant grapevine varieties. Fournet et al. (2016) even 

highlighted that nematode populations that had adapted to potato quantitative resistance were more 

pathogenic on a susceptible potato genotype than were naïve nematode populations. The present study 

focused mostly on interactions between plants and parasites at the intraspecific level, but other studies have 

revealed a similar trend when strains of a given parasite species are confronted with numerous plant species. 

For example, a positive correlation was observed between species host range and pathogenicity for 

Pseudomonas syringae (Morris et al. 2000, 2019). For this bacterium, the most pathogenic strains were also 

the most ubiquitous in the environment, suggesting also an absence of trade-off between host range and 

dispersal capability or survival in the environment (Morris et al. 2010). 

In contrast to nestedness, we obtained little evidence of modularity among the matrices that we analysed. 

Modularity scores were low for all matrices. In only seven matrices, representing either infection or resistance 

scores (i.e. reverse matrices), did we detect significant modularity with a majority of null models (Tables 3 and 

4; Fig. 4 and 5). For four of these matrices (matrices 5, 6, 14 and 15), modularity was linked to the presence of 

particular resistance genes or QTLs in the plant accessions and, for the parasite strains, to the presence of 

particular avirulence genes or to a common origin in terms of host genotype. For the remaining matrices (10, 

11 and 17b), no common property could be found for plant accessions and parasite strains belonging to the 
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same module. The lack of modularity of infection matrices and of reverse matrices suggests that the MA and 

IMA genetic models are either inadequate to represent the structure of quantitative plant-parasite interactions 

or explain only marginally their structure (Fig. 1E,F). 

Conclusion 

The ubiquitous nested patterns observed in quantitative plant-parasite interaction matrices have important 

implications for our understanding and management of plant diseases. They can help infer the underlying 

genetic bases of quantitative aspects of disease manifestation and their evolution. Our results are compatible 

with an additive model comprising a plant resistance effect, a parasite pathogenicity effect and no (or little) 

plant-parasite interaction effect. Given the relatively small number of pathosystems (15) analysed here, it is 

not yet possible to assess if these patterns differ according to the parasite type (viruses, bacteria etc…; obligate 

or facultative), the plant type (perennial or annual; crops or wild). Obtaining experimental data from additional 

cross-inoculation experiments and analysing the structure of the resulting matrices could help answer these 

questions. 

A major enigma that we highlight is the apparent lack of trade-off between pathogenicity and host range 

breadth among strains of a parasite, which has important implications on the efficiency of plant resistance 

management through cultivar rotation, mixtures or mosaics. Indeed, these strategies rely at least in part on a 

counter-selection of the most pathogenic parasite strains by a diversification of plant cultivars (Brown 2015). 

The efficiency of these strategies would certainly be reduced in absence of costs of adaptation to plant 

resistance. Therefore, in absence of such costs, the efficiency of the rotation, mixtures or mosaic strategies 

would rather depend on barrier effects, i.e. effects of plants that hamper the dispersal of parasites in 

agricultural landscapes through their architecture or through repellent volatile organic compounds. 

Materials and Methods 

Datasets 

To be able to analyse plant-parasite interaction networks, we selected published or unpublished datasets 

containing at least 6 plant accessions and 6 parasite strains. A brief description of these datasets is provided in 

Table 1. A more exhaustive description of these datasets (characteristics of plant accessions, parasite strains 

and phenotyping procedures) is provided in Supplementary Methods 1. 

Network analyses 

The nestedness and modularity of the different matrices were estimated, and their statistical significance 

tested respectively with the ‘bipartite’ and ‘igraph’ packages of the R software version 3.5.1 (http://cran.r-

project.org/). These analyses were initially developed for the study of social, then of ecological, networks (or 

equivalently matrices) containing counts of links between individuals or between interacting species. Hence, 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted August 24, 2021. ; https://doi.org/10.1101/2021.03.03.433745doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.03.433745
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

PEER COMMUNITY IN EVOLUTIONARY BIOLOGY 22 

to perform these analyses, the matrices should only contain integer values. Moreover, some nestedness or 

modularity algorithms cannot run in the absence of zero-valued matrix cells or in the presence of an excess of 

zero-valued cells leading to an unconnected network. 

Consequently, the first step consisted in transforming the actual matrices accordingly. In all matrices, 

pathogenicity trait values were transformed into integers from 0 to 9. For this, ten intervals with equal sizes 

and spanning the range of the pathogenicity trait values of the actual matrix were defined. The bounds of these 

intervals are [Pmin + (Pmax – Pmin)*i/10 , Pmin + (Pmax – Pmin)*(i + 1)/10], with i being an integer in the [0,9] interval 

and Pmax and Pmin being the maximal and minimal pathogenicity trait values in the whole matrix, respectively. 

Then, depending on its inclusion in a given pathogenicity trait value interval defined as above, each matrix 

value was transformed into the corresponding i integer value. When necessary, the matrix was modified in 

order that “0” and “9” grades correspond to the minimal and maximal pathogenicity classes, respectively, and 

not the opposite. A continuous distribution of the pathogenicity grades was observed in 30 of 32 matrices (Fig. 

2). However, for matrices 17b and 22 that contained a large number of zero-values cells, phenotypic values 

were log-transformed to spread out the data more evenly among the ten phenotypic classes. As these log-

transformed matrices produced similar results as the actual matrices in terms of significance of nestedness 

and modularity, only the latter are shown. In most of these transformed matrices, the 0 values correspond to 

an absence (or almost absence) of infection, of symptoms or to a lack of effect on plant health, and the 9 values 

correspond (or are close) to the maximal possible pathogenicity values. 

To test if the matrices could fit with the inverse-matching-allele model (Fig. 1), we also analyzed the 

“reverse matrices”, where 0 and 9 correspond to the minimal and maximal plant resistance classes, 

respectively. Methods to estimate nestedness and modularity are detailed in Weitz et al. (2013). Whereas 

many algorithms can measure the nestedness of matrices containing binary data (0 and 1), only two algorithms 

were available for matrices containing quantitative numeric data: the weighted nestedness metric based on 

overlap and decreasing filling (wNODF algorithm) (Almeida-Neto et al. 2008) and the weighted-interaction 

nestedness estimator (WINE algorithm) (Galeano et al. 2009). In the R software, the ‘nested’ and ‘wine’ 

functions were used to estimate the wNODF and WINE scores, respectively. Because none of the module 

detection algorithms developed to date provide consistently optimal results in all matrices (Aldecoa and Marín 

2013), we used seven different algorithms implemented into the R software for modularity analyses: the edge 

betweenness (Newman and Girvan 2004), fast greedy (Clauset et al. 2004), label prop (Raghavan et al. 2007), 

leading eigenvector (Newman 2006), louvain (Blondel et al. 2008), spinglass (Newman and Girvan 2004; 

Reichardt and Bornholdt 2006; Traag and Bruggeman 2009) and walktrap (Pons and Latapy 2006) algorithms 

(see Supplementary Methods 2 for details). 

To help the interpretation of results, we used simulations (which provided test matrices) to compare the 

performances (type I and type II error rates) of the nestedness and modularity algorithms (Supplementary 

Methods 2; Supplementary Tables S1 to S18). To determine the statistical significance of the patterns 

(nestedness or modularity) of the plant-parasite interaction matrices, the actual or test matrices were 

compared to matrices generated under seven different null models (Supplementary Methods 2). All null-model 

matrices possess the same dimensions as the actual or test matrix to which they are compared. They differ by 

the constraints applied for their generation. Under the N null model, matrices are randomly generated 

ensuring that the total sum of the cells and the number of zero-valued cells are the same as in the actual 
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matrix. Thus, neither the marginal sums of rows or columns, nor the positions of zero-valued cells are 

constrained. The C1 and R1 null models are generated in the same manner but column by column and row by 

row, respectively. Under the B null model, matrices with identical column and row marginal sums as the actual 

matrix are generated using Patefield's (1981) algorithm. This is the only null model where the number of zero-

valued cells can differ from that of the actual matrix. Under the S null model, the cell values are shuffled in the 

matrix, with no constraints on row or column marginal sums. Finally, under the C2 and R2 null models, the cell 

values are shuffled column by column and row by row, respectively. We also considered simultaneously the 

C1 and R1 (or C2 and R2) null models, providing null models CR1 and CR2 in evaluation of test matrices. In 

summary, these null models comprise the most commonly used in nestedness or modularity analyses and span 

a large diversity of constraints, N and S being the least constrained, B being the most constrained and the 

others in between. 

Two modularity algorithms (walktrap and label prop) provided modularity estimates of 0 (or near 0) for 

almost all actual matrices and associated null models. Moreover, almost all simulations also provided 

modularity estimates of 0 with these algorithms, hampering the evaluation of type I and type II error rates 

(Supplementary Methods 2). We could also not evaluate the performance of the leading eigenvector algorithm 

because it did not converge towards a modularity estimate in many simulated matrices. Consequently, these 

three algorithms were not considered for further analyses. 

Linear model analyses 

Using the R software, we analysed two different linear models to evaluate the contribution of the plant-

parasite interaction to the pathogenicity trait variance in the matrix data. 

Using the mean pathogenicity value for each plant-parasite genotype pair, we analysed the following 

model: ‘pathogenicity’ ~ ‘parasite strain’ + ‘plant accession’ that does not include any interaction term. Using 

independent individual pathogenicity values for each plant-parasite genotype pair, we analysed the following 

model: ‘pathogenicity’ ~ ‘parasite strain’ + ‘plant accession’ + ‘parasite strain × plant accession’. The latter 

model could be applied only to 26 of the 32 matrices. For matrices 1 to 4 with the latter model, the linear 

model was applied after taking into account a significant effect of the experimenters who performed the 

measures of the lesion sizes (residues of the linear model ‘pathogenicity’ ~ ‘experimenter’). For most datasets, 

the model hypotheses (normality of residues, homoscedasticity) were not satisfied. Consequently, we focused 

on the model fit (², the unbiased estimators of the parts of variance explained by the parasite strain, the plant 

accession and/or their interaction) rather than on the statistical significance levels or on the comparison of 

mean pathogenicity values between effect levels. 

Data accessibility 

Data are available online: http://doi.org/10.5281/zenodo.5167270 
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Supplementary material 

Script and codes are available online: http://doi.org/10.5281/zenodo.5167270 

Supplementary Methods 1 and 2 (including Supplementary Tables S1 to S18 and Supplementary Figures S1 and 

S2) and Supplementary Tables S19 to S22 are available online: https://doi.org/10.1101/2021.03.03.433745 
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