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Abstract

Motivation: Single-cell RNA-sequencing (scRNA-seq) has made it possible to profile gene expression in tissues
at high resolution. An important preprocessing step prior to performing downstream analyses is to identify
and remove cells with poor or degraded sample quality using quality control (QC) metrics. Two widely used
QC metrics to identify a ‘low-quality’ cell are (i) if the cell includes a high proportion of reads that map to
mitochondrial DNA (mtDNA) encoded genes and (ii) if a small number of genes are detected. Current best
practices use these QC metrics independently with either arbitrary, uniform thresholds (e.g. 5%) or biological
context-dependent (e.g. species) thresholds, and fail to jointly model these metrics in a data-driven manner.
Current practices are often overly stringent and especially untenable on lower-quality tissues, such as archived
tumor tissues.
Results: We propose a data-driven QC metric (miQC) that jointly models both the proportion of reads map-
ping to mtDNA genes and the number of detected genes with mixture models in a probabilistic framework to
predict the low-quality cells in a given dataset. We demonstrate how our QC metric easily adapts to different
types of single-cell datasets to remove low-quality cells while preserving high-quality cells that can be used for
downstream analyses.
Availability: Software available at https://github.com/greenelab/miQC. The code used to download
datasets, perform the analyses, and reproduce the figures is available at https://github.com/greenelab/

mito-filtering.
Contact: Stephanie C. Hicks (shicks19@jhu.edu) and Anna Vähärautio (anna.vaharautio@helsinki.fi)
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1 Introduction

Recent advances in single-cell RNA-sequencing (scRNA-seq) technologies have enabled genome-wide profiling in
thousands to millions of individual cells [1]. As these technologies are relatively costly, researchers are eager to
maximize the information gain and subsequent statistical power from each sample and experiment [2]. scRNA-
seq is also extremely sensitive to poor or degraded sample quality, which is a particular concern for tissues,
such as tumors, obtained during extensive surgeries or other long-duration procedures [3, 4]. It is crucial that
‘compromised’ cells (‘low-quality’ or ‘failed’ cell libraries in the library preparation process or cells that were
dead at the time of tissue extraction) be removed prior to downstream analyses to mitigate against discovered
results stemming from a technical artifact instead of meaningful biological variation [5, 6]. These considerations
have inspired a wealth of research into best practices for quality control (QC) in scRNA-seq [7–9].

One widely used QC metric to identify a compromised cell is if the cell includes a high proportion of se-
quencing reads or unique molecular identifier (UMI) counts that map to mitochondrial DNA (mtDNA) encoded
genes. Mitochondria are heavily involved in cellular stress response and mediation of cell death [10]. These
sorts of cellular stresses can be products of the vigorous process of cell dissociation, and the inclusion of these
transcriptionally-altered cells can affect downstream analysis outcomes [5]. Additionally, a high abundance of
counts mapping to mtDNA genes can indicate that the cell membrane has been broken, and thus cytoplasmic
RNA levels are depleted relative to the mRNA protected by the mitochondrial membrane [11]. For these rea-
sons, it is standard practice to remove cells with a large percentage of reads or UMI counts mapping to mtDNA
genes using some arbitrary and uniform thresholds, for example greater than 5% [12, 13]. However, recent
work has shown these thresholds can be highly dependent on the organism or tissue, the type of scRNA-seq
technology used, or the protocol specific decisions made as part of the disassociation, library preparation, and
sequencing steps [9, 14, 15]. For instance, evidence suggests that cells that have been treated with certain
RNA-preserving reagents prior to library preparation have a much higher mitochondrial fraction compared to
fresh tissues [16].

Other widely used QC metrics to identify compromised cells are the total number of sequencing reads or
UMI counts in a sample and the number of unique genes that those reads or counts map to, also known as
library complexity [17, 18]. For example, if all observed UMI counts in a cell map to only a few genes, this also
suggests that the mRNA in the cell may have been degraded or lost in one or more protocol steps. A standard
approach to filter out these cells is to filter out cells with an ad hoc threshold of less than a certain number of
unique genes detected, such as less than 100 genes. An alternative approach is to rank the cells by their total
UMI count and visually inspect for a knee point in the data, but this approach is often arbitrary and difficult
to reproduce [19].

Current best practices use all these QC metrics independently and commonly use uniform thresholds,
sometimes species-dependent thresholds, which can lead to arbitrary cutoffs that may not be appropriate for a
given dataset. These cutoffs are often conservative, leaving only a small number of the remaining cells, which
offers a non-representative sample of the tissue and constrains downstream analyses.

Here, we propose an alternative approach to enable researchers to make data-driven decisions about which
population a given cell comes from with respect to both mtDNA fraction and library complexity, which is
adaptive across scRNA-seq datasets. Throughout the rest of the text, we use the terms (i) a compromised cell
to refer to a low-quality cell that is expected to have few unique genes represented and a high mitochondrial
fraction and (ii) an intact cell to refer to cells that are of a high-quality (e.g. with an intact cell membrane) with
a low proportion of mitochondrial reads and should be included in downstream analyses [11, 20]. For a given
scRNA-seq sample, we model the cells using latent variable model with a true and unknown (or hidden) latent
factor representing the two populations of cells. We fit a finite mixture of models in a probabilistic framework
and remove cells based on the posterior probability of coming from the compromised cell distribution. By
modeling distributions of parameters for each tissue sample, biological and technical variation can be accounted
for in a highly adaptive, sample-specific manner, while still providing a consistent set of principles for inclusion.
We demonstrate that across a variety of tissues and experiments, our method preserves more intact cells
post-QC than uniform mitochondrial thresholds, which can be used in downstream analyses. Our data-driven
methodology for QC is available in a R/Bioconductor software package at https://github.com/greenelab/

miQC.
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2 Results

2.1 miQC: a data-driven metric for quality control in scRNA-seq data

To motivate the need of a data-driven approach, we first explored the use of commonly used QC thresholds to
remove compromised cells in a high-grade serous ovarian cancer (HGSOC) tissue sample (sample ID 16030X4
from [21] and described in Section 3.1). For each cell, we calculated the percent of counts mapping to mtDNA
genes and the number of unique genes those counts map to (or library complexity). As stated above, based on
previous biological knowledge, we expect intact cells to have low percent of counts mapping to mtDNA genes
and moderate to high library complexity. In contrast, compromised cells are expected to have a large percent
of counts mapping to mtDNA genes and a low library complexity. In our cancer sample, we observed a peak of
counts mapping to mtDNA genes at 13% and a wide range of the number of unique genes found (Figure 1A).
However, as the percent of counts mapping to mtDNA genes increases, the number of unique genes decreases
significantly, suggesting these are compromised cells. These are the two population of cells we aim to discover
in a data-driven manner.

Using this cancer sample, when we remove cells using a uniform and ad hoc QC threshold, for example
greater than 10% cell counts mapping to mtDNA genes as suggested by [15], we remove 5828 cells (88.1%)
from the sample. As ovarian cancer samples presented the most abundant mtDNA copy numbers in a broad
pan-cancer comparison across 38 tumor types [22], mitochondrial transcript content is expected to be relatively
high also for intact ovarian cancer cells. Thus, the QC based on an arbitrary limit of 10% is overly aggressive
and renders most of the data from a sample unusable. Alternatively, if we use a more data-driven approach that
only considers the percent of counts mapping to mtDNA genes and removes cells with greater than 3 median
absolute deviations (MADs) [23, 24], we remove no cells from the sample, resulting in an overly permissive QC.
Both of these approaches fail in this scenario because they are designed for extremely high-quality datasets
with only a trivial number of compromised cells. These analyses motivated our proposed approach that is
designed to discriminate between compromised and intact cells that is adaptive to a spectrum of data quality
in scRNA-seq data, described in the next section.

2.1.1 Probabilistic classifications for scRNA-seq data quality using mixtures of linear models

Because of the limitations of uniform and ad hoc QC thresholds, we aimed to use a probabilistic framework
that jointly models two QC metrics to predict the compromised cells in a given dataset. We assume that for
any cell i, there is a latent variable that we do not observe Zi = 1 if the cell is considered a compromised cell
and should be removed from downstream analyses, and Zi = 0 if the cell library is intact. We denote π1 as the
probability Pr(Zi = 1) and π0 = 1− π1 = Pr(Zi = 0). We also define Yi as the percent of counts in the ith cell
that map to mtDNA genes and Xi is the number of unique genes detected or found for the ith cell. Then, we
assume that conditional on Zi and Xi, the expected percent of mtDNA counts Yi is

E[Yi|Zi = z,Xi = xi] = fz(xi) (1)

We note that fz represents a different function estimated for the two states z = {0, 1} (intact or compromised
cells, respectively). We assume the errors are modeled with different variance components εiz ∼ N(0, σ2z) for
the two z states. By default, we assume the function fz(xi) takes the form of a standard linear regression
model fz(xi) = β0z + β1zxi where β0z represents the mean level of percent of mtDNA counts for the two states
z = {0, 1} and β1z represents the corresponding coefficient, which is also estimated differently for each of the
two states z = {0, 1} (Figure 1B). This finite mixture of linear regression models is also known as latent class
regression [25]. However, our approach can also use a more flexible model such as fz(xi) = µz +gz(xi) where µz
is again the mean level and gz(xi) is a nonparametric smooth function that can be estimated with, for example
a B-spline basis matrix (Figure S1).

To estimate the parameters θ = (πz, fz) for the two states z = {0, 1}, we use an Expectation Maximization
(EM) algorithm [26] implemented in the flexmix [27] R package. Using the estimated parameters from the EM
algorithm, we calculate the posterior probability of a compromised cell as
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Figure 1: Uniform and data-driven quality control (QC) thresholds for scRNA-seq data. Cells (N=6618)

from one high-grade serous ovarian cancer (HGSOC) tissue sample (Sample ID: 16030X4) with the number of unique

genes found (x-axis) and percent of cell counts mapping to mitochondrial (mtDNA) genes (y-axis). (A) Illustration of

removing cells with a uniform QC threshold of greater than 10% cell counts mapping to mtDNA genes (solid black line)

and a more data-driven threshold of greater than 3 median absolute deviations (MADs) of the percent of counts mapping

to mtDNA genes (dotted black line). (B) Using our data-driven approach (miQC), we fit a finite mixture of standard

linear regression models with two lines (black lines) to calculate a posterior probability of being a compromised cell. (C)

Cells shaded by their posterior probability of being compromised. (D) Discarding all cells with ≥ 75% probability of

being compromised creates a data-driven QC threshold for scRNA-seq data.

γZi(1) = Pr(Zi = 1|Yi, Xi = xi, θ) =
π1N(Yi|f1(xi), σ21)

π1N(Yi|f1(xi), σ21) + π0N(Yi|f0(xi), σ20)
(2)

where N(·) represents the probability density function of a Gaussian distribution with mean fz(xi) and variance
σ2z for the two states z = {0, 1}.

We use the posterior probability γZi(1) as the data-driven threshold to exclude (or keep) cells (Figure
1C). In our analyses, we remove cells with a greater than 75% probability of belonging to the compromised
cell distribution, in order to maximize the number of potentially informative cells while still removing the cells
most likely to confound downstream analyses (Figure 1D). In the next section, we demonstrate how this
threshold is adaptive across species, tissues and experimental protocols. However, the posterior argument in
the miQC package can be used to adjust the posterior probability threshold, depending on the needs of a given
experiment.

2.2 miQC is adaptive across species, tissues, and experimental protocols

Previous work has demonstrated that the expected amount of mitochondrial activity varies across species and
tissue types. For example, one study concluded that filtering all cells above 5% cell counts mapping to mtDNA
genes is appropriate for mouse samples, but that a cutoff of 10% is preferable in human samples [15]. However,
it has also been demonstrated that certain tissues, especially those with high energy requirements such as brain
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Figure 2: miQC is adaptive across species, tissues, and experimental protocols. Using publicly available

scRNA-seq data from non-cancer tissues, we calculated the number of detected genes (x-axis) and percent of cell counts

mapping to mitochondrial (mtDNA) genes (y-axis) for each cell. Black lines represent the finite mixture of linear regression

models estimated from miQC to adaptively identify compromised cells across datasets. Color represents the posterior

probability of a given cell being a compromised cell (light blue is a high probability and dark blue is a low probability). The

data span both (A-D) mouse and (E-F) human scRNA-seq cells from non-cancer (A-B) retinal [29, 30], (C) immune

[31], (D) brain [32], (E) pancreas [33], and (F) menstrual blood tissues [34]. In addition, the data span (A, B, F)

droplet-based (C) plate-based and (D, E) microfluidic-based protocols.

and heart, have a higher baseline mitochondrial expression [28], and that mtDNA copy numbers highly vary
across tissue and cancer types [22].

Here, we consider publicly available scRNA-seq datasets and demonstrate that our miQC approach identifies
adaptive QC thresholds across species, tissue types, and experimental protocols. Specifically, we explore N = 6
datasets (described in detail in Section 3.1) ranging from hundreds to tens of thousands of cells from (i) two
species (mouse and human), (ii) five non-cancer tissue types (retinal, immune, brain, pancreas, menstrual
blood), (iii) one cancer tissue type (HGSOC), and (iv) two experimental protocols (plate-based and droplet-
based single cell protocols).

2.2.1 Using non-cancer tissues

Using mouse scRNA-seq data from retinal [29, 30] and immune [31] cells measured on the Drop-seq and Smart-
seq2 platforms, we found that miQC identifies a similar QC threshold to using the 5% threshold found in a
previous study [15] (Figure 2A-C). However, using mouse scRNA-seq data from brain cells measured on the
Fluidigm C1 platform [32], we found that miQC proposes a less stringent QC threshold compared to the 5%
threshold suggested by [15] (Figure 2D). In this case, if a 5% threshold was used, there would be N = 1948
cells (or 64.8%) removed from the sample, which are likely to contain intact and biologically informative cells.

In humans, previous work has shown pancreas typically expresses a large fraction of mtDNA genes [15].
Using human scRNA-seq data from pancreas measured on the Fluidigm C1 platform [33], our miQC approach
agrees with this result and the model suggests excluding N = 48 cells (or 7.5%) from the sample (Figure 2E)
in contrast to removing N = 290 cells (or 45.5%) if using a 10% threshold as suggested for human tissues.
In addition, we found using human scRNA-seq data from menstrual blood measured on the 10x Chromium
platform [34] that our miQC approach excludes fewer cells (N = 13158 or 18.5%) from the sample (Figure
2F) in contrast to removing N = 29129 cells (or 41%) if using a 10% threshold as suggested by [15].
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Figure 3: miQC is adaptive across different samples within same cancer type. scRNA-seq data from human

HGSOC samples from (A-B) the Huntsman Cancer Institute (Sample IDs: 16030X2, 16030X3) and (C-F) the University

of Helsinki (Sample IDs: EOC1129, EOC50, EOC871, EOC482). (Data from remaining Huntsman Cancer Institute

sample, ID 16030X4, is depicted in Figure 1.) We calculated the number of detected genes (x-axis) and percent of

cell counts mapping to mitochondrial (mtDNA) genes (y-axis) for each cell. Black lines represent the finite mixture of

linear regression models estimated from miQC to adaptively identify compromised cells. Color represent the posterior

probability of a given cell being a compromised cell (light blue is a high probability and dark blue is a low probability).

2.2.2 Using cancer tissues

A major advantage of our data-driven miQC approach is the use of the posterior probability threshold for
inclusion, because it allows for a consistent QC metric to be applied across all samples in a set of experiments,
while still flexibly accommodating differences in samples or tissues. This is important for experiments leveraging
data collected from across different experimental laboratory settings or at multiple times where these factors
have been shown to contribute differences in batch effects [35] or percent of counts mapping to mtDNA genes.
This is particularly true in application of scRNA-seq cancer samples, where the high heterogeneity of tumor
composition and cancer cell behavior make it especially challenging to assign one cutoff metric for all samples.

Here, we apply miQC to a set of scRNA-seq data derived from multiple human high-grade serous ovarian
tumors (HGSOC) [21] (N = 7 tumor samples described in detail in Section 3.1, with Sample 16030X4 depicted
and discussed in Section 2.1) using the 10X Chromium experimental protocol. For each cell in a HGSOC tumor
sample, we calculate the number of detected genes and the percent of cell counts mapping to mitochondrial
genes, similar to Figure 2, which resulted in wide variation of what might be a compromised cell. However,
we found that our approach miQC is able to adaptively find QC thresholds across different tumor samples all
within the same cancer type (Figure 3A-F). Specifically, we found using miQC removes N = 1387 (28.1%),
792 (47.8%), 254 (29.2%), 78 (11.3%), 132 (8.9%), 508 (13.2%) cells in contrast to 4683 (94.8%), 911 (55.0%),
200 (23.0%), 50 (7.2%), 131 (8.5%), 185 (4.8%) cells if using a 10% threshold as suggested by [15].

2.3 miQC is adaptive across choice of reference genome used in a data analysis

In addition to the biological factors that can affect baseline mitochondrial expression, there are additional
technological and experimental factors that can change the observed number of counts mapping to mtDNA
genes as well. For example, we found one crucial component is the choice of the reference genome used for
quantification of cell reads or UMI counts. The mitochondrial genome has been annotated for decades and
genic content is known to be highly conserved across animal species: 37 genes, coding for 13 mRNAs, 2 rRNAs,
and 22 tRNAs [36]. However, some reference genomes include all 37 genes where others only include the 13
protein-coding genes.
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We investigated this technological confounding factor within one of the HGSOC tumor samples (Sample ID:
EOC871). We considered the scRNA-seq cell counts that were quantified using (i) Cell Ranger [1] with the hu-
man genome reference GrCh38 (version 2020-A) filtered to remove pseudogenes, and (ii) salmon alevin [37] with
the unfiltered human genome reference GENCODE (Release 31) [38]. We found that when quantifying reads
with these two different reference genomes, the cell counts that would have mapped to the “missing” mitochon-
drial tRNA and rRNA genes (in the GENCODE reference genome) are instead assigned to mitochondrial-like
pseudogenes on the chromosomes (in the GrCh38 reference genome). This results in a non-uniform shift and
technological inflation in the percent of cell counts mapping to mitochondrial genes (Figure 4). These results
agree with the findings of Brüning et al that using a filtered transcriptome annotation causes an increase in
number of reads mapping to mitochondrial genes irrespective of quantification software used [39]. While we
compared GrCh38 and GENCODE annotations, the authors of [39] compared Ensembl annotations with and
without cellranger’s mkgtf function applied, indicating the effect on mitochondrial reads is present across sev-
eral references. This highlights the importance of accounting for this potential confounding factor to consider if,
for example, researchers are performing quality control on cell counts derived with differently derived reference
genomes, which we anticipate to become more relevant as cancer atlases grow. Also, mitochondrial reference
genomes may diverge further as additional non-coding RNAs and pseudogenes are discovered and characterized
[40].

Figure 4: miQC is adaptive across the choice of reference genome used. Cells (N=1733) from one high-grade

serous ovarian cancer (HGSOC) tissue sample (Sample ID: EOC871) with the number of unique genes found (x-axis) and

percent of cell counts mapping to mitochondrial (mtDNA) genes (y-axis). Quantification of cell counts was performed

with (A) Cell Ranger using the GrCh38 reference genome (version 2020-A) and (B) salmon alevin with the GENCODE

reference genome (release 31). In both (A-B), we use a standard 10% mtDNA threshold for this human cancer sample to

remove compromised cells. (C) A confusion matrix of how cells are filtered differently by this uniform threshold using

the different reference genomes, resulting in a large number of cells removed after QC using either reference genome, but

differences in which cells are removed depending on the choice of reference genome. (D-E) Using the same tissue sample

as (A-C), but here we use our miQC approach to fit a finite mixture of standard linear regression models with two lines

(black lines) to calculate the posterior probability of being a compromised cell. (F) A confusion matrix of what cells are

filtered by our miQC approach which not only results in a larger number predicted intact cells after QC, but also results

in a smaller number of discrepancies between which cells are included after QC.

Using a uniform 10% QC threshold to identify compromised cells (Figure 4A,B), we found this removes either
N = 101 and N = 230 (or 6.8% and 14.6%) using Cell Ranger and salmon alevin, respectively, when using two
different reference genomes, despite these being being the exact same cell libraries, just being quantified with
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two different reference genomes (Figure 4C). Interestingly, we also found differences in which cells are removed
depending on the choice of reference genome with a greater fraction removed by Cell Ranger. In contrast, we
found our miQC approach (Figure 4D,E) is able to flexibly identify different QC thresholds when using two
different reference genomes, removing a more similar set of cells: N = 119 cells and N = 132 cells (or 8.1%
and 8.9%) using Cell Ranger and salmon alevin, respectively (Figure 4F). This demonstrates our data-driven
approach is able to adjust for differences in this technological confounding factor of diverging mitochondrial
annotation the quantification step of the analysis of scRNA-seq data.

2.4 miQC minimizes cell type-specific sub-population bias

A standard downstream scRNA-seq data analysis is identifying cell types in a tissue or tumor sample and
detecting differences between cell types [24]. A crucial component of this analysis is to have sufficient sta-
tistical power to detect differences between cell types, which depends on having appropriate sample sizes of
measured cells – and the choice of QC metrics and thresholds directly impacts the number of cells employed
in these downstream analyses. For example, in application of unsupervised clustering if a large number of
cells are removed post-QC, the number of cells per cluster, and even the number of clusters discovered, can be
affected. Therefore, it is important to evaluate whether the choice of QC metric and corresponding threshold
do not significantly negatively impact the unsupervised clustering results. In fact, Germain et al. [41] argued
“although more stringent filtering tended to be associated with an increase in accuracy, it tended to plateau
and could also become deleterious. Most of the benefits could be achieved without very stringent filtering and
minimizing subpopulation bias”, where sub-population bias is defined as disproportionate exclusion of certain
cell populations.

Here, we aimed to investigate whether our miQC approach resulted in minimized sub-population bias, as
described by [41], compared to the standard approach of using a uniform QC threshold of 10% of cell counts
mapping to mtDNA genes. Using one HGSOC tumor sample (Sample ID 16030X4), we preprocessed and nor-
malized the scRNA-seq data according to [24] followed by applying dimensionality reduction using the Uniform
Manifold Approximation and Projection (UMAP) [42] representation. The percent of cell counts mapping to
mtDNA genes in this representation is shown in (Figure 5A). Using the top 50 principal components, we
performed unsupervised clustering using the mini-batch k -means (mbkmeans) algorithm [43] implemented in
the mbkmeans [44] R/Bioconductor package for unsupervised clustering to identify cell types, which is a scal-
able version of the widely-used k -means algorithm [45–47] (Figure 5B). The number of clusters (k=6) was
determined using an elbow plot with the sum of squared errors (Figure S2). Using these k=6 clusters, we
compared proportions of cells belonging to each predicted cluster using (i) no filtering, (ii) our miQC threshold,
and (iii) the uniform QC threshold of 10% of cell counts mapping to mtDNA genes (Figure 5C-E).

We found that the cells in cluster 5 (purple bar in Figure 5) were almost entirely removed (cluster 5: 99.3%,
100%) by miQC and the standard 10% threshold, respectively. These cells had an average mitochondrial fraction
of 68.9% (Figure 5A). We can reasonably infer that those are compromised cells, and as such excluding them
from a downstream analysis is appropriate. In contrast, we found that for all other clusters miQC removed far
fewer cells than the 10% threshold approach (cluster 1: 5.7%, 83.3%; cluster 2: 4.9%, 76.2%; cluster 3: 52.2%,
96.0%; cluster 4: 1.9%, 54.1%; cluster 6: 74.2%, 97.5%). This suggests miQC preserves more cells within each
predicted cluster and minimizes sub-population bias, compared to the uniform threshold approach of a 10%
cutoff.

3 Methods

3.1 Datasets

3.1.1 Non-cancer tissue scRNA-seq datasets

We obtained non-cancer tissue scRNA-seq datasets for the studies Macosko et al. [29], Shekhar et al. [30],
Richard et al. [31], Zeisel et al. [32], and Lawlor et al. [33] from the the R/Bioconductor data package scRNAseq
[48]. We obtained the scRNA-seq data from Wang et al. [34] from the Sequence Read Archive (SRA) (accession
code SRP135922). All datasets were processed using scater [23], as described in Section 3.2.1. Table 1 contains
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Figure 5: miQC minimizes sub-population bias in unsupervised clustering. Cells (N = 6691) from one
high-grade serous ovarian cancer (HGSOC) tissue sample (Sample ID: 16030X4). (A) UMAP representation
of cells, colored by percent of cell counts mapping to mtDNA genes. (B) Predicted cluster labels for k=6 cell
types identified using the mini-batch k-means (mbkmeans) algorithm for unsupervised clustering. (C) Total
number of cells preserved within each predicted cluster group using three filtering approaches: no filtering (‘All
cells’), miQC filtering, or removing all cells greater than 10% mtDNA content. (D) UMAP representation of
cells colored by whether miQC keeps (gold) or removes (gray) cells post-QC. (E) Similar as (D), but using a
uniform 10% threshold for mtDNA content.

a summary of the non-cancer datasets used: the organism, the tissue, the experimental protocol, and the
number of cells prior to QC for each dataset.

Table 1: Description of non-cancer tissue scRNA-seq datasets. Columns from left to right include the
source, the organism, the type of tissue, the experimental protocol, and the number of cells prior to QC in
each dataset.

Source Organism Tissue Protocol Number of cells

Richard et al. [31] Mouse T cells Smart-seq2 572

Zeisel et al. [32] Mouse Brain Fluidigm C1 3005

Shekhar et al. [30] Mouse Retina Drop-seq 44994

Macosko et al. [29] Mouse Retina Drop-seq 49300

Lawlor et al. [33] Human Pancreatic islets Fluidigm C1 638

Wang et al. [34] Human Menstrual blood 10X Chromium 71032

3.1.2 Cancer tissue scRNA-seq datasets

The N = 7 HGSOC tumor samples were collected and sequenced at Huntsman Cancer Institute, Utah, USA
(N = 3) and at University of Helsinki, Finland (N = 4).

For the samples from the Huntsman Cancer Institute, raw FASTQ files are available through dbGaP (acces-
sion phs002262.v1.p1) and processed gene count tables are available through GEO (accession GSE158937) [21].
Complete details of the experimental protocol and sequencing steps followed for these tumor samples provided
in Weber et al. [21], but in brief library prepration was performed using 10x Genomics 3’ Gene Expression Li-
brary Prep v3, and sequencing was done on an Illumina NovaSeq instrument. Quantification for these samples
was performed using salmon alevin [37] with a index genome generated from GENCODE v31 [38].
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Genome data for the University of Helsinki samples has been deposited at the European Genome-phenome
Archive (EGA) which is hosted at the EBI and the CRG, under accession number EGAS00001005066. The sam-
ples were taken as a part of a larger study cohort, where all patients participating in the study provided written
informed consent. The study and the use of all clinical material have been approved by The Ethics Committee
of the Hospital District of Southwest Finland (ETMK) under decision number EMTK: 145/1801/2015. Imme-
diately after surgery, tissue specimens were incubated overnight in a mixture of collagenase and hyaluronidase
to obtain single-cell suspensions. Cell suspensions were passed through a 70-µm cell strainer to remove cell
clusters and debris and centrifuged at 300 x g. Cell pellets were resuspended in a resuspension/washing buffer
(1X PBS supplemented with 0.04% BSA) and washed three times. scRNA-seq libraries were prepared with
the Chromium Single Cell 3’ Reagent Kit v. 2.0 (10x Genomics) and sequenced on an Illumina HiSeq4000
instrument. Using the raw FASTQ files, we performed the quantification step with two different methods to
obtain two different UMI counts matrices. First, Cell Ranger (version 3.1.0) [1] was used to perform sample
de-multiplexing, alignment, filtering, and barcode and UMI quantification. GRCh38.d1.vd1 genome was used
as reference and GENCODE v25 for gene annotation. Second, salmon alevin [37] (version 1.4.0) was also used
with GRCh38.p13 as reference genome and GENCODE v34 for gene annotation. Table 2 contains a summary of
the cancer datasets used, including the source, the organism, the location from where the tumors were obtained,
and the number of cells prior to QC in each dataset.

Table 2: Description of human high-grade serous ovarian cancer (HGSOC) tissue scRNA-seq
datasets. Columns from left to right include the source, the organism, the location from where the tumors
were obtained, and the number of cells prior to QC in each dataset. Huntsman Cancer Institute samples were
processed with the 10x Genomics 3’ Gene Expression Library Prep v3 protocol, and University of Helsinki
samples were processed with Chromium Single Cell 3’ Gene Expression v2 protocol.

Source Sample ID Location Cell Count

Weber et al. [21] 16030X2 Huntsman Cancer Institute 4939

Weber et al. [21] 16030X3 Huntsman Cancer Institute 1725

Weber et al. [21] 16030X4 Huntsman Cancer Institute 6691

Novel as part of this manuscript EOC1129 University of Helsinki 1086

Novel as part of this manuscript EOC50 University of Helsinki 930

Novel as part of this manuscript EOC871 University of Helsinki 1733

Novel as part of this manuscript EOC482 University of Helsinki 3879

3.2 Data analysis

3.2.1 Preprocessing scRNA-seq datasets

We processed the gene-by-cell matrix from each dataset using the scater [23] R/Bioconductor package, including
calculating the number of unique genes represented and the percent of reads or UMI counts mapping to mtDNA
genes. At this step, we removed any cells with fewer than 500 total reads or fewer than 100 unique genes
represented, which we considered to be unambiguously failed.

To represent the effect of miQC on downstream analyses, we calculated and plotted the Uniform Manifold
Approximation and Projection (UMAP) representation of the single-cell expression data using functions in
the scater package. We chose to highlight how miQC filtering specifically affects clustering results using the
mbkmeans package, which uses mini-batches to quickly and scalably produce k-means clustering assignments
[44]. We ran mbkmeans on a reduced representation of our expression data, the first 50 principal components
as calculated via scater. All visual representations and figures were generated using the ggplot2 R package [49].

3.2.2 miQC software implementation

We used the R package flexmix [27] to fit the finite mixture of linear (or non-linear) models, depending on
the functional form of fz(xi) used. The flexmix R packages performs estimation of the parameters using an
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Expectation-Maximization (EM) algorithm [26]. Like all implementations of the EM algorithm, flexmix is
not guaranteed to find a global maximum likelihood, meaning that users should check for convergence across
multiple initializations. In our case with a finite mixture two standard linear regression models, we found that
flexmix converges to extremely similar parameters for each iteration of a given sample, but that the order of
distributions given in each iteration is non-deterministic. Therefore, we assumed that the distribution with
the greater y-intercept, meaning the for the cells with a low library complexity, we labeled distribution with
higher percent of cell counts mapping to mtDNA genes as the compromised cell distribution. The parameters
estimated from each mixture model was used to calculate the posterior probability of a cell coming from the
compromised cell distribution. Our miQC software is available as an R/Bioconductor package under a BSD-3-
Clause License at https://github.com/greenelab/miQC. The code used to download datasets, perform the
analyses, and reproduce the figures is available at https://github.com/greenelab/mito-filtering.

4 Discussion

One critical assumption of our model is that mitochondrial reads are not informative in terms of biological
variation. While this is true in many contexts, there are some contexts where high mitochondrial expression
is biologically relevant and informative. For instance, scRNA-seq data has shown that aberrant mitochondrial
activation is implicated in development of polycystic ovary syndrome (PCOS) [50]. Removing all cells with
a large percentage of mitochondrial reads in a PCOS study would therefore hinder much of the downstream
analyses. More broadly, metabolic shifts between oxidative phosphorylation and glycolysis, an important
indicator of cell proliferation, can also increase or decrease mitochondrial expression [51, 52].

Generally, researchers are able to assess if mitochondrial expression may be relevant to their experimental
question at hand. In the majority of cases, cells with a large percentage of mitochondrial reads–especially when
paired with few uniquely expressed genes or low numbers of total counts (reads or UMIs)–can be reasonably
interpreted as a sign of cell damage and those cells should be discarded.

Our miQC mixture model is designed for scenarios in which there are a non-trivial amount of compromised
cells and the amount of compromised cells might vary across samples or experiments. For scRNA-seq data
generated from archived tumor tissues, this is often the case. However, in optimal conditions where there
are no or few damaged cells, the mixture model may not be able to accurately estimate parameters for the
compromised cell distribution, as there might only be a handful of compromised cells. In this case, the model is
thus liable to choose very similar parameters for the two distributions, causing the probabilistic assignments for
individual cells to be unstable and good cells to be excluded unnecessarily. As an example, our tumor sample
EOC50 (Figure 3D) had no cells with an extremely high mitochondrial fraction, meaning the intercept for the
”compromised” cell distribution was fitted at a much lower value than the other tumors. In this case, miQC
actually excluded more cells than a simple 10% mitochondrial threshold did. With this in mind, for cases with
no concerns about tissue quality, we recommend using Median Absolute Deviation (MAD) as a data-driven
approach for filtering out a small number of damaged cells [53]. We also caution against using miQC on data
that has already been filtered by some prior preprocessing step, and recommend users of miQC be aware of any
filtering that has been done on their data, especially in the case of public datasets.

It is possible that not only tissue types may have different baselines of mitochondrial expression, but that
the baselines would also vary across the cell types within a heterogeneous tissue, such as a dissociated tumor
[15]. This suggests an extension of our miQC approach for future development where the intact/compromised
distribution parameters could be estimated for each cell type independently. However, in most scRNA-seq
experiments involving tissues, cell type identities are not known a priori and cannot be determined without
first performing quality control. Stratifying by cell type is thus currently not advisable for the main uses of
miQC.

In conclusion, ensuring the quality of scRNA-seq data is essential for robust and accurate transcriptomic
analyses. Percent of reads mapping to the mitochondria is a very useful proxy for cell damage, but existing
QC methods do not do justice to the myriad of biological and experimental factors relevant to mitochondrial
expression. The standard wisdom of removing all cells with greater than 5% (or 10%) mitochondrial counts
is unnecessarily stringent in many tissue types, especially cancer tissues, causing a massive loss of potentially
informative cells. Our new method, miQC, offers a probabilistic approach to identifying high-quality cells within
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an individual sample, based on the assumption that there are both intact and compromised cells within the
samples with associated characteristics. This method is flexible and adaptive across experimental platforms,
organism and tissue types, and disease states. It is robust to technical differences that alter standard QC
metrics, such as differences in reference genome. It also maximizes the information gain from an individual
experiment, often preserving hundreds or thousands of potentially informative cells that would be thrown
out by uniform QC approaches. miQC is now available as an user-friendly R package available at https:

//github.com/greenelab/miQC, allowing researchers to tailor their QC to the needs of a given scRNA-seq
dataset and experiment in a consistent way.
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Supplementary Figures

Figure S1: miQC is extensible to a combination of linear and non-linear models. (A) A mixture model on

high-grade serous ovarian tumor data, where the intact cell distribution is modeled linearly and the compromised cell

distribution is modeled using a b-spline. (B) Posterior likelihood of tumor cells belonging to compromised distribution

as fitted with a spline model. (C) All cells with greater than 75% posterior probability of being compromised are marked

for removal.
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Figure S2: Selecting an appropriate number of clusters for tumor data We ran mbkmeans on our tumor data

for a range of k from 2 to 10. Based on the within cluster sum of squares (WCSS), we proceeded with 6 clusters.
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