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Figure 4: Illustration of emergent prediction capabilities through DLR of apical dendrites in
the case of multiple branches in the dendritic tuft. A) We consider here for simplicity the case of two
branches of the dendritic tuft that both receive synaptic input from the same two neurons in a higher brain
area, for two experimentally reported types of interaction of their contributions: saturating and soft-XOR. B)
The resulting probabilistic predictions Ψ(ftotal) of the apical tuft are shown after training on three different
datasets. Note that for neither one of these datasets a single-branch probabilistic prediction as shown in Fig. 2
suffices. But both experimentally observed saturating and XOR-like interactions between different dendritic
branches enable DLR to produce suitable distributions of probabilities, indicated again through color coding,
that separate the two point clouds. Note that like in the case of Fig. 2, a number of these training examples
could have been generated by either one of the two distributions that generate dark green and light green
datapoints. Hence probabilistic predictions are needed, like in the case of Fig. 2. But with DLR running in
parallel in several apical dendrites, also complex distributions of datapoints can be handled (Table 2).
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2.2.2 Soft-XOR model

This second choice for Ψ is motivated by recent findings from human L2/3 pyramidal cells. According
to [Gidon et al., 2020], Ca2+-spikes are initiated in these cells at a threshold activation ϑ of dendrites,
but if dendrites are even more strongly activated, these spikes are not elicited. We can model such
behavior by a nonlinearity Ψ(ftotal) that is close to 1 in a certain activation region (ϑ, ϑ+ ∆ϑ), see
Fig. 4B (right) and Methods.

A plasticity rule for this model is derived in Methods, where the plasticity at the synapse depends
on ftotal. Again, we can consider a coarse influence of ftotal on the local plasticity, where it switches
between LTP, LTD, and no update based on three thresholds f− (low ftotal), fmid (medium ftotal),
and f+ (high ftotal), see Fig. 4B (right). This leads to the following updates of synaptic efficacies:

For z = 0 :

∆wBj =


−ḟB(ūB)xBj , if f− ≤ ftotal < fmid

ḟB(ūB)xBj , if fmid ≤ ftotal ≤ f+

0 , otherwise

For z = 1 : (9)

∆wBj =


ḟB(ūB)xBj , if ftotal < f−

−ḟB(ūB)xBj , if ftotal > f+

0 , otherwise

We can interpret these plasticity dynamics as follows. Assume first the case of a Ca2+-spike z = 1.
For low ftotal (< f−), the activation has to increase in order to increase the probability of the model.
Hence active synapses are potentiated. For medium ftotal (f− ≤ ftotal ≤ f+), we have already a high
probability for a Ca2+-spike. Hence, no update is necessary. For high ftotal (> f+), the activation
is too high and depression is needed. Consider now the case of no Ca2+-spike z = 0. If the neuron
is at medium ftotal, the probability can be decreased either by decreasing the activation (LTD) or
increasing it (LTP). In the upper half of the "high probability bump" (fmid < ftotal ≤ f+), LTP is
chosen, and in the lower half (f− ≤ ftotal < fmid) LTD is chosen, which shift ftotal in the direction
leading to a decreased probability. Outside of this, i.e. for ftotal > f+ and ftotal < f−, we already
predict a low probability of Ca2+-spike and thus no updates are necessary.

2.2.3 Demonstration of the enhanced probabilistic prediction capabilities that
emerge through DLR in the case of several apical dendrites

Similar to as shown in Fig. 2 we assume here that data points with labels z = 0 or 1 are drawn
from some overlapping probability distributions. But in contrast to Fig. 2 we assume here that these
distributions are not just Gaussians that can be separated by an optimal linear decision boundary.
Examples for the resulting clouds of data points are shown for three examples of more complex
distributions in Fig. 4B.

Using a model with two dendritic branches, we consider three different kinds of interactions
between these two branches – a saturating interaction with a low threshold, high threshold, and a
soft-XOR interaction. One sees in Fig. 4B that each of these three types of interactions is useful for
learning probabilistic predictions for three different types of distributions of data points. Furthermore
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one sees that training via DLR enables the dendritic branches to also provide meaningful predictions
for presynaptic firing rates x that never occurred during training.

A detailed quantitative evaluation is provided in Methods, see Table 2 there. Here we summarize
these results: When using two dendritic branches, the cases of saturating interaction with low and
high value of the strong spike threshold perform very well on the OR and AND tasks respectively.
The Soft-XOR interaction performs much better than the saturating interaction in modelling the
XOR dataset. This validates the intuitive understanding of the different interactions and how they
correspond to different Boolean operations. Adding more branches with a saturating interaction
with an intermediate threshold value ϑ, we see that these configurations perform very well across all
the three datasets thus showing that increasingly complex distributions can be modelled by a single
configuration given enough branches.

3 Methods

3.1 Implementation Details of DLR

Each dendritic branch indexed by B receives top-down input xB weighted by input weights wB. An
input vector xB = [xB1 , . . . , x

B
N ]T is presented to the branch as input spike trains sB1 (t), . . . , sBN (t) for

a fixed duration. Mathematically, we model the spike trains sBn (t) as sums of Dirac delta pulses at
spike times. For each n, the spike times are generated by a Poisson point process of rate equal to xBn .

For the duration of the input presentation, the membrane potential u is given by the weighted
sum of the spike trains convolved temporally with a linear postsynaptic potential kernel kPSP

uB(t) =
N∑
j=1

wj

(
kPSP ∗ sBj

)
(t), (10)

where we use a double exponential PSP kernel

kPSP (t) = λPSP

(
e
− t
τf − e−

t
τr

)
. (11)

In our simulations, we used values λPSP = 1, τf = 2 ms, and τr = 10 ms for the scaling- and
time-constants.

We define the quantity x̂Bn (t) , (kPSP ∗ sn) (t) as the un-weighted contribution of incoming
synapse n to the dendritic potential in branch B. For any PSP shape, the expectation of x̂Bn (t) is
proportional to the spike input rate xBn .

Thus, for the weight update rule in 3, we use the time average of the membrane potential uB(t)
(uB) to calculate qw(x), and the time average of x̂Bn (t) (xBn ) in lieu of xBn . This is because xB is
a quantity that is local to the incoming dendritic synapse and can thus be used in local synaptic
weight updates.

For the case of the single branch SLR, the implemented weight update is thus given by

∆wj = η (z − qw(x))xBj ,

= η (z − σ (β (u − u0)))xBj ,

where we make use of the definition of qw(x) from equation 2.
For the multi-branch update rules, we use xBn and uBn in lieu of xBn and uBn respectively when

implementing the weight update rules corresponding to the saturating and soft-XOR dynamics in
equations 8, 9.
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3.2 Derivation of DLR for a single branch

In general, each dendritic branch indexed by B receives top-down input xB weighted by weights wB.
Here, we consider the case of a single dendritic branch. Hence, to simplify notation, we will in the
following suppress the superscripts and simply write x for the inputs to this branch and w for the
corresponding weights. In our model the input x represents the vector of firing rates of the neurons
presynaptic to the dendritic branch.

The Ca2+-spikes are denoted by z where z = 1 denotes the presence of the calcium spike, and
z = 0 denotes the absence of a Ca2+-spike for the duration of the input. We denote the joint
distribution of the input x and the calcium spikes z as ptarget(x, z). Our regression formulation
then seeks to provide an estimator parametrized by w (qw(x)) which is optimized to approximate
ptarget(z = 1|x). Namely, we aim to train the weights w so that qw(x) accurately predicts the
probability of the occurrence of a Ca2+-spike given a particular top-down input x.

The cross entropy loss function that measures the distance between qw(x) and the data distribu-
tion ptarget is defined by

LL(w) = −Ex,z [z log qw(x) + (1− z) log (1− qw(x))] , (12)

where x, z are sampled from the data distribution ptarget.
The corresponding gradient with respect to the parameters w is given by

∇w LL(w) = −Ex,z

[
∇w qw(x)

qw(x) (1− qw(x))
(z − qw(x))

]
. (13)

In our case, we take into account the fact that qw(x) is a function of the dendritic membrane potential
which is proportional to wTx. Hence, if qw(x) takes the simple form q(wTx) for some nonlinearity
q, one gets

∇w LL(w) = −Ex,z

[
q̇(wTx)

q(wTx)
(
1− q(wTx)

) (z − q(wTx)
)

x

]
. (14)

A further simplification arises if one uses a logistic sigmoid function as nonlinearity q such that:

qw(x) = σ
(
β(wTx− u0)

)
= σ (β(ū− u0)) , (15)

where σ(a) = 1
1+e−a and β and u0 are model constants. Hence, in this case, the predictive depo-

larization that results from synaptic currents at the dendrite is a saturated version of ū as given in
equation 2. Then, using the fact that σ′(a) = σ(a) (1− σ(a)), one obtains

∇w LL(w) = −Ex,z [(z − qw(x)) x] . (16)

When we insert the definition of qw(x) from equation 15 into the loss function LL(w), we find that
this loss function corresponds to a well known linear regression scheme called Logistic Regression. It
is known that this loss function is a convex loss function.

Thus, with x encoded as the mean input spike rate, and u = wTx (equation 1), we see that
the weight update rule described in equation 3 performs stochastic descent along the gradient of the
convex logistic cross entropy loss function. This guarantees the convergence of the weight update to
the global optimum of the loss function.
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3.3 Derivation of DLR for the case of multiple branches

Here, xB,wB represent the weights and input to dendritic branch B, and x,w represent the full
input and weights. The corresponding cross entropy loss with qw(x) defined as in equation 4 is given
by

LL(w) = −Ex,z [z log qw(x) + (1− z) log (1− qw(x))]

= −Ex,z [z log Ψ (ftotal) + (1− z) log (1−Ψ (ftotal))] . (17)

The derivative of the above loss with respect to the weights wB of a branch B evaluates to

∇wBLL(w) = −Ex,z

[
Ψ̇ (ftotal)

Ψ (ftotal) (1−Ψ (ftotal))
(z −Ψ (ftotal)) ḟ

B(wBTxB) xB

]
. (18)

3.3.1 Derivation of DLR for the saturating model

In this model, a sigmoidal shape for Ψ is chosen:

Ψ (ftotal) = σ (α (ftotal − ϑ)) , (19)

where α and θ are suitable constants. Using this in equation 18 we obtain the gradient for the
saturating model:

∇wBLL(w) = −α (z −Ψ (ftotal)) ḟ
B(ūB) xB, (20)

which leads to the weight update rule in equation 7.
In order to minimize the information about Ψ (ftotal) at the branch, one can consider a gating of

updates based on thresholds on Ψ (ftotal) which approximates the term (z −Ψ (ftotal)) in the update
rule 7. We consider the two cases z = 0 and z = 1 separately. For z = 0, the term (z −Ψ (ftotal))
is between −1 and 0. It becomes very small when Ψ (ftotal) is close to zero. A gating mechanism
which blocks plasticity if Ψ (ftotal) is below some threshold q− close to 0 approximates this term. For
z = 1, the term (z −Ψ (ftotal)) is between 0 and 1. It becomes very small when Ψ (ftotal) is close to
one. A gating mechanism which blocks plasticity if Ψ (ftotal) is above some threshold q+ close to 1
approximates this term. Hence, we can formulate the approximate update 8.

3.3.2 Derivation of DLR for the soft-XOR model

In the soft-XOR model, Ψ is given by

Ψ(ftotal) = σ (α (ftotal − ϑ))σ (α (−ftotal + ϑ+ ∆ϑ)) (21)
≡ σ1(ftotal)σ2(ftotal). (22)

Suitable parameters α, θ, and ∆θ lead to an XOR-like behavior (high probability in a certain acti-
vation region), see Fig. 4B (right). Using this nonlinearity in equation 18, we obtain

∇wBLL(w) = −Ex,z

[
σ2(ftotal)− σ1(ftotal)

(1−Ψ (ftotal))
(z −Ψ (ftotal)) ḟ

B(wBTxB) xB
]
. (23)

Considering a coarse influence of the ftotal on the local plasticity, we can formulate an approximate
rule which switches between LTP, LTD, and no update based on three thresholds f− (close to ϑ),
fmid (ϑ+ ∆ϑ/2), and f+ (close to ϑ+ ∆ϑ), see Fig. 4B. This leads to the updates given in equation
9.
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3.4 Simulation Details: Classification of 2D data (Fig. 2)

The training examples for this task consist of points generated from two 2D Gaussian clusters with
means and covariances µk,Σk for k ∈ {0, 1}. All points generated from N (µk,Σk) have the target
value z = k. The prior probabilities for the classes 0 and 1 were chosen to be equal (0.5). Thus
to generate a training sample (xi, zi), we first pick the Gaussian component k ∈ {0, 1} with equal
probability i.e. k ∼ bernoulli(p = 0.5). We then pick xi ∼ N (µk,Σk) and assign the target zi = k.
This gives the following conditional probability distribution p(z = 1|x)

p(z = 1|x) =
p(x|k = 1)

p(x|k = 0) + p(x|k = 1)
,

where p(x|k) is the Gaussian probability density function with mean µk and covariance Σk. It is
the aim of the algorithm to learn this conditional distribution in the quantity qw(x) in the dendrite
(equation 2).

The covariance matrix Σk can be decomposed as Vk Sk2 V T
k . Here Vk is an orthogonal matrix

where the columns are the eigenvectors of Σk and give the directions along which the 2D Gaussian
is aligned. Sk is a diagonal matrix with each diagonal entry representing the standard deviation of
the Gaussian along the corresponding eigenvector. The parameters used for this simulation are:

µ0 = [120, 120]Hz, V0 =
1√
5

[
2 1

1 −2

]
, S0 =

[
60 0

0 20

]
Hz,

µ1 = [200, 200]Hz, V1 =
1√
5

[
1 −2

2 1

]
, S1 =

[
60 0

0 20

]
Hz.

For this demonstrative simulation we consider the neuron to be receiving the input on a single
dendritic branch, with the DLR being applied to the incoming weights to that branch. Each data
point xi, is padded with an additional component of constant rate of 40Hz (in order to model intercept
fitting). Each component of this data point is then given as input to the network encoded as a Poisson
spike train with mean rate equal to the value of the component. This spike train is provided to the
neuron for a duration of 400 ms. Targets are fed to the network by enabling or disabling Ca2+-spike
firing corresponding to z = 1 and z = 0 respectively. Fig. 1B illustrates this neuron and learning
setup.

When training the input weights to the neuron using DLR, the initial weights for each run are
initialized to positive values drawn from a normal distribution with mean 9.0 and standard deviation
4.5. The weights are clipped at zero so that they stay positive in order to obey Dale’s law.

The standard perceptron classifier trains a set of weights w so that for any data point (x, z), we
should have wTx > 0 if z = 1 and wTx < 0 if z = 0. For each iteration of updating the weights
w, we randomly sample a single data point (x, z) from the target distribution ptarget, and apply the
following standard perceptron update to weights w. Note that we also add here the same additional
component of 40Hz to x to enable the perceptron to train the intercept of the separating line.

∆w =


η x if z = 1 and wTx < 0

−η x if z = 0 and wTx > 0

0 otherwise
(24)
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The learning rates η for both the DLR and perceptron learning (used in equations 3, and 24
respectively) decay harmonically from an initial value of η0 to a final value of ηfinal over the course
of the 30000 iterations that we run them for in Fig. 2. For the DLR we use η0 = 1.8 (See Table 3),
and for the perceptron learning we use η0 = 0.01, where the lower learning rate is used to aid any
possible convergence of the perceptron. In both cases ηfinal = η0/6. Thus we see that even with a
lower learning rate and an idealized perceptron learning, the perceptron rule does not converge for
this case where the data is not linearly separable.

3.5 Simulation Details: Predicting the future sensory input from a moving
object (Fig. 3)

3.5.1 Input encoding and parameters

In our simulation, the moving object is a 2D circle which moves within a 30 × 30 grid and has a
diameter of 5 Grid Units (GU). We consider here the task of predicting the sensory input correspond-
ing to its position after a fixed delay of T . The top-down input corresponding to an instance of a
moving object is specified by a four-tuple (rx, ry, v, θ) consisting of x and y coordinates rx, ry of the
initial position, the speed v, and the direction angle θ. This four-tuple is encoded in a population
coded manner described below. This set of population coded inputs is connected to a 30× 30 grid of
L5P neurons (one neuron per grid position). The speed and direction are perturbed by a Gaussian
noise to model inaccuracies in top-down measurement. This grid is trained to reproduce the image
of the ball at its final position which is determined by the initial position and the true (unperturbed)
velocity in the external environment. The incoming weights to each L5P neuron are trained using
DLR with the target being the corresponding pixel value in this image.

The top-down inputs specifying the initial position and velocity of the ball are encoded as follows.
The initial position (rx, ry) can take any value such that both rx, ry take values in the range of
Sr = [3, 27] GU. The speed v is defined in terms of the distance (in GU) that the moving object
covers in the fixed delay T between the top-down and the bottom up inputs. This distance can take
any value in the range Sv = [4, 20] GU. The direction is specified by an angle θ to the horizontal
which can take any value in the range [0, 2π).

In addition, before being given as input, the speed v and the direction angle θ are perturbed
by the addition of a Gaussian noise in order to model a noisy estimate of the object velocity. This
means that given a particular initial position and velocity as input, the true velocity of the ball and
consequently the final position of the ball is uncertain.

The encoding of these values into neuron populations is described below. We consider the sets
Mr, Mv and Mθ, which consist of Nr, Nv, and Nθ equally spaced values in the ranges Sr, Sv, and Sθ
respectively. Then, corresponding to each four-tuple

(
µx, µy, µv, µθ

)
∈Mr×Mr×Mv×Mθ, we have

a single input neuron that fires according to a Gaussian tuning curve centered at
(
µx, µy, µv, µθ

)
.

The neuron encodes the input
(
rx, ry, v, θ

)
by firing at a rate ρ given by

ρ =
ρ total

Z
e
− (rx−µx)2(ry−µy)2(v−µv)2(v−µθ)

2

8σr2σr2σv2σθ
2 , (25)

where Z is a normalization factor calculated so that the total spike rate of all the input neurons is
ρ total = 250 Hz. Here the standard deviation of the response curve corresponding to position σr,
velocity σv, and direction σθ are constant across all neurons.

For the simulation whose results are shown in Fig. 3, we use Nr = 10, Nv = 10, Nθ = 24, σr =
2.67, σv = 1.78, σθ = 0.2618 = 15.0◦. This leads to a total input dimension of Nr

2NvNθ = 24000.
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The standard deviations of the Gaussian noise perturbations applied to the speed and direction
components of the top-down input are equal to the width of the respective receptive fields σv, σθ. In
order to train the network we make use of 168000 data points in the training dataset.

All the weights are initialized to a constant positive value of 9.0 and are clipped at zero during
training so that they stay non-negative in accordance with Dale’s law.

3.5.2 Calculating actual probability of a neuron’s receptive field being covered by the
object at time T

The imprecision in the estimate of the object velocity, modeled by the perturbed input speed and
direction, leads to the final position of the object being uncertain. Each pyramidal neuron in the
30×30 grid receives as input to the apical dendrites the four-tuple sin , (rx, ry, v

in, θin). Here (rx, ry)
is the initial position of the object and (vin, θin) are the noisy estimates of speed and direction of
the velocity used by the pyramidal neuron. We denote the true velocity of the object by (v, θ), and
define the corresponding four-tuple s , (rx, ry, v, θ).

Consider a single neuron in the grid. For this neuron, we denote as Z the random variable such
that Z = 1 if and only if the object covers the receptive field of this neuron at time T , and Z = 0
otherwise. Given the noise in the estimate of velocity, we thus wish to calculate p(Z = 1|sin), which
is the conditional distribution that is estimated by the neuron via qw(x)

p(Z = 1|sin) = Es|sin [p (Z = 1 | s)] .

Here we use the fact that the final position of the object is fully determined given the true velocity
and the initial position s.

To calculate p(s|sin) we use the following facts regarding (v, θ) and (vin, θin) (as in description
of input above)

v ∼ Uniform in Sv,
θ ∼ Uniform in Sθ,

vin = v + εv, where εv ∼ N(0, σv),

θin = θ + εθ, where εθ ∼ N(0, σθ).

Thus, using Bayes’ theorem, we can calculate

p(s|sin) =
p (sin | s) p (s)

p
(
sin
)

=
p (sin | s) p (s)∫∫

(v,θ)∈Sv×Stheta p
(
sin | s

)
p (s)

=
p (sin | s)∫∫

(v,θ)∈Sv×Stheta p
(
sin | s

) .

The above can be computed using the fact that p(sin|s) is the probability density function of a normal
distribution.
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3.5.3 Measurement of performance

Here we provide measurements to demonstrate that the network reliably predicts the probability that
a neuron receives input from the moving object at time T . We term the position of the center of the
moving object as predicted by the noisy estimate of the velocity as the estimated final position. We
then consider three concentric slices of the neuron grid centered at the estimated final position, with
diameters 0−5 GU, 5−9 GU, and 9−13 GU. For the pyramidal neurons within a slice, we compare
the mean predicted probability qw(x) and the mean actual probability, of their receptive fields being
covered by the object at time T .

1. Slice of diameter 0− 5 GU: mean qw(x) = 0.3546, mean actual probability = 0.4108

2. Slice of diameter 5− 9 GU: mean qw(x) = 0.1666, mean actual probability = 0.1668

3. Slice of diameter 9− 13 GU: mean qw(x) = 0.0461, mean actual probability = 0.0435

From this we can clearly see that the mean predicted probability qw(x) drops away from the
estimated final position, as well as that the theoretically calculated probabilities are followed closely
by the predicted probabilities. The examples in Fig. 3 and the results above are calculated from
combinations of initial position and velocity that were not seen during training.

3.6 Simulation Details: Predicting complex distributions with multiple
dendritic branches (Fig. 4)

In this experiment, the 2D data is generated from multiple gaussian clusters. The parameters and
the class labels assigned to each cluster are chosen to create datasets corresponding to an OR, AND,
and XOR operation shown in Fig. 4.

OR dataset AND dataset XOR dataset
Multi-branch DLR:
Number of Branches Branch Interaction

2 Saturating (low ϑ) 0.21 0.60 0.61
2 Saturating (high ϑ) 0.65 0.18 0.60
2 Soft-XOR 0.19 0.33 0.36
4 Saturating 0.20 0.17 0.45
6 Saturating 0.18 0.16 0.36

Logistic Regression: 0.43 0.45 0.69

Table 2: Performance of DLR for the case of several interacting apical dendrites for probabilistic
predictions in cases where there are no linear optimal decision boundaries: Mean negative log
likelihood (NLL) in nats (lower is better) is given for the training sets of the three different data distributions
considered in 4B, and for the three types of interactions among apical dendrites that we consider, as well
as for different numbers of apical dendrites. One sees that using a saturating interaction with low threshold
for two branches excels at the OR task, while the high threshold scheme excels at the AND task. The Soft-
XOR interaction turns out to be substantially more effective for learning with two branches the probabilistic
prediction for the case of the XOR data distribution. However, with more branches the saturating interaction
supports learning of probabilistic predictions via DLR for all three tasks. Each of the mean NLL values above
is calculated from the best 8 out of 14 independent training runs (to avoid outliers which do not converge).
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In order to solve this task, we consider a neuron with NB (two or more) dendritic branches each
with their respective incoming synapses with weights w1, . . . ,wNB . All of these branches receive the
same 2D input, i.e., xB = [x; 1] = [x1, x2, 1] for B = 1, . . . , NB. This input is provided as in the
2D regression task for a single branch, i.e., as a spike sequence with a spike rate proportional to the
input value. The additional input component with a value of 20Hz is given in order to model the
training of the branch baseline activation.

The various configurations in table 2 along with corresponding parameters are below.

1. 2 Branches, saturating interaction, low threshold ϑ = 0.6: This implements the OR operation
between the two branches.

2. 2 Branches, saturating interaction, high threshold ϑ = 1.2: This implements the AND operation
between the two branches.

3. 2 Branches, soft-XOR interaction, ϑ = 0.5, ∆ϑ = 1.0. This implements the XOR operation
between the two branches.

4. 4 Branches, saturating interaction, ϑ = 1.4.

5. 6 Branches, saturating interaction, ϑ = 2.1.

For all the saturating interactions, we use a scale factor α = 12. The parameters q+, q− used in the
learning rule in 8 are set to q+ = 0.9 and q− = 0.1. For the Soft-XOR interaction, we use α = 8.0
and set f− = ϑ = 0.5, f+ = ϑ+ ∆ϑ = 1.5 and fmid = ϑ+ ∆ϑ/2 = 1.0.

The initial weights for each branch B are initialized in the following manner. We pick a point
sB ,

[
sB1 , s

B
2

]
, where both sB1 , sB2 are randomly picked uniformly from the interval [110, 130]Hz. We

then pick a random direction vector hB sampled uniformly from a unit circle. Using this pair of
sB,hB, we set the initial weights wB

0 so that the separating plane is a plane that passes through the
point sB, with the direction of the plane determined by the normal vector hB. The weights in this
case are unconstrained in sign to allow the model to fit the complex distributions in the case of the
low dimensional inputs.

Single-branch DLR Multi-branch DLR
Parameter 2-D regression Predicting input Saturating Soft-XOR

from moving object interaction interaction
η0 1.8 40.0 4.0 0.3
ηfinal 0.3 6.67 4.0 0.3
β 0.5 0.5 0.1 1.0
u0 20.0 15.0 7.0 7.0
λPSP 1.0 1.0 1.0 1.0
τr 2.0 ms 2.0 ms 2.0 ms 2.0 ms
τf 10.0 ms 10.0 ms 10.0 ms 10.0 ms

Table 3: Parameters related to DLR that are used for each experiment. η0, ηfinal are the initial and final
learning rate used. β and u0 are the scale and threshold for the sigmoid function used to calculate qw(x) and
fB in equations 2 and 5 respectively.
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3.7 Common Parameters for DLR:

Some of the common parameters and the values for the DLR rule for the three experiments are given
in Table 3.

4 Discussion

We have presented a mathematical framework and learning theory for the arguably most important
synaptic connection for the integration of top-down predictions from higher brain areas into computa-
tional processing of sensory input in lower areas: Synapses from axons of neurons in higher brain areas
onto apical dendrites of pyramidal cells in lower areas. Experimental data show that plasticity at these
synapses follows rules that differ from rules for correlated Hebbian learning, because they are gated by
instructive signals [Magee and Grienberger, 2020]. Furthermore these instructive signals differ from
commonly considered global third factors for synaptic plasticity, such as dopamine, that typically sig-
nal reward. Instead, these instructive signals either emerge locally within the neuron — such as Ca2+-
spikes [Kampa et al., 2006, Kampa et al., 2007], NMDAR spikes [Gambino et al., 2014], or other
types of plateau potentials [Bittner et al., 2015, Bittner et al., 2017, Magee and Grienberger, 2020]
– or arrive in the dendritic tuft through synaptic connections from brain areas such as the perirhi-
nal cortex [Doron et al., 2020] or higher order thalamus [Aru et al., 2020]. We have focused in our
illustrative example in Fig. 1 and in the text on the case where these instructive signals, denoted
by z in our mathematical models, take the form of Ca2+-spikes. But our theoretical framework and
normative learning theory also applies to other forms of instructive signals. The only aspect on which
this learning theory is based is that these instructive signals last for 50-100 ms or longer, so that the
firing rates of presynaptic neurons become salient, rather than single spikes.

Apart from these neurophysiological differences, the functional impact of plasticity at these
synapses on apical dendrites has been shown to differ from that of other synaptic connections. For
example, the input from apical dendrites has been shown to shift the perceptual threshold in a graded
manner [Takahashi et al., 2016]. In addition, if these synapses learn to predict sensory inputs on the
basis of inputs from higher brain areas, such predictions are inherently uncertain, and therefore would
be functionally most useful if they aim at learning probabilities, rather than categorical decisions.
We have shown that this learning goal can be achieved through simple rules for LTP and LTD, gated
by instructive signals z, at synapses on apical dendrites. In fact, a suitable balancing of LTP and
LTD can produce a depolarization of the dendritic tuft that approximates logistic regression, i.e., a
simple form of probabilistic prediction that is in a well-defined sense optimal. Hence we refer to this
normative model for synaptic plasticity in the dendritic tuft as dendritic logistic regression (DLR).
We have shown in illustrative examples that DLR enables the dendritic tuft to make meaningful
probabilistic predictions in the case where the same prediction is sometimes correct and sometimes
not (Fig. 2A). Furthermore these probabilistic predictions can be learnt really fast through DLR
(Fig. 2B). In particular, they provide substantially better performance than the perceptron learning
rule [Moldwin and Segev, 2020]. The reason is that the latter is guaranteed to work well only if the
training examples are linearly separable, in particular if they do not contain contradicting examples
that commonly occur in the case of probabilistic predictions. We have also demonstrated in Fig. 3
that the DLR rule enables distal dendrites to predict future sensory inputs caused by a moving
object.

A concrete experimentally testable prediction of this normative model is that, after learning, the
depolarization in a dendritic branch of the tuft is correlated with the probability that the current
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synaptic input to the dendritic tuft coincides with an instructive signal, for example with a Ca2+-
spike. Another experimentally testable prediction of our model is that the current depolarization of
the dendritic branch scales the amplitude of LTP and LTD during the induction of plasticity. In
particular, if synaptic input to an apical dendrite coincides with a plateau potential, the expression
of LTP is predicted to be weaker if the dendrite is already strongly depolarized. Furthermore, our
normative model predicts that synaptic input to an apical dendrite causes LTD in the absence of
a plateau potential, and the impact of LTD is stronger if the apical dendrite is already stronger
depolarized. Our model also raises the question whether LTP of synapses on distal dendrites of
pyramidal cells in other brain areas besides the neocortex, such as area CA1 [Bittner et al., 2015,
Bittner et al., 2017], is also accompanied by a corresponding forms of LTD, and whether LTP and
LTD combine to generate probabilistic predictions of other events.

We have extended our learning theory in the second part to the case of several interacting branches
in the dendritic tuft. Two different types of interactions have been found in experiments: Summa-
tion of depolarization [Jadi et al., 2014, Poirazi et al., 2003], and competition between depolarized
branches [Gidon et al., 2020]. We have characterized in Fig. 4 additional capabilities of probabilistic
prediction that are enabled by DLR for these two types of interactions between dendritic branches.
In both cases, probabilistic predictions emerge that can learn predictions for substantially more com-
plex distributions than for the simplified case of a single dendritic branch. In this sense, our learning
theory also throws new light on likely computational contributions of the dendritic arbor.
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