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Abstract

Preprints allow researchers to make their �ndings available to the scienti�c community before they
have undergone peer review. Studies on preprints within bioRxiv have been largely focused on article
metadata and how often these preprints are downloaded, cited, published, and discussed online. A
missing element that has yet to be examined is the language contained within the bioRxiv preprint
repository. We sought to compare and contrast linguistic features within bioRxiv preprints to
published biomedical text as a whole as this is an excellent opportunity to examine how peer review
changes these documents. The most prevalent features that changed appear to be associated with
typesetting and mentions of supplementary sections or additional �les. In addition to text
comparison, we created document embeddings derived from a preprint-trained word2vec model. We
found that these embeddings are able to parse out di�erent scienti�c approaches and concepts, link
unannotated preprint-peer reviewed article pairs, and identify journals that publish linguistically
similar papers to a given preprint. We also used these embeddings to examine factors associated with
the time elapsed between the posting of a �rst preprint and the appearance of a peer reviewed
publication. We found that preprints with more versions posted and more textual changes took
longer to publish. Lastly, we constructed a web application (https://greenelab.github.io/preprint-
similarity-search/) that allows users to identify which journals and articles that are most linguistically
similar to a bioRxiv or medRxiv preprint as well as observe where the preprint would be positioned
within a published article landscape.

Introduction

The dissemination of research �ndings is key to science. Initially, much of this communication
happened orally [1]. During the 17th century, the predominant form of communication shifted to
personal letters that were shared from one scientist to another [1]. Scienti�c journals didn’t become a
predominant mode of communication until the 19th and 20th centuries, when the �rst journal was
created [1,2,3]. Although scienti�c journals became the primary method of communication, they
added high maintenance costs and long publication times to scienti�c discourse [2,3]. Some
scientists’ solutions to these issues has been to communicate through preprints, which are scholarly
works that have yet to undergo peer review process [4,5].

Preprints are commonly hosted on online repositories, where users have open and easy access to
these works. Notable repositories include arXiv [6], bioRxiv [7] and medRxiv [8]; however, there are
over 60 di�erent repositories available [9]. The burgeoning uptake of preprints in life sciences has
been examined through research focused on metadata from the bioRxiv repository. For example, life
science preprints are being posted at an increasing rate [10]. Furthermore, these preprints are being
rapidly shared on social media, routinely downloaded, and cited [11]. Some preprint categories are
shared on social media by both scientists and non-scientists [12]. About two-thirds to three-quarters
of preprints are eventually published [13,14] and life science articles that have a corresponding
preprint version are cited and discussed more often than articles without them [15,16,17]. Preprints
take an average of 160 days to be published in the peer-reviewed literature [18], and those with
multiple versions take longer to publish[18].

The rapid uptake of preprints in the life sciences also poses challenges. Preprint repositories receive a
growing number of submissions [19]. Linking preprints with their published counterparts is vital to
maintaining scholarly discourse consistency but is challenging to perform manually [16,20,21]. Errors
and omissions in linkage result in missing links and consequently erroneous metadata. Furthermore,
repositories based on standard publishing tools are not designed to show how textual content of
preprints is altered due to the peer review process [19]. Certain scientists have expressed concern
that competitors could scoop them by making results available before publication [19,22]. Preprint
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repositories by de�nition do not perform in-depth peer review, which can result in posted preprints
containing inconsistent results or conclusions [17,20,23,24]; however, an analysis of preprints posted
at the beginning of 2020 revealed that most underwent minor changes as they were published [25].
Despite a growing emphasis on using preprints to examine the publishing process within life sciences,
how these �ndings relate to the text of all documents in bioRxiv has yet to be examined.

Textual analysis uses linguistic, statistical, and machine learning techniques to analyze and extract
information from text [26]. For instance, scientists analyzed linguistic similarities and di�erences of
biomedical corpora [27,28]. Scientists have provided the community with a number of tools that aide
future text mining systems [29,30,31] as well as advice on how to train and test future text processing
systems [32,33,34]. Here, we use textual analysis to examine the bioRxiv repository, placing a
particular emphasis on understanding the extent to which full-text research can address hypotheses
derived from the study of metadata alone.

To understand how preprints relate to the traditional publishing ecosystem, we examine the linguistic
similarities and di�erences between preprints and peer-reviewed text and observe how linguistic
features change during the peer review and publishing process. We hypothesize that preprints and
biomedical text are pretty similar, especially when controlling for the di�erential uptake of preprints
across �elds. Furthermore, we hypothesize that document embeddings [35,36] provide a versatile
way to disentangle linguistic features along with serving as a suitable medium for improving preprint
repository functionality. We test this hypothesis by producing a linguistic landscape of bioRxiv
preprints, detecting preprints that change substantially during publication, and identify journals that
publish manuscripts that are linguistically similar to a target preprint. We encapsulate our �ndings
through a web app that projects a user-selected preprint onto this landscape and suggests journals
and articles that are linguistically similar. Our work reveals how linguistically similar and dissimilar
preprints are to peer-reviewed text, quanti�es linguistic changes that occur during the peer review
process, and highlights the feasibility of document embeddings with respect to preprint repository
functionality and peer review’s e�ect on publication time.

Materials and Methods

Corpora Examined

Text analytics is generally comparative in nature, so we selected three relevant text corpora for
analysis: the BioRxiv corpus, which is the target of the investigation, the PubMedCentral Open Access
corpus, which represents the peer-reviewed biomedical literature, the New York Times Annotated
Corpus, which is used a representative of general English text.

BioRxiv Corpus

BioRxiv [7] is a repository for life sciences preprints. We downloaded an XML snapshot of this
repository on February 3rd, 2020, from bioRxiv’s Amazon S3 bucket [37]. This snapshot contained the
full text and image content of 98,023 preprints. Preprints on bioRxiv are versioned, and in our
snapshot, 26,905 out of 98,023 contained more than one version. When preprints had multiple
versions, we used the latest one unless otherwise noted. Authors submitting preprints to bioRxiv can
select one of twenty-nine di�erent categories and tag the type of article: a new result, con�rmatory
�nding, or contradictory �nding. A few preprints in this snapshot were later withdrawn from bioRxiv;
when withdrawn, their content is replaced with the reason for withdrawal. As there were very few
withdrawn preprints, we did not treat these as a special case.

PubMed Central Open Access Corpus
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PubMed Central (PMC) is a digital archive for the United States National Institute of Health’s Library of
Medicine (NIH/NLM) that contains full text biomedical and life science articles [38]. Paper availability
within PMC is mainly dependent on the journal’s participation level [39]. PMC articles can be closed
access ones from research funded by the NIH appearing after an embargo period or be published
under Gold Open Access [40] publishing schemes. Individual journals have the option to fully
participate in submitting articles to PMC, selectively participate sending only a few papers to PMC,
only submit papers according to NIH’s public access policy [41], or not participate at all. As of
September 2019, PMC had 5,725,819 articles available [42]. Out of these 5 million articles, about 3
million were open access (PMCOA) and available for text processing systems [30,43]. PMC also
contains a resource that holds author manuscripts that have already passed the peer review process
[44]. Since these manuscripts have already been peer-reviewed, we excluded them from our analysis
as the scope of our work is focused on examining the beginning and end of a preprint’s life cycle. We
downloaded a snapshot of the PMCOA corpus on January 31st, 2020. This snapshot contained many
types of articles: literature reviews, book reviews, editorials, case reports, research articles, and more.
We used only research articles, which aligns with the intended role of bioRxiv, and we refer to these
articles as the PMCOA corpus.

The New York Times Annotated Corpus

The New York Times Annotated Corpus (NYTAC) is [45] is a collection of newspaper articles from the
New York Times dating from January 1st, 1987, to June 19th, 2007. This collection contains over 1.8
million articles where 1.5 million of those articles have undergone manual entity tagged by library
scientists [45]. We downloaded this collection on August 3rd, 2020, from the Linguistic Data
Consortium (see Software and Data Availability section) and used the entire collection as a negative
control for our corpora comparison analysis.

Mapping bioRxiv preprints to their published counterparts

We used CrossRef [46] to identify bioRxiv preprints linked to a corresponding published article. We
accessed CrossRef on July 7th, 2020, and were able to link 23,271 preprints to their published
counterparts successfully. Out of those 23,271 preprint-published pairs, only 17,952 pairs had a
published version present within the PMCOA corpus. For our analyses that involved published links,
we only focused on this subset of preprints-published pairs.

Comparing Corpora

We compared the bioRxiv, PMCOA, and NYTAC corpora to assess the similarities and di�erences
between them. We used the NYTAC corpus as a negative control to assess the similarity between two
life sciences repositories when compared with non-life sciences text. All corpora contain both words
and non-word entities (e.g., numbers or symbols like ), which we refer to together as tokens to avoid
confusion. We calculated the following characteristic metrics for each corpus: the number of
documents, the number of sentences, the total number of tokens, the number of stopwords, the
average length of a document, the average length of a sentence, the number of negations, the
number of coordinating conjunctions, the number of pronouns and the number of past tense verbs.
Spacy is a lightweight and easy-to-use python package designed to preprocess and �lter text [47]. We
used spaCy’s “en_core_web_sm” model [47] (version 2.2.3) to preprocess all corpora and �lter out 326
spaCy-provided stopwords.

Following that cleaning process, we calculated the frequency of every token across all corpora.
Because many tokens were unique to one set or the other and observed at low frequency, we focused
on the union of the top 0.05% (~100) most frequently occurring tokens within each corpus. We
generated a contingency table for each token in this union and calculated the odds ratio along with

±
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the 95% con�dence interval [48]. We measured corpora similarity by calculating the Kullback–Leibler
(KL) divergence across all corpora along with token enrichment analysis. This metric measures the
extent to which two distributions di�er. A low value of KL divergence implicates that two distributions
are similar and vice versa for high values. The optimal number of tokens used to calculate the KL
divergence is unknown, so we calculated this metric using a range of the 100 most frequently
occurring tokens between two corpora to the 5000 most frequently occurring tokens.

Constructing a Document Representation for Life Sciences Text

We sought to build a language model to quantify linguistic similarities of biomedical preprint and
articles. Word2vec is a suite of neural networks designed to model linguistic features of words based
on their appearance in the text. These models are trained to either predict a word based on its
sentence context, called a continuous bag of words (CBOW) model, or predict the context based on a
given word, called a skipgram model [35]. Through these prediction tasks, both networks learn latent
linguistic features that can be used for downstream tasks, such as identifying similar words. We used
gensim [49] (version 3.8.1) to train a CBOW [35] model over all the main text within each preprint in
the bioRxiv corpus. Determining the best number of dimensions for word embeddings can be a non-
trivial task; however, it has been shown that optimal performance is between 100-1000 dimensions
[50]. We chose to train the CBOW model using 300 hidden nodes, a batch size of 10000 words, and
for 20 epochs. We set a �xed random seed and used gensim’s default settings for all other
hyperparameters. Once trained, every token present within the CBOW model is associated with a
dense vector representing latent features captured by the network. We used these word vectors to
generate a document representation for every article within the bioRxiv and PMCOA corpora. For
each document, we used spaCy to lemmatize each token and then took the average of every
lemmatized token present within the CBOW model and the individual document [36]. Any token
present within the document but not in the CBOW model is ignored during this calculation process.

Visualizing and Characterizing Preprint Representations

We sought to visualize the landscape of preprints and determine the extent to which their
representation as document vectors corresponded to author-supplied document labels. We used
principal component analysis (PCA) [51] to project bioRxiv document vectors into a low-dimensional
space. We trained this model using scikit-learn’s [52] implementation of a randomized solver [53] with
a random seed of 100, an output of 50 principal components (PCs), and default settings for all other
hyperparameters. After training the model, every preprint within the bioRxiv corpus is assigned a
score for each generated PC. We sought to uncover concepts captured the generated PCs and used
the cosine similarity metric to examine these concepts. This metric takes two vectors as input and
outputs a score between -1 (most dissimilar) and 1 (most similar). We used this metric to score the
similarity between all generated PCs and every token within our CBOW model for our use case. We
report the top 100 positive and negative scoring tokens as word clouds. The size of each word
corresponds to the magnitude of similarity, and color represents positive (orange) or negative (blue)
association.

Discovering Unannotated Preprint-Publication Relationships

The bioRxiv maintainers have automated procedures to link preprints to peer-reviewed versions, and
many journals require authors to update preprints with a link to the published version. However, this
automation is primarily based on the exact matching of speci�c preprint attributes. If authors change
the title between a preprint and published version (e.g., [54] and [55]), then this change will prevent
bioRxiv from automatically establishing a link. Furthermore, if the authors do not report the
publication to bioRxiv, the preprint and its corresponding published version are treated as distinct
entities despite representing the same underlying research. We hypothesize that close proximity in
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the document embedding space could match preprints with their corresponding published version. If
this �nding holds, we could use this embedding space to �ll in links missed by existing automated
processes. We used the subset of paper-preprint pairs annotated in CrossRef as described above to
calculate the distribution of available preprint to published distances. This distribution was calculated
by taking the Euclidean distance between the preprint’s embedding coordinates and the coordinates
of its corresponding published version. We also calculated a background distribution, which consisted
of the distance between each preprint with an annotated publication and a randomly selected article
from the same journal. We compared both distributions to determine if there was a di�erence
between both groups as a signi�cant di�erence would indicate that this embedding method can parse
preprint-published pairs apart. Following the comparison of the two distributions, we calculated
distances between preprints without a published version link with PMCOA articles that weren’t
matched with a corresponding preprint. We �ltered any potential links with distances greater than the
minimum value of the background distribution as we considered these pairs to be true negatives.
Lastly, we binned the remaining pairs based on percentiles from the annotated pairs distribution at
the [0,25th percentile), [25th percentile, 50th percentile), [50th percentile, 75th percentile), and [75th
percentile, minimum background distance). We randomly sampled 50 articles from each bin and
shu�ed these four sets to produce a list of 200 potential preprint-published pairs with a randomized
order. We supplied these pairs to two co-authors to manually determine if each link between a
preprint and a putative matched version was correct or incorrect. After the curation process, we
encountered eight disagreements between the reviewers. We supplied these pairs to a third scientist,
who carefully reviewed each case and made a �nal determination. Using this curated set, we
evaluated the extent to which distance in the embedding space revealed valid but unannotated links
between preprints and their published versions.

Measuring Time Duration for Preprint Publication Process

Preprints that are published can take varying amounts of time to be published. We sought to measure
the time required for preprints to be published in the peer-reviewed literature and compared this
time measurement across author-selected preprint categories as well as individual preprints. First, we
queried bioRxiv’s application programming interface (API) to obtain the date a preprint was posted
onto bioRxiv as well as the date a preprint was accepted for publication. We measured time elapsed
as the di�erence between the date at which a preprint was �rst posted on bioRxiv and its publication
date. Along with calculating the amount of time elapsed, we also recorded the number of di�erent
preprint versions posted onto bioRxiv.

Using this captured data, we used the Kaplan-Meier estimator [56] via the KaplanMeierFitter function
from the lifelines [57] (version 0.25.6) python package to calculate the half-life of preprints across all
preprint categories within bioRxiv. We considered survival events as preprints that have yet to be
published. There were a limited number of cases in which authors appeared to post preprints after
the publication date, which results in preprints receiving a negative time di�erence, as previously
reported [58]. We removed these preprints for this analysis as they were incompatible with the rules
of the bioRxiv repository.

Following our half-life calculation, we measured the textual di�erence between preprints and their
corresponding published version by calculating the Euclidean distance for their respective embedding
representation. This metric can be di�cult to understand within the context of textual di�erences, so
we sought to contextualize the meaning of a distance unit. We accomplish this by �rst randomly
sampled with replacement a pair of preprints from the Bioinformatics topic area as this was well
represented within bioRxiv and contains a diverse set of research articles. Next, we calculated the
distance between two preprints 1000 times and reported the mean. We repeated the above
procedure using every preprint within bioRxiv as a whole. These two means serve as normalized
benchmarks to compare against as distance units are only meaningful when compared to other
distances within the same space. Following our contextualization approach, we performed linear
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regression to model the relationship between preprint version count with a preprint’s time to
publication. We also performed linear regression to measure the relationship between document
embedding distance and a preprint’s time to publication. For this analysis, we retained preprints with
negative time within our linear regression model, and we observed that these preprints had minimal
impact on results. We visualize our version count regression model as a violin plot and our document
embeddings regression model as a square bin plot.

Building Classi�ers to Detect Linguistically Similar Journal Venues and
Published Articles

Preprints are more likely to be published in journals that contained similar content to work in
question. We assessed this claim by building classi�ers based on document and journal
representations. First, we removed all journals that had fewer than 100 papers in the PMC corpus. We
held our preprint-published subset (see above section ‘Mapping bioRxiv preprints to their published
counterparts’) and treated it as a gold standard test set. We used the remainder of the PMCOA corpus
for training and initial evaluation for our models.

Speci�c journals publish articles in a focused topic area, while others publish articles that cover many
topics. Likewise, some journals have a publication rate of at most hundreds of papers per year, while
others publish at a rate of at least ten thousand papers per year. Accounting for these characteristics,
we designed two approaches - one centered on manuscripts and another centered on journals.

We identi�ed manuscripts that were most similar to the preprint query for the manuscript-based
approach and evaluated where these documents were published. We embedded each query article
into the space de�ned by the word2vec model (see above section ‘Constructing a Document
Representation for Life Sciences Text’). We selected manuscripts close to the query via Euclidean
distance in the embedding space. Once identi�ed, we return the journal in which these articles were
published. We also return the articles that led to each journal being reported as this approach allows
for journals that frequently publish papers to engulf our results.

We constructed a journal-based approach to accompany the manuscript-based process to account for
the overrepresentation of these high publishing frequency journals. We identi�ed the most similar
journals for this approach by constructing a journal representation in the same embedding space. We
computed this representation by taking the average embedding of all published papers within a given
journal. We then projected a query article into the same space and returned journals close to the
query.

Both models were constructed using the scikit-learn k-Nearest Neighbors implementation [59] with
the number of neighbors set to 10 as this is an appropriate number for our use case. We consider a
prediction to be a true positive if the correct journal appears within our reported list of neighbors and
evaluate our performance using 10-fold cross-validation on the training set along with test set
evaluation.

Web Application for Discovering Similar Preprints and Journals

We developed a web application that places any bioRxiv or medRxiv preprint into the overall
document landscape and identi�es similar papers and journals. The application downloads a pdf
version of any preprint hosted on the bioRxiv or medRxiv server uses PyMuPDF [60] to extract text
from the downloaded pdf and feeds the extracted text into our CBOW model to construct a document
embedding representation. We pass this representation onto our journal and manuscript search to
identify journals based on the ten closest neighbors of individual papers and journal centroids. We
implemented this search using the scikit-learn implementation of k-d trees. To run it more cost-
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e�ectively in a cloud computing environment with limited available memory, we sharded the k-d trees
into four trees.

The app provides a visualization of the article’s position within our training data to illustrate the local
publication landscape, We used SAUCIE [61], an autoencoder designed to cluster single-cell RNA-seq
data, to build a two-dimensional embedding space that could be applied to newly generated preprints
without retraining, a limitation of other approaches that we explored for visualizing entities expected
to lie on a nonlinear manifold. We trained this model on document embeddings of PMC articles that
did not contain a matching preprint version. We used the following parameters to train the model: a
hidden size of 2, a learning rate of 0.001, lambda_b of 0, lambda_c of 0.001, and lambda_d of 0.001 for
5000 iterations. When a user requests a new document, we can then project that document onto our
generated two-dimensional space; thereby, allowing the user to see where their preprint falls along
the landscape. We illustrate our recommendations as a shortlist and provide access to our network
visualization at our website (see Software and Data Availability).

Analysis of the Preprints in Motion Collection

Our manuscript describes the large-scale analysis of bioRxiv. Concurrent with our work, another set of
authors performed a detailed curation and analysis of a subset of bioRxiv [25] that was focused on
preprints posted during the initial stages of the COVID-19 pandemic. The curated analysis was
designed to examine preprints at a time of increased readership [62] and includes certain preprints
posted from January 1st, 2020 to April 30th, 2020 [25]. We sought to contextualize this subset, which
we term “Preprints in Motion” after the title of the preprint [25], within our global picture of the
bioRxiv preprint landscape. We extracted all preprints from the set reported in Preprints in Motion
[25] and retained any entries in the bioRxiv repository. We manually downloaded the XML version of
these preprints and mapped them to their published counterparts as described above. We used
Pubmed Central’s DOI converter [63] to map the published article DOIs with their respective PubMed
Central IDs. We retained articles that were included in the PMCOA corpus and performed a token
analysis as described to compare these preprints with their published versions. As above, we
generated document embeddings for every obtained preprint and published article. We projected
these preprint embeddings onto our publication landscape to visually observe the dispersion of this
subset. Finally, we performed a time analysis that paralleled our approach for the full set of preprint-
publication pairs to examine relationships between linguistic changes and the time to publication.

Results

Comparing bioRxiv to other corpora

bioRxiv Metadata Statistics

The preprint landscape is rapidly changing, and the number of bioRxiv preprints in our data download
(71,118) was nearly double that of a recent study that reported on a snapshot with 37,648 preprints
[13]. Because the rate of change is rapid, we �rst analyzed category data and compared our results
with previous �ndings. As in previous reports [13], neuroscience remains the most common category
of preprints, followed by bioinformatics (Supplemental Figure S1). Microbiology, which was �fth in the
most recent report [13], has now surpassed evolutionary biology and genomics to move into third.
When authors upload their preprints, they select from three result category types: new results,
con�rmatory results, or contradictory results. We found that nearly all preprints (97.5%) were
categorized as new results, consistent with reports on a smaller set [64]. The results taken together
suggest that while bioRxiv has experienced dramatic growth, how it is being used appears to have
remained consistent in recent years.
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Global analysis reveals similarities and di�erences between bioRxiv and
PMC

Table 1:  Summary statistics for the bioRxiv, PMC, and NYTAC corpora.

Metric bioRxiv PMC NYTAC

document count 71,118 1,977,647 1,855,658

sentence count 22,195,739 480,489,811 72,171,037

token count 420,969,930 8,597,101,167 1,218,673,384

stopword count 158,429,441 3,153,077,263 559,391,073

avg. document length 312.10 242.96 38.89

avg. sentence length 22.71 21.46 19.89

negatives 1,148,382 24,928,801 7,272,401

coordinating conjunctions 14,295,736 307,082,313 38,730,053

coordinating conjunctions% 3.40% 3.57% 3.18%

pronouns 4,604,432 74,994,125 46,712,553

pronouns% 1.09% 0.87% 3.83%

passives 15,012,441 342,407,363 19,472,053

passive% 3.57% 3.98% 1.60%
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Figure 1:  A. The Kullback–Leibler divergence measures the extent to which the distributions, not speci�c tokens, di�er
from each other. The token distribution of bioRxiv and PMC corpora is more similar than these biomedical corpora are
to the NYTAC one. B. The signi�cant di�erences in token frequencies for the corpora appear to be driven by the �elds
with the highest uptake of bioRxiv, as terms from neuroscience and genomics are relatively more abundant in bioRxiv.
We plotted the 95% con�dence interval for each reported token. C. Of the tokens that di�er between bioRxiv and PMC,
the most abundant in bioRxiv are “et” and “al” while the most abundant in PMC is “study.” D. The signi�cant di�erences
in token frequencies for preprints and their corresponding published version often appear to be associated with
typesetting and supplementary or additional materials. We plotted the 95% con�dence interval for each reported token.
E. The tokens with the largest absolute di�erences in abundance appear to be stylistic.

Documents within bioRxiv were slightly longer than those within PMCOA, but both were much longer
than those from the control (NYTAC) (Table 1). The average sentence length, the fraction of pronouns,
and the use of the passive voice were all more similar between bioRxiv and PMC than they were to
NYTAC(Table 1). The Kullback–Leibler (KL) divergence of term frequency distributions between bioRxiv
and PMCOA were low, especially among the top few hundred tokens (Figure 1A). As more tokens were
incorporated, the KL divergence started to increase but remained much lower than the biomedical
corpora compared against NYTAC. These �ndings support our notion that bioRxiv is linguistically
similar to the PMCOA repository.

Terms like “neurons”, “genome”, and “genetic”, which are common in genomics and neuroscience,
were more common in bioRxiv than PMCOA while others associated with clinical research, such as
“clinical” “patients” and “treatment” were more common in PMCOA (Figure 1B and 1C). When
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controlling for the di�erences in the body of documents to identify textual changes associated with
the publication process, we found that tokens such as “et” “al” were enriched for bioRxiv while “ ”, “–”
were enriched for PMCOA (Figure 1D and 1E). Furthermore, we found that speci�c changes appeared
to be related to journal styles: “�gure” was more common in bioRxiv while “�g” was relatively more
common in PMCOA. Other changes appeared to be associated with an increasing reference to content
external to the manuscript itself: the tokens “supplementary”, “additional” and “�le” were all more
common in PMCOA than bioRxiv, suggesting that journals are not simply replacing one token with
another but that there are more mentions of such content after peer review.

These results taken together suggest that the structure of the text within preprints on bioRxiv are
similar to published articles within PMCOA. The di�erences in uptake across �elds are supported by
di�erences in authors’ categorization of their articles and by the text within the articles themselves. At
the level of individual manuscripts, the terms that change the most appear to be associated with
typesetting, journal style, and an increasing reliance on additional materials after peer review.

Document embeddings derived from bioRxiv reveal �elds and
sub�elds

±
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Figure 2:  A. Principal components (PC) analysis of bioRxiv word2vec embeddings groups documents based on author-
selected categories. We visualized documents from key categories on a scatterplot for the �rst two PCs. The �rst PC
separated cell biology from informatics-related �elds, and the second PC separated bioinformatics from neuroscience
�elds. B. A word cloud visualization of PC1. Each word cloud depicts the cosine similarity score between tokens and the
�rst PC. Tokens in orange were most similar to the PC’s positive direction, while tokens in blue were most similar to the
PC’s negative direction. The size of each token indicates the magnitude of the similarity. C. A word cloud visualization of
PC2, which separated bioinformatics from neuroscience. Similar to the �rst PC, tokens in orange were most similar to
the PC’s positive direction, while tokens in blue were most similar to the PC’s negative direction. The size of each token
indicates the magnitude of the similarity. D. Examining PC1 values for each article by category created a continuum
from informatics-related �elds on the top through cell biology on the bottom. Speci�c article categories (neuroscience,
genetics) were spread throughout PC1 values. E. Examining PC2 values for each article by category revealed �elds like
genomics, bioinformatics, and genetics on the top and neuroscience and behavior on the bottom.

Document embeddings provide a means to categorize the language of documents in a way that takes
into account the similarities between terms [36,65,66]. We found that the �rst two PCs separated
articles from di�erent author-selected categories (Figure 2A). Certain neuroscience papers appeared
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to be more associated with the cellular biology direction of PC1, while others seemed to be more
associated with the informatics-related direction Figure 2A). This suggests that the concepts captured
by PCs were not exclusively related to their �eld.

Visualizing token-PC similarity revealed tokens associated with certain research approaches (Figures
2B and 2C). Token association of PC1 shows the separation of cell biology and informatics-related
�elds through tokens: “empirical”, “estimates” and “statistics” depicted in orange and “cultured” and
“overexpressing” shown in blue (Figure 2B). Association for PC2 shows the separation of
bioinformatics and neuroscience via tokens: “genomic”, “genome” and “genomes” depicted in orange
and “evoked”, “stimulus” and “stimulation” shown in blue (Figure 2C).

Examining the value for PC1 across all author-selected categories revealed an ordering of �elds from
cell biology to informatics-related disciplines (Figure 2D). These results suggest that a primary driver
of the variability within the language used in bioRxiv could be the divide between informatics and cell
biology approaches. A similar analysis for PC2 suggested that neuroscience and bioinformatics
present a similar language continuum (Figure 2E). This result supports the notion that bioRxiv
contains an in�ux of neuroscience and bioinformatics-related research results. For both of the top
two PCs, the submitter-selected category of systems biology preprints was near the middle of the
distribution and had a relatively large interquartile range when compared with other categories
(Figure 2D and 2E), suggesting that systems biology is a broader sub�eld containing both informatics
and cellular biology approaches.

Examining the top �ve and bottom �ve preprints within the systems biology �eld reinforces PC1’s
dichotomous theme (Table 2). Preprints with the highest values [67,68,69,70,71] included software
packages, machine learning analyses, and other computational biology manuscripts, while preprints
with the lowest values [72,73,74,75,76] were focused on cellular signaling and protein activity. We
provide the rest of our 50 generated PCs in our online repository (see Software and Data Availability).

Table 2:  PC1 divided the author-selected category of systems biology preprints along an axis from computational to
molecular approaches.

Title [citation] PC1 License Figure Thumbnail

Conditional Robust Calibration (CRC): a new
computational Bayesian methodology for
model parameters estimation and
identi�ability analysis [67]

4.522818390064091 None

FPtool a software tool to obtain in silico
genotype-phenotype signatures and
�ngerprints based on massive model
simulations [77]

4.348956760251298 CC-BY

GpABC: a Julia package for approximate
Bayesian computation with Gaussian process
emulation [70]

4.259104249060651 CC-BY-NC-ND

Notions of similarity for computational biology
models [69] 4.079855550647664 CC-BY-NC-ND
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Title [citation] PC1 License Figure Thumbnail

SBpipe: a collection of pipelines for
automating repetitive simulation and analysis
tasks [71]

4.022240241143516 CC-BY-NC-ND

Bromodomain inhibition reveals FGF15/19 as a
target of epigenetic regulation and metabolic
control [78]

-3.4783803547922414 None

Inhibition of Bruton’s tyrosine kinase reduces
NF-kB and NLRP3 in�ammasome activity
preventing insulin resistance and
microvascular disease [75]

-3.6926161167521476 None

Spatiotemporal proteomics uncovers
cathepsin-dependent host cell death during
bacterial infection [72]

-3.728443135960558 CC-BY-ND

NADPH consumption by L-cystine reduction
creates a metabolic vulnerability upon glucose
deprivation [74]

-3.7363965062637288 None

AKT but not MYC promotes reactive oxygen
species-mediated cell death in oxidative
culture [76]

-3.8769231933681176 None
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Document embedding similarities reveal unannotated preprint-
publication pairs

A B

C

Figure 3:  A. Preprints are closer in document embedding space to their corresponding peer-reviewed publication than
they are to random papers published in the same journal. B. Potential preprint-publication pairs that are unannotated
but within the 50th percentile of all preprint-publication pairs in the document embedding space are likely to represent
true preprint-publication pairs. We depict the fraction of true positives over the total number of pairs in each bin.
Accuracy is derived from the curation of a randomized list of 200 potential pairs (50 per quantile) performed in duplicate
with a third rater used in the case of disagreement. C. Most preprints are eventually published. We show the publication
rate of preprints since bioRxiv �rst started. The x-axis represents months since bioRxiv started, and the y-axis
represents the proportion of preprints published given the month they were posted. The light blue line represents the
publication rate previously estimated by Abdill et al. [13]. The dark blue line represents the updated publication rate
using only CrossRef-derived annotations, while the dark green line includes annotations derived from our embedding
space approach. The horizontal lines represent the overall proportion of preprints published as of the time of the
annotation snapshot.

Distances between preprints and their corresponding published versions were nearly always lower
than preprints paired with a random article published in the same journal (Figure 3A). This suggests
that embedding distances can identify documents with similar textual content. Approximately 98% of
our 200 pairs with an embedding distance in the 0-25th and 25th-50th percentile bins were scored as
true matches (Figure 3B). These two bins contained 1,542 preprint-article pairs, suggesting that many
preprints may have been published but not previously connected with their published versions. There
is a particular enrichment for preprints published but unlinked within the 2017-2018 interval (Figure
3C). We expected a higher proportion of such preprints before 2019 (many of which may not have
been published yet); however, observing relatively few missed annotations before 2017 was against
our expectations. There are several possible explanations for this increasing fraction of missed
annotations. As the number of preprints posted on bioRxiv grows, it may be harder for bioRxiv to
establish a link between preprints and their published counterparts simply due to the scale of the
challenge. It is possible that the set of authors participating in the preprint ecosystem is changing and
that new participants may be less likely to report missed publications to bioRxiv. Finally, as familiarity
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with preprinting grows, it is possible that authors are posting preprints earlier in the process and that
metadata �elds that bioRxiv uses to establish a link may be less stable.

Preprints with more versions or more text changes took longer to
publish

A B

C

Figure 4:  A. Author-selected categories were associated with modest di�erences in respect to publication half-life.
Author-selected preprint categories are shown on the y-axis, while the x-axis shows the median time-to-publish for each
category. Error bars represent 95% con�dence intervals for each median measurement. B. Preprints with more versions
were associated with a longer time to publish. The x-axis shows the number of versions of a preprint posted on bioRxiv.
The y-axis indicates the number of days that elapsed between the �rst version of a preprint posted on bioRxiv and the
date at which the peer-reviewed publication appeared. The density of observations is depicted in the violin plot with an
embedded boxplot. C. Preprints with more substantial text changes took longer to be published. The x-axis shows the
Euclidean distance between document representations of the �rst version of a preprint and its peer-reviewed form. The
y-axis shows the number of days elapsed between the �rst version of a preprint posted on bioRxiv and when a preprint
is published. The color bar on the right represents the density of each hexbin in this plot, where more dense regions are
shown in a brighter color.

The process of peer review includes several steps, which take variable amounts of time [79], and we
sought to measure if there is a di�erence in publication time between author-selected categories of
preprints (Figure 4A). Of the most abundant preprint categories microbiology was the fastest to
publish (140 days, (137, 145 days) [95% CI]) and genomics was the slowest (190 days, (185, 195 days)
[95% CI]) (Figure 4A). We did observe category-speci�c di�erences; however, these di�erences were
generally modest, suggesting that the peer review process did not di�er dramatically between
preprint categories. One exception was the Scienti�c Communication and Education category, which
took substantially longer to be peer-reviewed and published (373 days, (373, 398 days) [95% CI]). This
hints that there may be di�erences in the publication or peer review process or culture that apply to
preprints in this category.

Examining peer review’s e�ect on individual preprints, we found a positive correlation between
preprints with multiple versions and the time elapsed until publication (Figure 4B). Each new version
adds additional 51 days before a preprint is published. This time duration seems broadly compatible
with the amount of time it would take to receive reviews and revise a manuscript, suggesting that
many authors may be updating their preprints in response to peer reviews or other external
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feedback. The embedding space allows us to compare preprint and published documents to
determine if the level of change that documents undergo relates to the time it takes them to be
published. Distances in this space are arbitrary and must be compared to reference distances. We
found that the average distance of two randomly selected papers from the bioinformatics category
was 4.470, while the average distance of two randomly selected papers from bioRxiv was 5.343.
Preprints with large embedding space distances from their corresponding peer-reviewed publication
took longer to publish (Figure 4C): each additional unit of distance corresponded to roughly forty-
three additional days.

Overall, our �ndings support a model where preprints are reviewed multiple times or require more
extensive revisions take longer to publish.

Preprints with similar document embeddings share publication
venues

We developed an online application that returns a listing of published papers and journals closest to a
query preprint in document embedding space. This application uses two k-nearest neighbor classi�ers
that achieved better performance than our baseline model (Supplemental Figure S2) to identify these
entities. Users supply our app with digital object identi�ers (DOIs) from bioRxiv or medRxiv, and the
corresponding preprint is downloaded from the repository. Next, the preprint’s PDF is converted to
text, and this text is used to construct a document embedding representation. This representation is
supplied to our classi�ers to generate a listing of the ten papers and journals with the most similar
representations in the embedding space (Figures 5A, 5B and 5C). Furthermore, the user-requested
preprint’s location in this embedding space is then displayed on our interactive map, and users can
select regions to identify the terms most associated with those regions (Figures 5D and 5E). Users can
also explore the terms associated with the top 50 PCs derived from the document embeddings, and
those PCs vary across the document landscape.

Figure 5:  The preprint-similarity-search app work�ow allows users to examine where an individual preprint falls in the
overall document landscape. A. Starting with the home screen, users can paste in a bioRxiv or medRxiv DOI, which
sends a request to bioRxiv or medRxiv. Next, the app preprocesses the requested preprint and returns a listing of (B)
the top ten most similar papers and (C) the ten closest journals. D. The app also displays the location of the query
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preprint in PMC. E. Users can select a square within the landscape to examine statistics associated with the square,
including the top journals by article count in that square and the odds ratio of tokens.

Contextualizing the Preprints in Motion Collection

A B

C D

E

Figure 6:  The Preprints in Motion Collection results are similar to all preprint results, except that their time to
publication was independent of the number of preprint versions and amount of linguistic change. A. Tokens that
di�ered included those associated with typesetting and those related to the nomenclature of the virus that causes
COVID-19. Error bars show 95% con�dence intervals for each token. B. Of the tokens that di�er between Preprints in
Motion and their published counterparts, the most abundant were associated with the nomenclature of the virus. C.
The Preprints in Motion fall across the landscape of PMCOA with respect to linguistic properties. This square bin plot
depicts the binning of all published papers within the PMCOA corpus. High-density regions are depicted in yellow, while
low-density regions are in dark blue. Red dots represent the Preprints in Motion Collection. D. The Preprints in Motion
were published faster than other bioRxiv preprints, and the number of versions was not associated with an increase in
time to publication. The x-axis shows the number of versions of a preprint posted on bioRxiv. The y-axis indicates the
number of days that elapsed between the �rst version of a preprint posted on bioRxiv and the date at which the peer-
reviewed publication appeared. The density of observations is depicted in the violin plot with an embedded boxplot. The
red dots and red regression line represent Preprints in Motion. D. The Preprints in Motion were published faster than
other bioRxiv preprints, and no dependence between the amount of linguistic change and time to publish was
observed. The x-axis shows the Euclidean distance between document representations of the �rst version of a preprint
and its peer-reviewed form. The y-axis shows the number of days elapsed between the �rst version of a preprint posted
on bioRxiv and when a preprint is published. The color bar on the right represents the density of each hexbin in this
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plot, where more dense regions are shown in a brighter color. The red dots and red regression line represent Preprints
in Motion.

The Preprints in Motion collection included a set of preprints posted during the �rst four months of
2020. We examined the extent to which preprints in this set were representative of the patterns that
we identi�ed from our analysis on all of bioRxiv. As with all of bioRxiv, typesetting tokens changed
between preprints and their paired publications. Our token-level analysis identi�ed certain patterns
consistent with our �ndings across bioRxiv (Figure 6A and 6B). However, in this set, we also observe
changes likely associated with the fast-moving nature of COVID-19 research: the token “2019-ncov”
became less frequently represented while “sars” and “cov-2” became more represented, likely due to a
shift in nomenclature from “2019-nCoV” to “SARS-CoV-2”. The Preprints in Motion were not strongly
colocalized in the linguistic landscape, suggesting that the collection covers a diverse set of research
approaches (Figure 6C). Preprints in this collection were published faster than the broader set of
bioRxiv preprints (Figure 6D and 6E). The relationship between time to publication and the number of
versions (Figure 6D) and the relationship between time to publication and the amount of linguistic
change (Figure 6E) were both lost in the Preprints in Motion set. Our �ndings suggest that Preprints in
Motion changed during publication in ways aligned with changes in the full preprint set but that peer
review was accelerated in ways that broke the time dependences observed with the full bioRxiv set.

Discussion and Conclusions

BioRxiv is a constantly growing repository that contains life science preprints. The majority of research
involving bioRxiv focuses on the metadata of preprints; however, the language contained within these
preprints has not previously been systematically examined. Throughout this work, we sought to
analyze the language within these preprints and understand how it changes in response to peer
review. Our global corpora analysis found that writing within bioRxiv is consistent with the biomedical
literature in the PMCOA repository, suggesting that bioRxiv is linguistically similar to PMCOA. Token-
level analyses between bioRxiv and PMCOA suggested that research �elds drive signi�cant
di�erences; e.g., more patient-related research is prevalent in PMCOA than bioRxiv. This observation
is expected as preprints focused on medicine are supported by the complementary medRxiv
repository [8]. Token-level analyses for preprints and their corresponding published version suggest
that peer review may focus on data availability and incorporating extra sections for published papers;
however, future studies are needed to ascertain individual token level changes as preprints venture
through the publication process.

Document embeddings are a versatile way to examine language contained within preprints,
understanding peer review’s e�ect on preprints, and provide extra functionality for preprint
repositories. Examining linguistic variance within document embeddings of life science preprints
revealed that the largest source of variability was informatics. This observation bisects the majority of
life science research categories that have integrated preprints within their publication work�ow.
Preprints are typically linked with their published articles via bioRxiv manually establishing links or
authors self-reporting that their preprint has been published; however, gaps can occur as preprints
change their appearance through multiple versions or authors do not notify bioRxiv. Our work
suggests that document embeddings can help �ll in missing links within bioRxiv. Furthermore, our
analysis reveals that the publication rate for preprints is higher than previously estimated, even
though our analysis can only account for published open access papers. Our results raise the lower
bound of the total preprint publication fraction; however, the true fraction is necessarily higher.
Future work, especially that which aims to assess the fraction of preprints that are eventually
published, should account for the possibility of missed annotations.

Preprints take a variable amount of time to become published, and we examined factors that
in�uence a preprint’s time to publication. Our half-life analysis on preprint categories revealed that
preprints in most bioRxiv categories take similar amounts of time to be published. An apparent
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exception is the scienti�c communication and education category, which contained preprints that
took much longer to publish. Regarding individual preprints, each new version adds several weeks to
a preprints time to publication, which is roughly aligned with authors making changes after a round of
peer review; furthermore, preprints that undergo substantial changes take longer to publish. Overall,
these results illustrate that bioRxiv is a practical resource for obtaining insight into the peer-review
process.

Lastly, we found that document embeddings were associated with the eventual journal at which the
work was published. We trained two machine learning models to identify which journals publish
linguistically similar papers towards a query preprint. Our models achieved a considerably higher fold
change over the baseline model, so we constructed a web application that makes our models
available to the public and returns a list of the papers and journals that are linguistically similar to a
bioRxiv or medRxiv preprint.

Software and Data Availability

An online version of this manuscript is available under a Creative Commons Attribution License at
https://greenelab.github.io/annorxiver_manuscript/. Source for the research portions of this project is
dual licensed under the BSD 3-Clause and Creative Commons Public Domain Dedication Licenses at
https://github.com/greenelab/annorxiver. The preprint similarity search website can be found at
https://greenelab.github.io/preprint-similarity-search/, and code for the website is available under a
BSD-2-Clause Plus Patent License at https://github.com/greenelab/preprint-similarity-search. Full text
access for the bioRxiv repository is available at https://www.biorxiv.org/tdm. Access to PubMed
Central’s Open Access subset is available on NCBI’s FTP server at
https://www.ncbi.nlm.nih.gov/pmc/tools/ftp/. Access to the New York Times Annotated Corpus
(NYTAC) is available upon request with the Linguistic Data Consortium at
https://catalog.ldc.upenn.edu/LDC2008T19.
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Figure S1:  Neuroscience and bioinformatics are the two most common author-selected topics for bioRxiv preprints.

Figure S2:  Both classi�ers outperform the randomized baseline when predicting a paper’s journal endpoint. This
bargraph shows each model’s accuracy in respect to predicting the training and test set.
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