
 1 

Title: Electrophysiological correlates of mood and reward dynamics in human adolescents 

 

Authors: Lucrezia Liuzzi1†, Katharine K. Chang2, Hanna Keren1, Charles Zheng3, Dipta Saha1, 

Dylan M. Nielson1*, Argyris Stringaris1* 
†	corresponding author: liuzzil2@nih.gov  

*last authors contributed equally 

 

 

Affiliations: 

1: Section of Clinical and Computational Psychiatry (CompΨ), National Institute of Mental Health, 

National Institutes of Health, Bethesda, MD, 20892, USA. 

2: Department of Psychology, University of Rochester, Rochester, NY, 14627, USA.  

3: Machine Learning Team, Functional Magnetic Resonance Imaging Facility, National Institutes of 

Health, Bethesda, MD, 20892, USA. 

 

Conflict of Interest Statement: The authors declare no competing financial interests. 

 

Acknowledgments: This research was supported by the Intramural Research Program of the 

National Institute of Mental Health, National Institutes of Health (NIH) (Grant No. ZIA-MH002957-

01 to AS). The funder had no role in the design and conduct of the study; collection, management, 

analysis, and interpretation of the data; preparation, review, and approval of the manuscript; or 

decision to submit the manuscript for publication. The views expressed in this article do not necessarily 

represent the views of the National Institutes of Health, the Department of Health and Human Services, 

or the United States Government. 

This work used the computational resources of the NIH HPC (high-performance computing) 

Biowulf cluster (http://hpc.nih.gov). Data analysis uses functions from the FieldTrip software 

toolbox (http://fieldtriptoolbox.org).  

 

Code Accessibility: All analysis code will be made available on github (https://github.com/nimh-

comppsych/matlab_meg-mmi)  

Data Accessibility: Study data available on OpenNeuro (https://openneuro.org/datasets/ds003558)  

 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted March 16, 2021. ; https://doi.org/10.1101/2021.03.04.433969doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.04.433969


 2 

Significance Statement  

 

Brain mechanisms underlying mood and its relationship with changes in reward contingencies in 

the environment are still elusive but could have a strong impact on our understanding and 

treatment of debilitating mood disorders. Building on a previously proposed computational 

mood model we use multilevel statistical models to find relationship between trial-by-trial 

variations in model components of mood and neural responses to rewards measured with non-

invasive electrophysiology (MEG). Through confirmatory analysis we show that it is possible to 

observe relationships between trial variations in neural responses and computational 

parameters describing mood dynamics. Identifying the dynamics of mood and the neural 

processes it affects could pave the way for more effective neuromodulation treatments. 

 

Abstract 

 

Despite its omnipresence in everyday interactions and its importance for mental health, mood 

and its neuronal underpinnings are poorly understood. Computational models can help identify 

parameters affecting self-reported mood during mood induction tasks. Here we test 

if computationally modelled dynamics of self-reported mood during monetary gambling can be 

used to identify trial-by-trial variations in neuronal activity. To this end, we shifted mood in 

healthy (N=24) and depressed (N=30) adolescents by delivering individually tailored reward 

prediction errors whilst recording magnetoencephalography (MEG) data. Following a pre-

registered analysis, we hypothesize that expectation (defined by previous reward outcomes) 

would be predictive of beta-gamma oscillatory power (25-40Hz), a frequency shown to modulate 

to reward feedback. We also hypothesize that trial variations in the evoked response to the 

presentation of gambling options and in source localized responses to reward feedback. Through 

our multilevel statistical analysis, we found confirmatory evidence that beta-gamma power is 

positively related to reward expectation during mood shifts, with possible localized sources in 

the posterior cingulate cortex. We also confirmed reward prediction error to be predictive of 

trial-level variations in the response of the paracentral lobule and expectation to have an effect 
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on the cerebellum after presentation of gambling options. To our knowledge, this is the first study 

to relate fluctuations in mood on a minute timescale to variations in neural oscillations with 

noninvasive electrophysiology. 

 

 

Introduction  

 

Humans report on their moods in their everyday conversations and subjective mood reports form 

the basis of clinical assessment and much of research in affective neuroscience. Advances in 

computational modeling lend support to the idea that mood is intricately linked with reward 

processing and that it serves to integrates over a person’s history of rewards and punishers 

(Keren et al., 2020; Nettle and Bateson, 2012; Rutledge et al., 2014). Yet, despite its ubiquity and 

importance, the brain mechanisms underlying mood and its relationship with changes in reward 

contingencies in the environment are surprisingly understudied.  

 

Mood is understood to integrate over events in the environment and is a potentially emergent 

property of the coordinated activity of many neural populations. Such activity is thought to 

manifest as the synchrony of oscillations which supports functional connections and 

communication in the brain. In this context, it is noteworthy that oscillatory power is correlated 

with treatment-induced changes that have been described to occur in mood disorders 

(Fingelkurts and Fingelkurts, 2015; Kaiser et al., 2015; Nugent et al., 2019a, 2019b). Mood is also 

highly dynamic during development, especially in adolescence (Klimstra et al., 2016). 

Understanding the temporal structure—including very early responses—to changes in 

environmental incentives that influence mood can offer important insights on the genesis and 

remission of mood disorders and can inform the timing of potential interventions (such as 

through transcranial magnetic stimulation) that aim to modify it for clinical purposes (Tremblay 

et al., 2019; Zrenner et al., 2020). 
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Therefore, understanding the role of oscillations and fast neuronal responses in the interplay 

between mood and environmental incentives is key and magnetoencephalography (MEG) offers 

a great opportunity to do so non-invasively.   

 

Here we use a pre-registered approach to identify neural correlates of mood in neuronal 

oscillations and stimulus evoked responses. This is to do justice to major recent concerns about 

false positive results in neuroscience in general, but also specifically for results derived from 

methods with a potentially vast range of features and therefore statistical testing space, as is 

common in electrophysiology.   

 

In the exploratory analysis of (n= 14, age 16.22 years, described in supplementary materials), we 

collected MEG data with a monetary gambling task developed by (Keren et al., 2020) to 

parametrically shift mood by manipulating reward prediction errors (RPEs) and tested with linear 

mixed effect models whether brain oscillations and trial-level changes in evoked responses would 

show a relationship with mood or its model components. 

 

This approach allowed us to build and pre-register the following hypotheses which we test in the 

paper (pre-registered analysis available on OSF (https://osf.io/djw8h), more detailed background 

on the hypotheses formation is available in the supplementary material): 

 

1. We hypothesize that beta-gamma oscillatory power (25-40Hz) measured by MEG in the time 

interval preceding mood rating will be positively correlated with reward expectation term 

derived from the primacy mood model, with a source space cluster covering the frontal superior 

and medial cortex and the ACC.  

 

2. RPE and self-reported mood will be correlated with the variability in the evoked response to 

the gamble outcome (feedback), in right precuneus and paracentral lobule (at ~500ms) for RPE 

and in the right insular cortex (at ~400ms after feedback presentation) for mood.  
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3. The reward expectation term from the primacy mood model will be predictive of the signal in 

posterior MEG sensors during the period 250-400ms after presentation of gambling options.  

 

While previous studies have looked at influence of mood on trial-averaged responses (Paul and 

Pourtois, 2017), to our knowledge this is the first study to relate the temporal dynamics of mood 

to trial level variations in evoked responses and oscillatory power with non-invasive 

electrophysiology in humans. Characterizing the neural substrates that link mood and reward is 

essential to understanding how disrupted reward processing contributes to mood disorders and 

may be instrumental in predicting symptom trajectory and response to treatment.  

 

Materials and Methods 

Sample 

Subjects are adolescent volunteers (age 12 to 19 years) recruited through mail, online 

advertisement and direct referrals from clinical sources. Subjects provided informed consent to 

a protocol approved by the NIH Institutional Review Board before completing questionnaires and 

an in-person evaluation with a medical practitioner at the NIH clinical center to guarantee their 

suitability to enroll in the study. Both healthy volunteers (not satisfying criteria for any diagnosis 

according to DSM-5) and patients with a primary diagnosis of major depression (MDD) or sub-

threshold depression were included. All participants received the same scripted instructions for 

their participation in this study. The full list of inclusion and exclusion criteria is outlined in the 

supplementary document.  

 

Following in-person screening, MEG data were collected with a 275-channel CTF scanner (272 

working channels, sampling at 1200Hz, 3rd order synthetic gradiometer configuration) and a 

structural MRI (MPRAGE, 1mm isotropic resolution) of the subject’s head was acquired with a 3T 

GE MRI scanner (collected within 6 months of the MEG scan), both housed in the NMR suite of 

the NIH clinical center.  
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We collected MEG data from 56 volunteers that passed our inclusion criteria. Of this sample 2 

subjects were excluded from all reported analysis, one due to artifacts during data collection, and 

one from reporting to have misunderstood task instructions when debriefed at the end of the 

scanning session. Of the included 54 subjects (age 16.3 ± 1.8 years, 30 MDDs, 35 females), all 

were included in sensor based analyses, and 51 (age 16.3 ± 1.8 years, 29 MDDs, 33 females) were 

included in our source space analysis (two subjects did not have a structural MRI due to 

laboratory shutdown in March 2020 and one subject had large errors >>5mm in the initial 

localization of the MEG fiducial coils). 14 subjects were initially analyzed as an exploratory sample 

to inform the study hypotheses (as reported in our preregistration available on OSF  

(https://osf.io/djw8h)), leaving a separate confirmatory sample of 40 subjects for analyses at the 

sensor level and a subsample of 37 subjects at the source level.   

 

Task description 

 

Figure 1: Structure of the closed loop gambling task 

 

The task consists of three blocks, where in each block a closed-loop mood controller delivers 

reward prediction errors to try to move the participant's mood to a target value (see (Keren et 

al., 2020) for details on the task design). The targets of the controller are to reach the highest 

(first block), lowest (second block), and then highest mood again (third block). Participants report 

their mood on a sliding scale with the words "Unhappy" on the left end and "Happy" on the right 

end of the scale. Within each block 70% of trials are congruent (delivering positive RPE in the high 

mood target blocks and negative RPE in the low mood block) and 30% are incongruent (delivering 

negative RPEs in the high mood target blocks and positive RPEs in the low mood block).  
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Before entering the scanner, participants are instructed on how to perform the task. Participants 

are told that the final amount they win in the task will be converted to a proportional amount of 

money, but they are not aware of the mood manipulation. 

  

Each block consists of 27 trials, for a total of 81 trials. An example of a task trial selecting the 

gambling option is shown in Figure 1. In each trial participants are presented with a certain 

amount (displayed on the left side of the screen) and two possible gambling outcomes (on the 

right side of the screen). The gambling amounts are selected by the closed loop controller based 

on the mood target and the participant’s self-reported mood. Participants are given 3s to decide 

to either gamble or select the fixed outcome, by pressing the right or left button on a fiber optic 

response pad (FORP). When participants do not make a selection in time, the task controller 

selects the gambling option. 

After choice selection there is a 4s waiting period, then (for the gamble selection) the gamble 

outcome is revealed and remains on the screen for 1s. After each trial there is a 2s inter-trial-

interval time when only a fixation cross is displayed. Every 2 or 3 trials participants are prompted 

to rate their current mood on a horizontal slider. The cursor on the slider can be moved 

continuously by pressing and holding the right and left buttons on the FORP.   

 

At the end of each block participants are given a break from the task while remaining in the 

scanner and can proceed to the next block by pressing a button on the FORP. 

At the end of the MEG scanning session participants are debriefed to ask about their experience 

in the scanner.   
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Mood model 

 

Participants rate their mood with a slider between a value of 0 and 100 (with 0 being the lowest 

and 100 being the highest) every 2 to 3 trials of the gambling task. Reward prediction error and 

expectation are estimated according to the primacy mood model proposed by (Keren et al., 2020) 

defining the mood at time 𝑀! as: 

 

𝑀! = 𝑀" + β#η! + β$ρ! + ϵ! 

 

where 𝑀" is the participant’s baseline mood, β#and β$  represent the sensitivity to expectation 

and surprise (prediction error) respectively, and ϵ! is the error term. 

Given a trial outcome value 𝐴! the expectation term from the model is calculated as the average 

of all previously received outcomes: 

𝐸! =
1

𝑡 − 1-𝐴%

!&'

%('

 

 

The reward prediction error is then defined as the difference between the outcome and the 

expectation: 

𝑅! = 𝐴! − 𝐸!  

 

Finally the contributions of expectation and RPE to mood at time 𝑡 are defined as: 

η) =
1
𝑡-𝛾!&*𝐸*

!

*('

	,								ρ! =
1
𝑡-γ!&*

!

*('

𝑅*  

 

The model parameters M", γ, β#  and β+ are derived by fitting the self-reported mood to the 

mood model with python's TensorFlow package as described in (Keren et al., 2020). 

All trial dependent parameters obtained from the model fit are sampled at every trial, but 

subjects report mood every 2-3 trials during the gambling task. In order to use self-reported 
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mood in our linear mixed model to test variability over all trials, mood ratings are interpolated 

with a Piecewise Cubic Hermite Interpolating Polynomial implemented in Matlab. 

 

MEG data 

 

MEG data analysis is performed on the NIH HPC Biowulf cluster (http://hpc.nih.gov) with Matlab 

(The MathWorks, Inc., Natick, Massachusetts, United States) and functions from the FieldTrip 

toolbox ((Oostenveld et al., 2011); http://fieldtriptoolbox.org ). MEG data are initially visually 

inspected and pre-processed with the CTF software: third-order synthetic gradiometer 

configuration is applied; segments with motion exceeding a threshold of 5mm or including 

noticeable artefacts are eliminated; data are bandpass filtered between 0.5 and 300Hz, baseline 

corrected, and a 60Hz notch filter is applied to reduce power line noise. Data are then corrected 

for eye movements and heartbeat artifacts with ICA fastica algorithm (30 independent 

components are calculated and a maximum of 4 components, 2 heartbeat and 2 eye movement 

ICs, are eliminated for each dataset).  

 

Data Processing  

 

Source data reconstruction is achieved by a beamformer approach and a forward model based 

on Nolte’s spherical approximation (Nolte, 2003; Veen et al., 1997) implemented in FieldTrip with 

subjects’ individual brain MRIs co-registered to the MEG data. Source level activity is 

reconstructed on a 5mm grid based on the MNI brain and warped to individual anatomy. 

Beamformer weights are calculated based on the data covariance over the whole task with a 

covariance regularization equal to 5% of its maximum singular value (a high regularization is 

selected to improve SNR and increase spatial smoothness (Brookes et al., 2008); the effects of 

matrix regularization and forward model selection is explored in supplementary analysis). 
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Beta-gamma power 

Following our pre-registered hypotheses, we estimate beta-gamma oscillatory power in the 3s 

waiting period preceding mood-rating. MEG signal is first band pass filtered in the frequency band 

of interest (25-40Hz) then, for sensor space analysis oscillatory power is estimated by measuring 

the signal variance in each 3s window. For source space analysis oscillatory power in each voxel 

𝑖 is estimated as 

 

w,Cw,

w,Σw,
 

 

where w, are the beamformer weights, C is the data covariance matrix in the 3s window of 

interest, and Σ the estimated noise covariance matrix. 

 

Evoked responses 

For the analysis of evoked responses, a low-pass filter of 30Hz is applied following the pre-

processing steps before calculation of the beamformer weights.  

 

- Gamble feedback 

Regions of interest (ROI) are defined by the Automated Anatomical Labelling (AAL) atlas available 

in fieldtrip. The signal from an ROI is estimated from its geometrical centroid. We select a time 

window -200 to 1000 ms with respect to the presentation of the gamble feedback. The source 

data time course is estimated and then downsampled to 300Hz to reduce the number of time 

points to test. 

 

- Gamble option 

We select the average response in the time window of 250 to 400 ms with respect to the 

presentation of the gambling options for the analysis of the evoked responses at both sensor and 

source level. For source space analysis the data time course is first reconstructed at each source 

voxel and then the evoked response for each trial is estimated as the average signal in the 250 to 

400ms time window.  
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It is important to note that with beamforming the sign of evoked responses in source space is 

uncertain (i.e. sign may be flipped between participants). For each participant the sign of the 

source signal for an ROI or voxel is estimated by maximizing the correlation over subjects of their 

trial averaged evoked response to the stimulus (gambling option or feedback presentation). 

 

Statistical Analysis 

We apply linear mixed effects models to estimate the contribution of trial level mood, 

expectation and reward prediction error to response variability in the MEG data. The use of linear 

mixed effect models allows us to analyze data from all participants in a single model while 

accounting for inter-subject differences.  

 

Hypothesis 1:   

The effect of expectation on beta-gamma power is tested for 2 separate predictors 𝐸! and 

η!.  

Our formulation is as follows (here presented for the E fixed effect):  

 

S(r) ∼ E + (𝐸|𝑠𝑢𝑏𝑗𝑒𝑐𝑡) + 1|𝑡𝑟𝑖𝑎𝑙 + 1|𝑟𝑒𝑐𝑜𝑟𝑑𝑖𝑛𝑔, 

 

where S(r) indicates the MEG signal at location r (either sensor or source voxel).  

S(r)  is a vector with dimension 1 × N- , where N- is the number of mood rating trials 

from all subjects.  

 

Post-hoc analyses: 

The following post-hoc analyses are run with the whole sample of available subjects 

(N=51 at the source level). 

 

Mediation analysis 
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We hypothesize that beta-gamma power variability over trials is related to reward 

expectation, as defined by the primacy mood prediction model. Expectation, by its 

definition (see equation 1) is a predictor of self-reported mood. In order to test if self-

reported mood is at all directly related to beta-gamma power we run a mediation analysis 

with beta-gamma power as the independent variable, the expectation term as the 

mediator variable and mood as the dependent variable.  

 

Comparison with previous fMRI results 

 

Keren et al. previously published results using the same gambling task and primacy mood 

model with fMRI data. They reported a significant cluster of BOLD activation in the ACC 

correlating with the subject specific expectation weight, β#  (see equation 1). Following 

our hypothesis that trial variations in beta-gamma power are related to reward 

expectation we then test if the subject average beta-gamma power is correlated to β#  in 

an analogous analysis to (Keren et al., 2020). For this analysis the average beta-gamma 

power is calculated at the voxel level by averaging the previously estimated MEG power 

in the 3s pre mood rating period over all available trials for each subject.  

A Pearson correlation between subject average beta-gamma power and β#  is then run 

and significant clusters are calculated. Null distributions are obtained by calculating 

maximum TFCE value in random permutations (N=5000).  

The significant cluster from Keren et al. is then compared to the MEG cluster in MNI space 

to check for congruent cross-modality results.  

 

Hypothesis 2:  

In order to test the effect of mood and RPE on the evoked response following gambling 

feedback we run models independently for 3 separate fixed effects: self-reported mood, 

trial RPE as defined in the primacy model (R)) and the primacy weighted RPE term (ρ)).  

Our formulation is as follows (here presented for the 𝑚𝑜𝑜𝑑 fixed effect):  
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S(t, r) 	∼ mood	 +	(mood|subject) 	+ 	1|trial,  

 

where S(t, r) indicates the source reconstructed MEG signal in ROI 𝑟 and at time 𝑡 with 

respect to the task event. 𝑆(𝑡, 𝑟) is a vector with dimension 1 × 𝑁. , where 𝑁. is the 

number of feedback trials from all subjects.  

In our confirmatory analysis we test if mood predicts MEG signal in the right insula, and if 

the two RPE parameters predict response variation in the right paracentral lobule and 

precuneus as defined by the AAL atlas.  

In addition, as a post-hoc analysis, the data from all available subjects is combined 

(exploratory + confirmatory sample) and each predictor is tested on all 116 ROIs from the 

AAL atlas. For this post-hoc analysis, temporal clusters are corrected for multiple 

comparisons over all ROIs and the 3 predictors.  

 

Hypothesis 3:  

We test the effect of trial expectation, as defined by the primacy model (𝐸!), and the 

primacy weighted expectation term (η!) on the average evoked response in the 250-

400ms window following gamble options presentation. 

Our formulation is as follows (here presented for the 𝐸 fixed effect):  

 

𝑆(𝑟) ∼ 𝐸 + (𝐸|𝑠𝑢𝑏𝑗𝑒𝑐𝑡) + 1|𝑡𝑟𝑖𝑎𝑙 + 1|𝑟𝑒𝑐𝑜𝑟𝑑𝑖𝑛𝑔, 

 

where 𝑆(𝑟) indicates the MEG signal at location 𝑟 (either sensor or source voxel).  

𝑆(𝑟) is a vector with dimension 1 × 𝑁/ , where 𝑁/ is the number of task trials from all 

subjects.  

We run our statistical model at each sensor and source space voxel. 

 

For all linear mixed effect models we test for statistical significance over multiple voxels or 

sensors by applying Threshold Free Cluster Enhancement (TFCE) spatial clustering with 

parameters E=0.5, H=2, dh = 0.1 as indicated in (Smith and Nichols, 2009).  
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Null distributions are obtained by running the same linear mixed model after random 

permutation of S over trials for each subject (10,000 random permutations will be used for the 

sensor space analysis, 2,000 random permutation will be used for the voxel space). Each random 

permutation is used for all sensors/voxel, TFCE is applied on the t-values for the fixed effect and 

the maximum (and minimum) spatial cluster value is included in the null distribution.  

We then use a 2-tailed t-test against the null distribution to infer statistical significance of the 

spatial clusters (α = 0.05) corrected with false discovery rate for the multiple fixed effects we 

are testing. 

 

Results 

Hypothesis 1: trial variations in beta-gamma oscillatory power measured in the 3s time interval 

preceding mood rating will be positively correlated with 𝑬𝒕. 

For our first hypothesis we set to test if trial variations in beta-gamma (25-40Hz) oscillatory power 

are affected by reward expectation. 

We report results for the linear mixed model analysis with trial expectation (𝐸!) and primacy 

weighted expectation (η!)  as fixed effects of the model. At the sensor level we found a significant 

cluster of sensors (Figure 2), for both 𝐸! (peak on channel MRC22, fixed effect t-stat = 3.94, 

uncorrected p-value=8.6e-05) and η! (peak on channel MRC25, fixed effect t-stat = 3.64, 

uncorrected p-value=2.8e-04). 
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Figure 2: Maps of MEG sensors where expectation parameters 𝐸! (A) and η! (B) significantly 

predict beta-gamma power preceding mood rating in confirmatory sample. Sensors surviving 

clustering correction (α < 	0.05, two-tailed, 10,000 random permutations) are shown in color. 

Color bar indicates t-statistc of the fixed effect.  

 

At the source level we found a significant cluster where 𝐸! predicted beta-gamma power in the 

mid to posterior cingulate cortex and extending to the paracentral lobule (Figure 3A, cluster peak 

at MNI coordinate [-2, -40, 34]mm, T-stat=5.21, uncorrected p-value=2.3e-07). A similar, but less 

significant cluster appeared for η! (Figure 3B cluster peak at MNI coordinate [-2, -40, 30]mm, T-

stat=4.78, uncorrected p-value=2.0e-06).  Other significant clusters were present in the occipital 

cortex, caudate and the ACC. By exploration of the covariance regularization parameter (5%, 1% 

and 0.2% of the maximum singular value of the covariance matrix) we found significant clusters 

to be highly dependent on regularization, with clusters in supplementary motor cortex and 

frontal superior cortex becoming prominent at lower regularization values (Figure S4 in 

supplementary material). 

Over our explored range of regularization values the mid-posterior cingulate cortex cluster 

remained present.  
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Figure 3: Source space maps showing brain regions where expectation parameters 𝐸! (A) and η! 

(B) predict beta-gamma power preceding mood rating in confirmatory sample. Color bar indicates 

t-statistic of the fixed effect. Top row shows cluster peak in coronal and sagittal views. The plot 

on the bottom shows the significant cluster over multiple axial slices.  

Both predictors show similar significant clusters with a peak in the left posterior cingulate cortex 

(MNI coordinate [-2, -40, 34]mm for 𝐸! and [-2, -40, 30]mm for η!) extending to mid cingulate, 

parietal cortex and the caudate.  

 

We found that subject average beta-gamma power in the pre mood rating period was 

significantly correlated with the subject expectation weight from the primacy mood model 

(Figure 4C,D). We found significant clusters with peaks in the ACC, caudate and occipital cortex. 

By comparing Keren et al. (Keren et al., 2020) previous fMRI work we found overlap in the ACC 

cluster between MEG average beta-gamma power and BOLD fMRI activation.  
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Figure 4. Post-hoc analysis of beta-gamma power with all available subjects (N=51). A. Trial-level 

analysis: source space maps showing brain regions where expectation parameters 𝐸! predicts 

beta-gamma power preceding mood rating (see confirmatory results in figure 3A). Color bar 

indicates t-statistic of the fixed effect. B. Mediation model where the reward expectation 𝐸! 

mediates the relationship between beta-gamma power 𝑃! and subject’s self-reported mood 𝑀!. 

At the source cluster peak we found evidence of complete (ab/c = 1.1973 ) inconsistent 

mediation (significant indirect effect ab = 0.0686	± 0.018 (𝑍 = 3.6271)). C. Subject level 

analysis: axial view of regions where the subject level expectation weight β#  significantly (α <

0.05, 5,000 random permutations) correlates with subject average beta-gamma power preceding 

mood rating. Color bar indicates Pearson’s correlation (r), source map has been masked with 

cortical and subcortical regions included in the AAL atlas. Subject beta-gamma power shows 

significant correlation clusters in subgenual ACC, caudate and occipital cortex. D. Regions where 
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β#  correlates with brain activity in MEG (C) and fMRI (significant region from Keren et al.). MEG 

source localization is displayed in the heat color map, voxels of overlap between MEG and fMRI 

results are displayed in green and voxels where only fMRI showed significant correlation are in 

blue. 

 

In order to test if beta-gamma power is reflective of subject’s mood we tested whether this 

relationship could be mediated by our expectation parameter. We found that indeed reward 

expectation 𝐸! significantly mediated (significant indirect effect ab = 0.0686	± 0.018 (Z =

3.6271)) the relationship between beta-gamma power 𝑃! and subject’s self-reported mood 𝑀! 

with a complete (ab/c = 1.1973 ) inconsistent mediation (Figure 4B). 

 

Hypothesis 2: self-reported mood and RPE from the primacy model can predict changes in the 

response to reward. 𝑹𝒕 and 𝛒𝒕 will be correlated with the variability in the evoked response in 

right precuneus and paracentral lobule (at ~500ms) and for 𝒎𝒐𝒐𝒅𝒕 in the right insular cortex 

(at ~400ms after feedback presentation).  

 

In order to test the effect of mood and RPE on the evoked response following gambling feedback 

we ran models independently for the three separate fixed effects. From our exploratory analysis 

we hypothesized to find significant clusters in the right insula cortex for the mood predictor and 

right precuneus and paracentral lobule for 𝑅! and ρ!. In our confirmatory analysis we found no 

significant effect of self-reported mood on the evoked response source localized to the right 

insula.  

Both 𝑅! and primacy weighted ρ! parameter were confirmed to predict the response on the right 

paracentral lobule at 500ms, with ρ! also predicting an earlier peak at ~250ms (Figure 5, Table 

1). Neither parameter predicted the response in the right precuneus at 500ms, but we saw a 

significant effect of 𝑅! on an earlier peak (100ms).  

From our further post-hoc analysis we found that both 𝑅! and ρ! significantly predicted the 

response in the left angular cortex (peak at ~250ms). Moreover the ρ! parameter significantly 

predicted a late response (~600ms) in the left paracentral lobule and a peak in the right para 
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hippocampal gyrus (~430ms) (Figure 6, Table 2). Self-reported mood did not significantly predict 

the response to reward feedback in any ROI. 

 

 
Figure 5: Response to reward feedback in regions of interest (ROIs) from the AAL atlas 

hypothesized to vary with mood or with the reward prediction error parameters. A. Response to 

feedback in the right insula cortex and prediction from self-reported mood. No significant 

temporal clusters were found in the confirmatory sample. B. ROIs with significant temporal 

clusters to the 𝑅! fixed effect. Average response is in blue, t-statistic of the fixed effect is in black 

and significant temporal clusters are in red. 𝑅! significantly predicts trial level variations in reward 

feedback evoked response in right precuneus (cluster peak at 101ms, not supporting our initial 

hypothesis) and right paracentral lobule (cluster peak at 489ms, in agreement with hypothesis).  

C. ROIs with significant temporal clusters to the ρ! fixed effect. ρ! was confirmed to predict 

responses in right paracentral lobule (cluster peaks at 248ms and 502ms). No significant effect of 

ρ! was found in the right precuneus. 
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Figure 6. Regions of interest (ROIs) from the AAL atlas significantly predicted by reward prediction 

error in post-hoc analysis (including all available subjects, N=51). A. ROIs with significant temporal 

clusters to the 𝑅! fixed effect. Average response is in blue, t-statistic of the fixed effect is in black 

and significant temporal clusters are in red. B. ROIs with significant temporal clusters to the ρ! 

fixed effect. In addition to the confirmed effect on the right paracentral lobule (see figure 5), we 

found that both parameters predicted trial variations in the left angular gyrus and ρ! in the right 

para-hippocampal gyrus and left paracentral lobule.  
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ROI Predictor Window(ms) Peak time(ms) T-stat p-value 

Insula Right mood Not significant    

Precuneus Right R 97-111 101 -3.98 7.1e-05 

 ρ Not significant    

Paracentral Lobule Right R 472-502 489 3.33 8.7e-04 

 ρ 225-278 248 -4.33 1.5e-05 

 ρ 465-515,  

629-639 

502 3.13 1.8e-03 

Table 1: Summary of results from the confirmatory analysis for hypothesis 2 (time courses in 

figure 5). We tested the responses to reward feedback presentation in the right insula to self-

reported mood, and the right precuneus and right paracentral lobule to reward expectation.  

 

ROI Predictor Window(ms) Peak time(ms) T-stat p-value 

Angular Left R 255-265 255 -4.45 8.9e-06 

 ρ 248-255 248 -4.34 1.5e-05 

Para Hippocampal Right ρ 418-438 428 -4.52 6.4e-06 

Paracentral Lobule Left ρ 589-606 596 4.76 2.0e-06 

Paracentral Lobule Right 𝑹 469-499 485 4.94 8.2e-07 

 𝛒 225-271 245 -5.27 1.5e-07 

 𝛒 462-509 482 4.42 1.0e-05 

 

Table 2: Summary of results from the post-hoc analysis over all ROIs on responses to reward 

feedback presentation (time courses in figure 6). Significant peaks in the right paracentral lobule, 

highlighted in bold, are also seen in the confirmatory analysis (table 1).  

 

Hypothesis 3: the reward expectation parameters from the primacy mood model (𝑬𝒕 and 𝛈𝒕) 

will be predictive of the signal in posterior MEG sensors during the 250-400ms time window 

after the presentation of gambling options.  
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For our last hypothesis we tested whether the trial level variation in evoked response 250-400ms 

after presentation of gambling options could be predicted by the model expectation parameters.  

Agreeing with our initial hypothesis we found that both 𝐸! and η! significantly predicted signal 

response in clusters of MEG axial gradiometers (figure 7D). At the source level we found a 

significant cluster in the right cerebellum (figure 7E) only for the 𝐸! predictor.  

 

Figure 7: Expectation predicts the evoked response 250-400ms after presentation of gambling 

options. A. Maps of MEG sensors where expectation parameter𝑠 𝐸! (left) and ρ! (right) 

significantly predict MEG response 250-400ms following presentation of gambling options. 

Sensors surviving clustering correction (α < 0.05, two-tailed, 10,000 random permutations) are 
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shown in color. Color bar indicates t-statistic of the fixed effect. B. Source space clusters where 

expectation parameters 𝐸! predict MEG signal response. Predictor ρ! did not show any significant 

clusters. Color bar indicates t-statistic of the fixed effect. Top row shows cluster peaks in coronal 

and sagittal views. The plots on the bottom show the significant clusters over multiple axial slices. 

The expectation parameter was predictive of activity in the right cerebellum. C. Topographic map 

of the z-scored average MEG signal over all trials and subjects in the 250-400ms time window 

after presentation of gambling options. D. Time course of the evoked response (average over all 

trials and subjects in confirmatory sample) over all significant sensors (clusters in figure 7A). The 

average of the left sensors (n=11) is in blue. The sign of the right sensors (n=9) in red has been 

flipped for easier comparisons. The time window of interest is highlighted in grey. E. Time course 

of the evoked response (average over all trials and subjects in confirmatory sample) in the 

significant area of the right cerebellum from figure 7B.  

 

Discussion  

 

With a confirmatory sample of 40 participants, we found support in our pre-registered hypothesis 

that reward expectation, defined by the computational primacy mood model, is positively related 

to beta-gamma power over central MEG sensors. The same linear mixed effect analysis at the 

source space analysis localized the main significant cluster over the posterior cingulate cortex 

(PCC), extending to mid cingulate and paracentral lobule and parietal cortex. Unlike the 

exploratory sample no clusters were found in superior or medial frontal cortex. The cingulate 

cortex is thought to have an important role in integrative brain functions, being involved in 

emotional processing, memory and learning. The PCC in particular is involved in memory 

processes and strongly connected to the hippocampus as well as being a key node in the resting 

state network. 

It is interesting to note that from our model definition, reward expectation is the equivalent to 

the average of all experienced rewards during the gambling task, a mental representation that 

we expect to involve memory processes. Our results do not link directly beta-gamma power with 

self-reported mood, but to reward expectation, which previous work has found to be a key 
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component in mood processes. Through a post-hoc mediation analysis we found that reward 

expectation fully mediates any relationship between mood and beta-gamma power, meaning 

that self-reported mood by itself would not explain any variation in the same MEG data. This 

highlights how it may be important to identify the separate mental processes that conflate to 

shift mood over time if we hope to understand the integrative function of mood as a whole. 

 

With this result we also identify that brain oscillations may have an important, and measurable, 

role in mood dynamics, as previously found in studies involving pharmacological manipulation 

(e.g. ketamine) and group comparisons between MDDs and HVs showing in particular how 

reduced frontal gamma oscillations may be a marker of depression (Fitzgerald and Watson, 2018; 

Nugent et al., 2019a).     

Brain oscillations are believed to be key to brain communication (supported by an expanding 

literature in MEG functional connectivity) and the function of brain oscillations is dependent on 

frequency, which in conjunction with other techniques (PET, MRS), can be used to explore the 

specific function of neuronal assemblies (e.g. glutamatergic excitatory vs GABAergic inhibitory 

processes). This is key to determine possible dysfunctions in mood disorders such as depression, 

and possibly developing more effective pharmacological therapies than current antidepressants.  

Beta-gamma oscillations have been observed in multiple EEG studies, synchronizing in response 

to positive feedback (Hosseini and Holroyd, 2015; Marco-Pallarés et al., 2015). We initially 

selected the 25-40Hz band based on these studies and following test in our exploratory sample 

with standard frequency bands. The naming of the band in the literature is unclear, with different 

authors also referring to it as high-beta or low-gamma bands. It is worth exploring if changes in 

beta-gamma power can be observed in direct response to reward presentation (as observed in 

EEG following reward feedback) and their precise localization through different MEG task designs 

or by combination with fMRI techniques (for example with Representation Similarity Analysis 

(RSA)). 

We found confirmatory evidence that RPE (a predictor of mood as defined from the primacy 

model) modulates the evoked potential in the paracentral lobule. We had hypothesized that the 

response of the insular cortex to reward feedback would be correlated with self-reported mood. 
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The insular cortex is thought to be a key area for reward processes, interoception and mood 

(Preuschoff et al., 2008; Singer et al., 2009) with multiple studied identifying changes in insula 

function in depressed patients. While we observed activation of the right insular cortex following 

reward feedback (both positive and negative), in this study we could not find significant evidence 

that insula response is directly influenced by participants’ self-reported mood.  

In a post-hoc analysis testing the response to reward feedback of all ROIs we found evidence that 

following presentation of gambling feedback, reward prediction error affects even early 

responses in the left angular gyrus between 200-300ms (part of the visual stream, contralateral 

to side of the screen where feedback is displayed).  

We did not find an evoked response changing with RPE equivalent to the feedback related 

negativity, extensively observed in EEG. (Doñamayor et al., 2012) localized the FRN from the MEG 

data to the PCC. Other studies combing EEG and fMRI localized the FRN to the dorsal ACC (Hauser 

et al., 2014). Evoked responses are affected by both reward magnitude and expectation. It is 

likely that the relatively low number of negative feedback trials and high variance of reward 

amounts presented to each subject might have affected this.  

 

We confirmed our pre-registered hypothesis and found evidence that cerebellum activity is 

correlated with reward expectation 250-400ms following the presentation of gambling options. 

Several papers have highlighted the involvement of cerebellum in reward processing and its 

connection to basal ganglia (Bostan et al., 2010; Pierce and Péron, 2020; Wagner et al., 2017). 

 

Although we tried to mitigate statistical bias by pre-registering our approach, our analysis still 

has some technical limitations. We found evidence that beta-gamma power is positively 

correlated with expectation at the sensor level and again at the source level. This confirms our 

initial hypothesis we set with the pre-registration. We want to point out that we are analyzing 

the change of oscillatory power over trials: this gives lower signal to noise compared to a standard 

beamformer localization where multiple trials are averaged together. We are compensating from 

this by using a linear mixed effects model to include all our available data into one statistical test. 

This still doesn’t obviate to the determination of beamformer weights (which are highly 
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dependent on regularization and choice of forward model as can be seen in our post-hoc analysis 

in supplementary material).  

Uncertainty in the source localization is due to the ill posed nature of the inverse problem in 

M/EEG: source localization is an estimate dependent on our head model, signal SNR and co-

registration accuracy (Jaiswal et al., 2020). 

We suggest that for applying a similar analysis technique in future it might be beneficial to apply 

an adaptive regularization as proposed in (Woolrich et al., 2011) or test localization accuracy at 

similar SNR level with computational models to determine the best beamformer parameters.  

 

We can see how key features of rewards that influence mood dynamics (i.e. expectation, and 

reward prediction error) are encoded in multiple brain regions at different times and with 

different mechanisms (both stimulus evoked responses and oscillations).  

To our knowledge this paper offers new evidence that it is possible to track the effect of changes 

in mood predictors in neuronal activity (non-invasively) at the minute time scales. Based on our 

pre-registered exploratory analysis, within our task we only expected to see direct correlates of 

mood on neural activity on the insula, but this was not confirmed by our results. While univariate 

analysis did show significant effects of mood, multivariate analysis (like mediation) may be more 

suited to reveal of our perceived mood affects brain function. We believe mood to be an 

integrative function, which cannot be accurately reflected by the activity of a single brain area 

but is the result of activity and communication between multiple cortical and sub-cortical 

regions. Mood may not be measured as activation of a brain region, but rather a shift in baseline 

activity and functional connectivity of brain networks, priming the brain to respond more strongly 

to certain stimuli (and/or “inhibiting” the brain to respond less strongly to others), similar to the 

effect of attention and arousal (Bowrey et al., 2017). We hope this start may help laying some of 

the groundwork to determine possible causality in reward and mood processes in humans in vivo 

by identifying both ROIs and accurate timing.  
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