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Abstracts 

Identifying individuals with early mild cognitive impairment (EMCI) can be an 

effective strategy for early diagnosis and delay the progression of Alzheimer’s disease (AD). 

Many approaches have been devised to discriminate those with EMCI from healthy control 

(HC) individuals. Selection of the most effective parameters has been one of the challenging 

aspects of these approaches. In this study we suggest an optimization method based on five 

evolutionary algorithms that can be used in optimization of neuroimaging data with a large 

number of parameters. Resting-state functional magnetic resonance imaging (rs-fMRI) 

measures, which measure functional connectivity, have been shown to be useful in prediction 

of cognitive decline. Analysis of functional connectivity data using graph measures is a 

common practice that results in a great number of parameters. Using graph measures we 

calculated 1155 parameters from the functional connectivity data of HC (n=36) and EMCI 

(n=34) extracted from the publicly available database of the Alzheimer’s disease neuroimaging 

initiative database (ADNI). These parameters were fed into the evolutionary algorithms to 

select a subset of parameters for classification of the data into two categories of EMCI and HC 

using a two-layer artificial neural network. All algorithms achieved classification accuracy of 

94.55%, which is extremely high considering single-modality input and low number of data 

participants. These results highlight potential application of rs-fMRI and efficiency of such 

optimization methods in classification of images into HC and EMCI. This is of particular 

importance considering that MRI images of EMCI individuals cannot be easily identified by 

experts.  

 

Keywords: mild cognitive impairment (MCI); early mild cognitive impairment 

(EMCI); resting state fMRI (rs-fMRI); functional connectivity; graph theory; evolutionary 

algorithms; classification 
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1 INTRODUCTION 

Alzheimer’s disease (AD) is the most common type of dementia, with around 50 

million patients worldwide 1,2. AD is usually preceded by a period of mild cognitive impairment 

(MCI) 3,4. Identifying the subjects with MCI could be an effective strategy for early diagnosis 

and delay the progression of AD towards irreversible brain damage 5–7. While researchers were 

successful, to some extent, in diagnosis of AD, researchers were significantly less successful 

in diagnosis of MCI 8–11. In particular, detection of early stages of MCI (EMCI) has been proven 

to be very challenging 12–14. Therefore, in this study we propose a novel method based on 

evolutionary algorithms to select a subset of graph features calculated from functional 

connectivity data to discriminate between healthy participants (HC) and EMCI. 

It has been shown that the brain goes through many functionally and physiologically 

changes prior to any obvious behavioral symptoms in AD 15–17. Therefore, many approaches 

have been devised based on biomarkers to distinguish between HC, and different stages of 

MCI, and AD 18–20. For example, segmentation of structural magnetic resonance imaging 

(MRI) data has been used in many studies as brain structure changes greatly in AD 21–24.  

While structural neuroimaging has shown some success in early detection of AD, 

functional neuroimaging has proven to be a stronger candidate 25–27. Functional MRI (fMRI) 

allows for the examination of brain functioning while a patient is performing a cognitive task. 

This technique is especially well suited to identifying changes in brain functioning before 

significant impairments can be detected on standard neuropsychological tests, and as such is 

sensitive to early identification of the disease processes 28,29. While fMRI requires participants 

to perform a task, resting-state fMRI (rs-fMRI) is capable of measuring the spontaneous 

fluctuations of brain activity without any task, hence it is less sensitive to individual cognitive 

abilities 30–32. One important feature of rs-fMRI is the ability to measure functional connectivity 

changes 33,34 with many recent studies have shown that functional connectivity changes are 

prevalent in AD 35–38. 

Analysis of rs-fMRI data using graph theory measures is a powerful tool that enables 

characterization of the global, as well as local, characteristics of different brain areas 39–42. This 

method provides us with a way to comprehensively compare functional connectivity 

organization of the brain between patients and controls 43–45, and has been used in 

characterization of AD 46–48. This method has also been used in diagnosis classification of 

different stages of AD 49–51. 
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Since graph theory analysis of rs-fMRI data leads to a large number of parameters, it is 

essential to select an optimal subset of features that can lead to high discrimination accuracy 

52,53. Feature selection is particularly complicated due to the non-linear nature of classification 

methods. For example, more parameters do not necessarily lead to better performance 54,55. 

Evolutionary algorithms (EA) are biologically-inspired algorithms that are extremely effective 

in optimization algorithms with large search spaces 56–60. EA has been used in characterization 

and diagnosis of AD 61–65. 

In this study we devised a method that achieves higher accuracy in the classification of 

HC and EMCI participants compared to the past published research. We used MRI and rs-fMRI 

data of a group of healthy participants and those with EMCI. We applied graph theory to extract 

a collection of 1155 parameters. This data is then given to five different EA methods to select 

an optimum subset of parameters. These selected parameters are subsequently given to an 

artificial neural network to classify the data into two groups of HC and EMCI. We aimed at 

identifying the most suitable method of optimization based on accuracy and training time, as 

well as identifying the most informative parameters. 

2 Methods 

2.1 Participants 

Data for 70 participants were extracted from the publicly available database of the 

Alzheimer’s disease neuroimaging initiative database (ADNI) (http://adni.loni.usc.edu) 66–68. 

Table 1 represents the details of the data. EMCI participants had no other neurodegenerative 

diseases except MCI. The EMCI participants were recruited with memory function 

approximately 1.0 SD below expected education adjusted norms 69. HC subjects had no history 

of cognitive impairment, head injury, major psychiatric disease, or stroke.  
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Table 1. Demographics of the data for participants included in this study.  

 EMCI HC p 

n 34 36  

Female (n [%]) 19 [55.88] 19 [52.77]  

Age (mean [SD]) 71.73 [7.80] 69.97 [5.60] 0.297 

MMSE (mean [SD])  28.61 [1.60] 28.40 [4.60] 0.302 

CDR 0.5 or 1 0 < 0.001 

notes: CDR: clinical dementia rating, MMSE: mini-mental state exam, HC: healthy control, 

EMCI: early mild cognitive impairment 

2.2 Proposed Method 

Structural T1-MRI and rs-fMRI data was extracted from the ADNI database 68. The 

data is given to CONN toolbox 70 in MATLAB v2018 (MathWorks, California, US). CONN 

is a tool for preprocessing, processing, and analysis of functional connectivity data. 

Preprocessing consisted of reducing subject motion, image distortions, and magnetic field 

inhomogeneity effects and application of denoising methods for reduction of physiological 

effects and other sources of noise. The processing stage consisted of extraction of functional 

connectivity and graph theory measures. In this stage, through two pipelines, a collection of 

1155 parameters are extracted 70,71. These parameters are then given to one of the dimension 

reduction methods (five EA and one statistical method) to select a subset of features. The 

selected features are finally given to an artificial neural network to classify the data into two 

categories of healthy control (HC) and EMCI. See Figure 1 for the summary of the procedure 

of the method.  

2.3 Data acquisition and preprocessing 

Brain structural T1-weighted MRI data with 256×256×170 voxels and 1×1×1 mm3 

voxel size were extracted for all subjects. MRI data preprocessing steps consisted of non-

uniformity correction, segmentation into grey matter, white matter and cerebrospinal fluid 

(CSF) and spatial normalization to MNI space.  

Using an echo-planar imaging sequence on a 3T Philips MRI scanner, rs-fMRI data 

were obtained. Acquisition parameters were: 140 time points, repetition time (TR) = 3000 ms, 

echo time (TE) = 30 ms, flip angle = 80°, number of slices = 48, slice thickness= 3.3 mm, 

spatial resolution = 3×3×3 mm3 and in plane matrix = 64×64. fMRI images preprocessing steps 
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consisted of motion correction, slice timing correction, spatial normalization to MNI space, 

low frequency filtering to keep only (0.01 – 0.1 Hz) fluctuations. T1-MRI and rs-fMRI data 

processing was done using CONN toolbox 70.  

2.4 Functional Connectivity 

Functional connectivity, also called “resting state” connectivity, is a measure for the 

temporal correlations among the blood-oxygen-level-dependent (BOLD) signal fluctuations in 

different brain areas 72–74. In this study, we obtained functional connectivity of region of interest 

(ROI)-to-ROI of brain areas according to Harvard-Oxford atlas 75. The functional connectivity 

matrix is the correlation, covariance, or the mutual information between the fMRI time series 

of every two brain regions, which is stored in an 𝑛 × 𝑛 matrix for each participant, where n is 

the number of brain regions obtained by atlas parcellation 74. To extract functional connectivity 

between different brain areas we used Pearson correlation coefficients formula as following 

70,76: 

𝑟(𝑥) =
∫ 𝑆(𝑥, 𝑡)𝑅(𝑡)𝑑𝑡

(∫ 𝑅2 (𝑡)𝑑𝑡 ∫ 𝑆2(𝑥, 𝑡)𝑑𝑡)
1
2

 

𝑍(𝑥) = 𝑡𝑎𝑛ℎ−1(𝑟(𝑥)), 

where 𝑆 is the BOLD time series at each voxel (for simplicity all-time series are considered 

central to zero means), 𝑅 is the average BOLD time series within an ROI, 𝑟 is the spatial map 

of Pearson correlation coefficients, and 𝑍 is the seed-based correlations (SBC) map of Fisher-

transformed correlation coefficients for this ROI 77.  

2.5 Graph Parameters 

We used the graph theory technique to study topological features of functional 

connectivity graphs across multiple regions of the brain 49,78. Graph nodes represented brain 

regions and edges represented interregional resting-state functional connectivity. The 

functional connectivity matrix is employed for estimating common features of graphs including 

(1) degree centrality (the number of edges that connect a node to the rest of the network) (2) 

betweenness centrality (the proportion of shortest paths between all node pairs in the network 

that pass through a given index node), (3) average path length (the average distance from each 

node to any other node), (4) clustering coefficient (the proportion of ROIs that have 

connectivity with a particular ROI that also have connectivity with each other), (5) cost (the 
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ratio of the existing number of edges to the number of all possible edges in the network), (6) 

local efficiency (the network ability in transmitting information at the local level), (7) global 

efficiency (the average inverse shortest path length in the network; this parameter is inversely 

related to the path length) 79. 

2.6 Dimension Reduction Methods 

We used five EA to select the most efficient set number of features. These algorithms 

are as follows:  

Genetic algorithm (GA): GA is one of the most advanced algorithms for feature 

selection 80. This algorithm is based on the mechanics of natural genetics and biological 

evolution for finding the optimum solution. It consists of five steps: selection of initial 

population, evaluation of fitness function, pseudo-random selection, crossover, and mutation 

81. For further information refer to supplementary Methods section. Single point, double point, 

and uniform crossover methods are used to generate new members. In this study we used 0.3 

and 0.1 as mutation percentage and mutation rate, respectively; 20 members per population, 

crossover percentage was 14 with 8 as selection pressure 63,82. 

Nondominated sorting genetic algorithm II (NSGA-II): NSGA is a method to solve 

multi-objective optimization problems to capture a number of solutions simultaneously 83. All 

the operators in GA are also used here. NSGA-II uses binary features to fill a mating poll. 

Nondomination and crowding distance are used to sort the new members. For further 

information refer to supplementary Methods section. In this study the mutation percentage and 

mutation rate were set to 0.4 and 0.1, respectively; population size was 25, and crossover 

percentage was 14%. 

Ant colony optimization algorithm (ACO): ACO is a metaheuristic optimization method 

based on the behavior of ants 84. This algorithm consists of four steps: initialization, creation 

of ant solutions (a set of ants build a solution to the problem being solved using pheromones 

values and other information), local search (improvement of the created solution by ants), and 

global pheromone update (update in pheromone variables based on search action followed by 

ants) 85. ACO requires a problem to be described as a graph: nodes represent features and edges 

indicate which features should be selected for the next generation. In features selection, the 

ACO tries to find the best solutions using prior information from previous iterations. The search 

for the optimal feature subset consists of an ant traveling through the graph with a minimum 
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number of nodes required for satisfaction of stopping criterion 86. For further information refer 

to supplementary Methods section. We used 10, 0.05, 1, 1 and 1 for the number of ants, 

evaporation rate, initial weight, exponential weight, and heuristic weight, respectively. 

Simulated annealing (SA): SA is a stochastic search algorithm, which is particularly 

useful in large-scale linear regression models 87. In this algorithm, the new feature subset is 

selected entirely at random based on the current state. After an adequate number of iterations, 

a dataset can be created to quantify the difference in performance with and without each 

predictor 88,89. For further information refer to supplementary Methods section. We set initial 

temperature and temperature reduction rate with 10 and 0.99, respectively. 

Particle swarm optimization (PSO): PSO is a stochastic optimization method based on 

the behavior of swarming animals such as birds and fish. Each member finds optimal regions 

of the search space by coordinating with other members in the population. In this method, each 

possible solution is represented as a particle with a certain position and velocity moving 

through the search space 90–92. Particles move based on cognitive parameter (defining the 

degree of acceleration towards the particle’s individual local best position, and global 

parameter (defining the acceleration towards the global best position). The overall rate of 

change is defined by an inertia parameter. For further information refer to supplementary 

Methods section. We used 20 as the warm size, cognitive and social parameters were set to 1.5 

and inertia as 0.72.  

Statistical approach: To create a baseline to compare dimension reduction methods 

based on evolutionary algorithms, we also used the statistical approach to select the features 

based on the statistical difference between the two groups. We compared the 1155 parameters 

using two independent-sample t-test analyses. Subsequently we selected the parameters based 

on their sorted p values. 

2.7 Classification Method 

For classification of EMCI and HC we used a multi-layer perceptron artificial neural 

network (ANN) with two fully-connected hidden layers with 10 nodes each. Classification 

method was performed via a 10-fold cross-validation. We used Levenberg-Marquardt Back 

propagation (LMBP) algorithm for training 93–95 and mean square error as a measure of 

performance. The LMBP has three steps: (1) propagate the input forward through the network; 

(2) propagate the sensitivities backward through the network from the last layer to the first 
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layer; and finally (3) update the weights and biases using Newton’s computational method 93. 

In the LMBP algorithm the performance index 𝐹(𝑥) is formulated as: 

𝐹(𝑥) = 𝑒𝑇(𝑥)𝑒(𝑥), 

where 𝑒 is vector of network error, and 𝑥 is the vector matrix of network weights and biases. 

The network weights are updated using the Hessian matrix and its gradient: 

𝑥𝑘+1 = 𝑥𝑘 − (𝐽𝑇𝐽 + 𝜇𝐼)−1𝐽𝑇𝑒 = 𝑥𝑘 − (H + 𝜇𝐼)−1G, 

where 𝐽 represent Jacobian matrix. The Hessian matrix 𝐻 and its gradient 𝐺 are calculated 

using: 

𝐻 = 𝐽𝑇𝐽  

𝐺 = 𝐽𝑇𝑒, 

where the Jacobian matrix is calculated by: 

𝐽 = 𝑆𝑚𝑎𝑚−1, 

where 𝑎𝑚−1 is the output of the (𝑚 − 1)th layer of the network, and 𝑆𝑚 is the sensitivity of 

𝐹(𝑥) to changes in the network input element in the 𝑚th layer and is calculated by: 

𝑆𝑚 = 𝐹𝑚(𝑛𝑚)(𝑤𝑚+1)𝑆𝑚+1, 

where 𝑤𝑚+1 represents the neuron weight at (𝑚 + 1)th layer, and 𝑛 is the network input 93. 

3 RESULTS 

The preprocessing and processing of the data was successful. We extracted 1155 graph 

parameters per participant (see Supplementary Figures 1-11). This data was used for the data 

optimization step. Using the five EA optimization methods and the statistical method, we 

investigated the performance of the classification for different numbers of subset of parameters. 

Figure 2 shows the performance of these methods for 100 subsets of parameters with 1 to 100 

parameters. These plots are created based on 200 repetitions of the EA algorithms. To 

investigate the performance of the algorithms with more repetitions, we ran the same 

algorithms with 500 repetitions. These simulations showed no major improvement of increased 

repetition (maximum 0.84% improvement; see Supplementary Figure 12).  

A threshold of 90% was chosen as the desired performance accuracy. Statistical 

modeling performance was constantly less than this threshold. The five EA methods achieved 
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this performance with varying number of parameters. Figure 3 shows the accuracy percentage 

and the optimization speed of the five EA methods.  

To investigate whether increasing number of parameters would increase performance, 

we performed similar simulations with maximum 500 parameters in each subset. This analysis 

showed that the performance of the optimization methods plateaus without significant increase 

from 100 parameters (Figure 4). This figure shows that performance of the optimization 

methods was between 92.55-93.35% and 94.27-94.55% for filtered and absolute accuracy, 

respectively. These accuracy percentages are significantly higher than 81.97% and 87.72% for 

filtered and absolute accuracy in the statistical classification condition. 

To investigate the contribution of different parameters in the optimization of 

classification we looked at the distribution of parameters in the 100 subsets calculated above 

(Figure 5). GA and NSGA showed that the majority of the subsets consisted of repeated 

parameters: out of the 1155 parameters only about 200 of the parameters were selected in the 

100 subsets. SA, ACO and PSO, on the other hand, showed a more diverse selection of 

parameters: almost all the parameters appeared in at least one of the 100 subsets.  

4 Discussions 

Using CONN toolbox we extracted 1155 graph parameters from rs-fMRI data. The 

optimization methods showed superior performance over statistical analysis (average 20.93% 

superiority). The performance of the EA algorithms did not differ greatly (range 92.55-93.35% 

and 94.27-94.55% for filtered and absolute accuracy, respectively) with PSO performing the 

best (mean 0.96% superior performance) and SA performing the worst (mean 1.07% inferior 

performance), (Figure 2). The minimum number of required parameters to guarantee at least 

90% accuracy differed quite greatly across the methods (PSO and SA requiring 7 and 49 

parameters, respectively). The processing time to achieve at least 90% accuracy also differed 

across the EA methods (SA and NSGA2 taking 5.1s and 22.4s per optimization), (Figure 3). 

Increased number of parameters per subset did not increase the performance accuracy of the 

methods greatly, (Figure 4).  

Classification of data into AD and HC has been investigated extensively. Many 

methods have been developed using different modalities of biomarkers. Some of these studies 

achieved accuracies greater than 90% 96. Classification of earlier stages of AD, however, has 

been more challenging; only a handful of studies have achieved accuracy higher than 90% 
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(Table 2). The majority of these studies implemented convolutional and deep neural networks 

that require extended training and testing durations with many input data. For example, Payan 

et al. (2015) applied convolutional neural networks (CNN) on a collection of 755 HC and 755 

MCI and achieved accuracy of 92.1% 97. Similarly, Wang et al. (2019) applied deep neural 

networks to 209 HC and 384 MCI data and achieved accuracy of 98.4% 98 (see also 99–102). We 

applied our method to a group of only 70 participants and achieved an accuracy of 94.55%. To 

the best of our knowledge, between all the studies published to date, this accuracy level is the 

second highest accuracy after Wang et al (2019) 98 with 593 total number of participants.  

Table 2. Summary of the studies aiming at categorization of healthy (HC) and mild cognitive 

impairment (MCI) using different biomarkers and classification methods. Only best 

performance of each study is reported for each group of participants and classification method. 

Further details of the following studies are in Supplementary Table 1.  

        HC MCI     

Study ↑ Cit. Method Modalities n Cat. n Acc% 

Wolz et al (2011) 103 LDA MRI 231 sMCI 238 68 
 

 

   

cMCI 167 84 

Zhang et al (2011) 104 SVM MRI 231 SMCI 238 82 
 

 LDA 

  

PMCI 167 84 

Liu et al (2012) 105 SRC MRI 229 MCI 225 87.8 

Gray et al (2013) 106 RF MRI+PET+CSF

+genetic 

35 MCI 75 75 

Liu et al (2013) 107 SVM + LLE MRI 137 sMCI 92 69 
 

 

   

cMCI 97 81 

Wee et al (2013) 108 SVM MRI 200 MCI 200 83.7 

Guerrero et al (2014) 109 SVM MRI 134 EMCI 229 65 
 

 

 

MRI 175 cMCI 116 82 

Payan & Montana 

(2015) 

97 CNN MRI 755 MCI 755 92.1 

Prasad et al (2015) 110 SVM DWI 50 EMCI 74 59.2 
 

 

   

LMCI 38 62.8 

Suk et al (2015) 111 DNN MRI+PET+CSF 52 MCI 99 90.7 

Shakeri et al (2016) 112 DNN MRI 150 EMCI 160 56 
 

 

 

MRI 

 

LMCI 160 59 

Aderghal, Benois-

Pineau et al (2017) 

113 CNN MRI 228 MCI 399 66.2 
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Aderghal, Boissenin et 

al (2017) 

114 CNN MRI 228 MCI 399 66 

Billones et al (2017) 99 CNN MRI 300 MCI 300 91.7 

Guo et al (2017) 115 SVM fMRI 28 EMCI 32 72.8 
 

 

   

LMCI 32 78.6 

Korolev et al (2017) 116 CNN MRI 61 LMCI 43 63 
 

 

   

EMCI 77 56 

Wang et al (2017) 100 CNN MRI 229 MCI 400 90.6 

Li & Liu (2018) 117 CNN MRI 229 MCI 403 73.8 

Qiu et al (2018) 101 CNN MRI 303 MCI 83 90.9 

Senanayake et al 

(2018) 

118 CNN MRI 161 MCI 193 75 

Altaf et al (2018) 119 SVM MRI 90 MCI 105 79.8 
 

 Ensemble MRI 

 

MCI 

 

75 
 

 KNN MRI 

 

MCI 

 

75 
 

 Tree MRI 

 

MCI 

 

78 
 

 SVM clinical+MRI 

 

MCI 

 

83 
 

 Ensemble clinical+MRI 

 

MCI 

 

82 
 

 KNN clinical+MRI 

 

MCI 

 

86 
 

 Tree clinical+MRI 

 

MCI 

 

80 

Forouzannezhad et al 

(2018) 

102 SVM MRI 248 EMCI 296 73.1 

 

 

 

MRI 

 

LMCI 193 63 
 

 

 

PET 

 

LMCI 

 

73.6 
 

 

 

PET+MRI 

 

LMCI 

 

76.9 
 

 

 

PET+MRI 

 

EMCI 

 

75.6 
 

 

 

PET+MRI+NTS 

 

LMCI 

 

91.9 
 

 

 

PET+MRI+NTS 

 

EMCI 

 

81.1 

Hosseini Asl et al 

(2018) 

120 CNN MRI 70 MCI 70 94 

Jie, Liu, Shen et al 

(2018) 

121 SVM fMRI 50 EMCI 56 78.3 

Jie, Liu, Zhang et al 

(2018) 

122 SVM fMRI 50 MCI 99 82.6 

Raeper et al (2018) 123 SVM + LDA MRI 42 EMCI 42 80.9 

Basaia et al (2019) 124 CNN MRI 407 cMCI 280 87.1 
 

 

   

sMCI 533 76.1 
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Forouzannezhad et al 

(2019) 

125 DNN MRI 248 EMCI 296 61.1 

 

 

 

MRI 

 

LMCI 193 64.1 
 

 

 

PET 

 

EMCI 

 

58.2 
 

 

 

PET 

 

LMCI 

 

66 
 

 

 

MRI+PET 

 

EMCI 

 

68 
 

 

 

MRI+PET 

 

LMCI 

 

71.7 
 

 

 

MRI+PET+NTS 

 

EMCI 

 

84 
 

 

 

MRI+PET+NTS 

 

LMCI 

 

84.1 

Wang et al (2019) 98 DNN MRI 209 MCI 384 98.4 

Wee et al (2019) 126 CNN MRI 300 LMCI 208 69.3 
 

 

   

EMCI 314 51.8 
 

 

  

242 MCI 415 67.6 

Lee et al (2020) 127 Radiality DTI 78 MCI 84 70.5 

     EMCI 50 70.5 

     LMCI 34 67.9 

Kam et al (2020) 128 CNN fMRI 48 EMCI 49 76.1 

Fang et al (2020) 129 GDCA MRI+PET 251 EMCI 

 

79.2 

Forouzannezhad et al 

(2020) 

130 GP MRI 248 EMCI 296 75.9 

 

 

 

MRI 

 

LMCI 193 62.1 
 

 

 

MRI+PET 

 

EMCI 

 

75.9 
 

 

 

MRI+PET 

 

LMCI 

 

78.1 
 

 

 

MRI+PET+DTI 

 

EMCI 

 

78.8 
 

 

 

MRI+PET+DTI 

 

LMCI 

 

79.8 
 

 

 

PET 

 

LMCI 

 

76.1 

Jiang et al (2020) 131 CNN MRI 50 EMCI 70 89.4 

Kang et al (2020) 132 CNN  DTI 50 EMCI 70 71.7 
 

 CNN  MRI 

 

EMCI 

 

73.3 
 

 

 

DTI+MRI 

 

EMCI 

 

94.2 

Yang et al (2021) 133 SVM fMRI 29 EMCI 29 82.8 
 

 

   

LMCI 18 87.2 

our method  EA + ANN rs-fMRI 34 EMCI 36 94.5 

notes: ↑ table sorted based on the year of publication. Acc: classification accuracy percentage 

between MCI and HC groups; ANN: artificial neural networks; Cat.: category of MCI; Cit.: 

citation; cMCI: MCI converted to AD; CNN: convolutional neural networks; DNN: deep 
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neural network; DTI: diffusion tensor imaging; DWI: diffusion-weighted imaging; EA: 

evolutionary algorithms; EMCI: early-MCI; GDCA: gaussian discriminative component 

analysis; GP: gaussian process; KNN: K nearest neighbors; LDA: linear discriminative 

analysis; LLE: locally linear embedding; LMCI: late-MCI; NTS: neuropsychological test 

scores; PET: positron emission therapy; rs-fMRI: resting-state fMRI; sMCI: stable MCI; SRC: 

sparse representation-based classifier; SVM: support vector machine. 

Research has shown that having a combination of information from different modalities 

supports higher classification accuracies. For example, Forouzannezhad et al. (2018) showed 

that a combination of PET, MRI and neuropsychological test scores (NTS) can improve 

performance by more than 20% as compared to only PET or MRI 102. In another study, Kang 

et al. (2020) showed that a combination of diffusion tensor imaging (DTI) and MRI can 

improve accuracy by more than 20% as compared to DTI and MRI alone 132. Our analysis, 

while achieving superior accuracy compared to a majority of the prior methods, was based on 

one biomarker of MRI, which has a lower computational complexity than multi-modality data.  

Interpretability of the selected features is one advantage of the application of 

evolutionary algorithms as the basis of the optimization algorithm. This is in contrast with 

algorithms based on CNN or deep neural networks (DNN) that are mostly considered as black 

boxes 134. Although research has shown some progress in better understanding the link between 

the features used by the system and the prediction itself in CNN and DNN, such methods 

remain difficult to verify 135,136. This has reduced trust in the internal functionality and 

reliability of such systems in clinical settings 137. Our suggested method clearly selects features 

based on activity of distinct brain areas, which are easy to interpret and understand 64,138. This 

can inform future research by bringing the focus to brain areas and the link between brain areas 

that are more affected by mild cognitive impairment.  

We implemented five of the most common evolutionary algorithms. They showed 

similar overall optimization performance ranging between 92.55-93.35% and 94.27-94.55% 

for filtered and absolute accuracy, respectively. They, however, differed in optimization curve, 

optimization time and diversity of the selected features. PSO could guarantee a 90% accuracy 

with only 7 features. SA on the other hand required 49 features to guarantee a 90% accuracy. 

Although SA required more features to guarantee a 90% accuracy, it was the fastest 

optimization algorithm with only 5.1s for 49 features. NSGA2 on the other hand required 22.4s 

to guarantee a 90% accuracy. These show the diversity of the algorithms and their suitability 
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in different applications requiring highest accuracy, least number of features or fastest 

optimization time 56,61,139.  

One distinct characteristic of GA and NSGA-II was the more focused search amongst 

features as compared to the other methods. GA and NSGA-II selected 222 and 224 distinct 

features in the first 100 parameter sets, respectively, while the other methods covered almost 

the whole collection of features, covering more than 97.6%. Notably GA and NSGA-II showed 

“curse of dimensionality” (also known as “peaking phenomenon”) with optimal number of 

features around 50 parameters 140–143. Therefore, perhaps the features selected by GA and 

NSGA-II are more indicative of distinct characteristics of the differences between HC and 

EMCI.  

In this study, we proposed a method for classification of the EMCI and HC groups using 

graph theory. These results highlight the potential application of graph analysis of functional 

connectivity and efficiency of evolutionary algorithm in combination with a simple perceptron 

ANN in the classification of images into HC and EMCI. We proposed a fully automatic 

procedure for predication of early stages of AD using rs-fMRI data features. This is of 

particular importance considering that MRI images of EMCI individuals cannot be easily 

identified by experts. Further development of such methods can prove to be a powerful tool in 

the early diagnosis of AD. 
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Figure 1. Procedure of the proposed method. T1-MRI and resting-state fMRI (rs-fMRI) data of 

healthy participants (HC; n=36) and patients with early mild cognitive impairment (EMCI; 

n=34) are extracted from ADNI database 68. Preprocessing, parcellation of brain area (116 

regions based on AAL) and extraction of the functional connectivity (49 network parameter), 

as well as the seven graph parameters are done using CONN toolbox 70. Subsequently the 1155 

(116×7 + 49×7) extracted parameters are given to one of the optimization methods to select the 

best subset of parameters that lead to best classification method. Optimization methods 

consisted of five evolutionary algorithms (boxes with grey shading) and one statistical 

algorithm. The outputs of these methods are given to an artificial neural network (ANN) with 

two hidden layers to classify the data into HC and EMCI. AAL: automated anatomical atlas 75; 

GA: genetic algorithm; NSGA-II: nondominated sorting genetic algorithm II; ACO: ant colony 

optimization; SA: simulated annealing; PSO: particle swarm optimization; seven graph 

features: degree centrality, betweenness centrality, path length, clustering coefficient, local 

efficiency, cost and global efficiency. 
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Figure 2. Classification performance of the five evolutionary algorithm (EA) methods and the 

statistical method for parameter subsets with 1 to 100 elements. The light blue color shows the 

average of the five EV algorithms. The number on the top left-hand corner represents the 

difference between the relevant plot and the mean performance of the EA methods. The green 

plot subplot in each panel represents superiority of the relevant EA as compared to the 

statistical method for different 100 subsets. The percentage value above the subplot shows the 

mean superior performance for the 100 subsets compared to the statistical method. These plots 

show that the EA performed significantly better than the statistical method. GA: genetic 

algorithm; NSGA-II: nondominated sorting genetic algorithm II; ACO: ant colony 

optimization; SA: simulated annealing; PSO: particle swarm optimization. 
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(a) (b) 

Figure 3. Performance of the five evolutionary algorithms (EA) in terms of (a) percentage 

accuracy and (b) optimization speed. The values in the legend of panel (a) show the minimum 

number of parameters required to achieve minimum 90% accuracy. The values in the legend 

of panel (b) show the minimum optimization speed to achieve minimum 90% accuracy. GA: 

genetic algorithm; NSGA-II: nondominated sorting genetic algorithm II; ACO: ant colony 

optimization; SA: simulated annealing; PSO: particle swarm optimization. 
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Figure 4. Performance of different optimization methods for increased number of parameters 

per subset. The light blue dots indicate the performance of algorithms for each subset of 

parameters. The dark blue curve shows the moving average of the samples with window of ±20 

points (Filtered Data). The red curve shows the mean performance of the five evolutionary 

algorithms. GA: genetic algorithm; NSGA-II: nondominated sorting genetic algorithm II; 

ACO: ant colony optimization; SA: simulated annealing; PSO: particle swarm optimization. 
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(a) (b) 

Figure 5. Distribution of different parameters over the 100 subsets of parameters. (a) 

Percentage of presence of the 1155 parameters. In the Statistical method, which is not present 

in the plot, the first parameter was repeated in all the 100 subsets. Numbers in the legend show 

the percentage repetition of the most repeated parameter. (b) Cumulative number of unique 

parameters over the 100 subsets of parameters. This plot shows that GA and NSGA2 

concentrated on a small number of parameters, while the SA, ACO and PSO selected a more 

diverse range of parameters in the optimization. Numbers in the legend show the number of 

utilized parameters in the final solution of the 100 subsets of parameters. GA: genetic 

algorithm; NSGA-II: nondominated sorting genetic algorithm II; ACO: ant colony 

optimization; SA: simulated annealing; PSO: particle swarm optimization. 
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Supplementary Methods 

1 Genetic algorithm (GA) 

The procedure of GA consists of the following four steps 1: 

1. Individual encoding: Each individual is encoded as binary vector of size 𝑃, where the entry 

𝑏𝑖 = 1 states for the predictor 𝑝𝑖 that is defined for that individual, 𝑏𝑖 = 0 if the predictor 

𝑝𝑖 is not included in that particular individual (𝑖 = 1, … , 𝑃). 

2. Initial population: Given the binary representation of the individuals, the population is a 

binary matrix where its rows are the randomly selected individuals, and the columns are 

the available predictors. An initial population with a predefined number of individuals is 

generated with a random selection of 0 and 1 for each entry.  

3. Fitness function: the fitness value of the individual in the population is calculated using 

predefined fitness function. Individual with the lowest prediction error and fewer predictors 

have been selected for next generation. 

4. Genetic operators: applying genetic operators to create the next generation. 

The genetic operators are, Selection (randomly selection of members based on their fitness 

value; fitter members are more likely to be chosen), Crossover (the new generation is created 

by exchanging elements between two selected parents from the previous step), Mutation 

(elements in a selected member is changed), and Stop Criteria (the criteria and indicate the end 

of the search) 1. In our study we used roulette wheel selection for selection of the possible 

valuable solutions to producing offsprings for the next generation.  

2 Nondominated sorting genetic algorithm II (NSGA-II) 

Nondomination and crowding distance are used to sort the new members. A specific number 

of individuals in the sorted population are transferred to the next generation. This conventional 

NSGA algorithm has a computational complexity of 𝑂(𝑀𝑁3), where 𝑀 is the number of 

objectives and 𝑁 is the population size. NSGA-II on the other hand has overall complexity 

𝑂(𝑀𝑁2), which is significantly 2. After termination of the optimization process, nondominated 

solutions form the Pareto frontier. Each of the solutions on the Pareto frontier can be considered 

as an optimal strategy for a specific situation 3–5.  
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3 Ant colony optimization algorithm (ACO) 

See Figure 1 for the procedure of the traverse of an ant placed at node 𝑎. This ant has a choice 

of which feature to add next to its path (dotted lines). It traverses through the graph to find a 

path that satisfies the stopping criterion (e.g., a suitably high classification accuracy has been 

achieved with this subset). In this example, the ant chooses next feature 𝑏 based on a set of 

transition rules, then 𝑐 and then 𝑑. Upon arrival at 𝑑, the current subset {𝑎; 𝑏; 𝑐; 𝑑} is 

determined to satisfy the traversal stopping criterion. At termination of search, the algorithm 

outputs this feature subset as a candidate for data reduction 6. 

 

Figure 1. A sample example of ant traveling through multiple features in ant colony 

optimization algorithm (ACO). Here feature subset of {𝑎; 𝑏; 𝑐; 𝑑} is selected as a possible 

solution 6. 

The probability of an ant at feature 𝑖 choosing to travel to feature 𝑗 at time 𝑡: 

𝑝𝑖𝑗
𝑛 (𝑡) = {

[𝜗𝑖𝑗(𝑡)]
𝛼

. [𝜑𝑖𝑗]
𝛽

∑ [𝜗𝑖𝑗(𝑡)]
𝛼

. [𝜑𝑖𝑗]
𝛽

𝑙∈𝐽𝑖
𝑛

if 𝑗 ∈ 𝐽𝑖
𝑛

0 otherwise

 

where 𝑛 is the number of ants, 𝜑𝑖𝑗 is the heuristic desirability of choosing feature 𝑗 when at 

feature 𝑖, 𝐽𝑖
𝑛 is the set of nodes next to node 𝑖, which have not yet been visited by the ant 𝑛. The 

𝛼 > 0 and 𝛽 > 0 are two parameters that determine the relative importance of the pheromone 

value and heuristic information, respectively, and 𝜗𝑖𝑗  is the amount of virtual pheromone on 

edge (𝑖, 𝑗). The pheromone on each edge is updated according to the following formula 6: 

𝜗𝑖𝑗(𝑡 + 1) = (1 − 𝜌)𝜗𝑖𝑗(𝑡) + 𝜌∆𝜗𝑖𝑗(𝑡) 

∆𝜗𝑖𝑗(𝑡) = ∑(𝛾(𝐹𝑛)/|𝐹𝑛|

𝑁

𝑛=1

) 
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This is the case if the edge (𝑖, 𝑗) has been traversed; ∆𝜗𝑖𝑗(𝑡) is 0 otherwise. The value 0 ≤ 𝜌 ≤

1 is decay constant used to simulate the evaporation of the pheromone. The pheromone is 

updated according to both the measure of the "goodness" of the ant's feature subset 𝛾 and the 

size of the subset itself. By this definition, all ants update the pheromone 6. 𝐹𝑛 is the feature 

subset found by ant 𝑛.  

4 Simulated annealing (SA) 

SA utilizes a certain probability to accept a worse solution. The algorithm starts with a 

randomly generated solution; in each iteration, a neighbor solution to the best solution so far is 

generated according to a predefined neighborhood structure and evaluated using a fitness 

function. The improving move is accepted, whilst worse neighbors are accepted with a certain 

probability determined by the Boltzmann probability, 𝑃 = 𝑒 − 𝜃/ 𝑇 where 𝜃 is the difference 

between the fitness of the best solution and the generated neighbor. Moreover, 𝑇 is a 

temperature, which periodically decreases during the search process according to a certain 

cooling schedule. First, the current temperature 𝑇 is set to be a very large number 7,8.  

5 Particle swarm optimization (PSO) 

In a PSO with an N-dimensional search space, the particle position and velocity are formulated 

by: 

𝑉𝑖𝑗 = |𝑤 × 𝑥𝑖𝑗 + 𝑐𝑝 × 𝑟𝑝 × (𝑝𝑖𝑗 − 𝑥𝑖𝑗) + 𝑐𝑔 × 𝑟𝑔 × (𝑝𝑔𝑗 − 𝑥𝑖𝑗)| 

𝑥𝑖𝑗 = 𝑥𝑖𝑗 + 𝑣𝑖𝑗 , 

where 𝑉𝑖 and 𝑥𝑖 refer to the velocity and position of the particle 𝑖, respectively, and 𝑗, ranging 

from 1 to N (total number of features). 𝑐𝑝 is the cognitive parameter, defining the degree of 

acceleration towards the particle’s individual local best position 𝑝𝑖𝑗. 𝑐𝑔 is a social parameter, 

defining the acceleration towards the global best position 𝑝𝑔𝑗. 𝑤 is an inertia parameter, 

regulating the overall rate of change. The stochastic nature of the velocity equation is 

represented by 𝑟𝑝 and 𝑟𝑔, which are numbers in the range [0, 1]. To maintain coherence in the 

swarm, the maximum velocity is regulated by a parameter 𝑣𝑚𝑎𝑥. In standard PSO 

implementations, typically 𝑣𝑚𝑎𝑥 = |𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛|.   

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 5, 2021. ; https://doi.org/10.1101/2021.03.04.433989doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.04.433989
http://creativecommons.org/licenses/by-nc-nd/4.0/


References 

1.         Amini, F. & Hu, G. A two-layer feature selection method using Genetic Algorithm and Elastic 

Net. Expert Systems with Applications 166, 114072 (2021). 

2.         Deb, K., Pratap, A., Agarwal, S. & Meyarivan, T. A fast and elitist multiobjective genetic 

algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6, 182–197 (2002). 

3.         Srinivas, N. & Deb, K. Muiltiobjective Optimization Using Nondominated Sorting in Genetic 

Algorithms. Evolutionary Computation 2, 221–248 (1994). 

4.         Heris, S. M. K. & Khaloozadeh, H. Open-and closed-loop multiobjective optimal strategies for 

HIV therapy using NSGA-II. IEEE Transactions on Biomedical Engineering 58, 1678–1685 

(2011). 

5.         Dang, V. Q. & Lam, C. NSC-NSGA2: Optimal search for finding multiple thresholds for 

nearest shrunken centroid. in 2013 IEEE International Conference on Bioinformatics and 

Biomedicine 367–372 (IEEE, 2013). doi:10.1109/BIBM.2013.6732520. 

6.         Kanan, H. R., Faez, K. & Taheri, S. M. Feature Selection Using Ant Colony Optimization 

(ACO): A New Method and Comparative Study in the Application of Face Recognition 

System. in Advances in Data Mining. Theoretical Aspects and Applications vol. 4597 LNCS 

63–76 (Springer Berlin Heidelberg, 2007). 

7.         Lin, S. W., Lee, Z. J., Chen, S. C. & Tseng, T. Y. Parameter determination of support vector 

machine and feature selection using simulated annealing approach. Applied Soft Computing 

Journal 8, 1505–1512 (2008). 

8.         Mafarja, M. M. & Mirjalili, S. Hybrid Whale Optimization Algorithm with simulated 

annealing for feature selection. Neurocomputing 260, 302–312 (2017). 

  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 5, 2021. ; https://doi.org/10.1101/2021.03.04.433989doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.04.433989
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Figure Captions 

Figure 1. A sample collection of networks and regions of interests (ROI) connectivity matrix 

using rs-fMRI data. The colors indicate t-value for one-sample t-test statistics. ...................... 2 

Figure 2. Functional connectivity for brain areas with statistically significant correlation with 

other regions of interest (ROI). .................................................................................................. 3 

Figure 3. All of the graph parameters on one view. ................................................................... 4 

Figure 4. Graph parameter – average path length (the average distance from each node to any 

other node) ................................................................................................................................. 5 

Figure 5. Graph parameter – betweenness centrality (the proportion of shortest paths between 

all node pairs in the network that pass through a given index node) ......................................... 6 

Figure 6. Graph parameter – clustering coefficient (the proportion of ROIs that have 

connectivity with a particular ROI that also have connectivity with each other) ...................... 7 

Figure 7. Graph parameter – cost (the ratio of the existing number of edges to the number of 

all possible edges in the network) .............................................................................................. 8 

Figure 8. Graph parameter – degree centrality (the number of edges that connect a node to the 

rest of the network) .................................................................................................................... 9 

Figure 9. Graph parameter – local efficiency (the network ability in transmitting information at 

the local level) .......................................................................................................................... 10 

Figure 10. Graph parameter – global efficiency (the average inverse shortest path length in the 

network; this parameter is inversely related to the path length) .............................................. 11 

Figure 11. Comparison of classification performance for 200 repetitions (light blue) and 500 

repetitions (dark blue) for different optimization algorithms per parameter set. The subplots 

show the difference between 200 and 500 repetitions, showing small superior performance for 

500 repetitions. This is an indication that the algorithms converted within the first 200 

repetitions. ................................................................................................................................ 12 

  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 5, 2021. ; https://doi.org/10.1101/2021.03.04.433989doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.04.433989
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Figure 1. A sample collection of networks and regions of interests (ROI) connectivity matrix 

using rs-fMRI data. The colors indicate t-value for one-sample t-test statistics. 
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Figure 2. Functional connectivity for brain areas with statistically significant correlation with 

other regions of interest (ROI). 
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Figure 3. All of the graph parameters on one view.  
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Figure 4. Graph parameter – average path length (the average distance from each node to any 

other node) 
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Figure 5. Graph parameter – betweenness centrality (the proportion of shortest paths between 

all node pairs in the network that pass through a given index node) 
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Figure 6. Graph parameter – clustering coefficient (the proportion of ROIs that have 

connectivity with a particular ROI that also have connectivity with each other) 
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Figure 7. Graph parameter – cost (the ratio of the existing number of edges to the number of 

all possible edges in the network) 
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Figure 8. Graph parameter – degree centrality (the number of edges that connect a node to the 

rest of the network) 
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Figure 9. Graph parameter – local efficiency (the network ability in transmitting information at 

the local level) 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 5, 2021. ; https://doi.org/10.1101/2021.03.04.433989doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.04.433989
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figure 10. Graph parameter – global efficiency (the average inverse shortest path length in the 

network; this parameter is inversely related to the path length) 
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Figure 11. Comparison of classification performance for 200 repetitions (light blue) and 500 

repetitions (dark blue) for different optimization algorithms per parameter set. The subplots 

show the difference between 200 and 500 repetitions, showing small superior performance for 

500 repetitions. This is an indication that the algorithms converted within the first 200 

repetitions.  
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Supplementary Table 1. Summary of the studies aiming at categorization of healthy (HC), mild cognitive impairment (MCI) and Alzheimer’s 

disease (AD) using different biomarkers and classification methods based on Table 1. 

        HC MCI     AD   

Study ↑ Cit. Method Modalities n Cat. n Acc% n Acc% 

Wolz et al (2011) 1 LDA MRI 231 sMCI 238 68 198 89 
 

 

   

cMCI 167 84   

Zhang et al (2011) 2 SVM MRI 231 SMCI 238 82 198 87 
 

 LDA 

  

PMCI 167 84  89 

Liu et al (2012) 3 SRC MRI 229 MCI 225 87.85 198 90.8 

Gray et al (2013) 4 RF MRI+PET+CSF+genetic 35 MCI 75 75 37 89 

Liu et al (2013) 5 SVM + LLE MRI 137 sMCI 92 69 86 90 
 

 

   

cMCI 97 81   

Wee et al (2013) 6 SVM MRI 200 MCI 200 83.75 198 92.35 

Guerrero et al (2014) 7 SVM MRI 134 EMCI 229 65 106 86 
 

 

 

MRI 175 cMCI 116 82 106  

Payan & Montana (2015) 8 CNN MRI 755 MCI 755 92.11 755 95.39 

Prasad et al (2015) 9 SVM DWI 50 EMCI 74 59.2 38 78.2 
 

 

   

LMCI 38 62.8   

Suk et al (2015) 10 DNN MRI+PET+CSF 52 MCI 99 90.7 51 98.8 

Shakeri et al (2016) 11 DNN MRI 150 EMCI 160 56 90 84 
 

 

 

MRI 

 

LMCI 160 59   

Aderghal, Benois-Pineau et al (2017) 12 CNN MRI 228 MCI 399 66.2 188 91.41 

Aderghal, Boissenin et al (2017) 13 CNN MRI 228 MCI 399 66 188 82.8 
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Billones et al (2017) 14 CNN MRI 300 MCI 300 91.67 300 98.33 

Guo et al (2017) 15 SVM fMRI 28 EMCI 32 72.8 38 88.91 
 

 

   

LMCI 32 78.63   

Korolev et al (2017) 16 CNN MRI 61 LMCI 43 63 50 80 
 

 

   

EMCI 77 56   

Wang et al (2017) 17 CNN MRI 229 MCI 400 90.6   

Li & Liu (2018) 18 CNN MRI 229 MCI 403 73.8 199 92.4 

Qiu et al (2018) 19 CNN MRI 303 MCI 83 90.9   

Senanayake et al (2018) 20 CNN MRI 161 MCI 193 75 161 79 

Altaf et al (2018) 21 SVM MRI 90 MCI 105 79.8 92 58 
 

 Ensemble MRI 

 

MCI 

 

75  58 
 

 KNN MRI 

 

MCI 

 

75  56 
 

 Tree MRI 

 

MCI 

 

78  59 
 

 SVM clinical+MRI 

 

MCI 

 

83  98 
 

 Ensemble clinical+MRI 

 

MCI 

 

82  98 
 

 KNN clinical+MRI 

 

MCI 

 

86  92 
 

 Tree clinical+MRI 

 

MCI 

 

80  98 

Forouzannezhad et al (2018) 22 SVM MRI 248 EMCI 296 73.1 159 90.3 
 

 

 

MRI 

 

LMCI 193 63   
 

 

 

PET 

 

LMCI 

 

73.6  82.5 
 

 

 

PET+MRI 

 

LMCI 

 

76.9  91.2 
 

 

 

PET+MRI 

 

EMCI 

 

75.6   
 

 

 

PET+MRI+NTS 

 

LMCI 

 

91.9  96.2 
 

 

 

PET+MRI+NTS 

 

EMCI 

 

81.1   
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Hosseini Asl et al (2018) 23 CNN MRI 70 MCI 70 94 70 99 

Jie, Liu, Shen et al (2018) 24 SVM fMRI 50 EMCI 56 78.3   

Jie, Liu, Zhang et al (2018) 25 SVM fMRI 50 MCI 99 82.6   

Raeper et al (2018) 26 SVM + LDA MRI 42 EMCI 42 80.95   

Basaia et al (2019) 27 CNN MRI 407 cMCI 280 87.1 418 99 
 

 

   

sMCI 533 76.1   

Forouzannezhad et al (2019) 28 DNN MRI 248 EMCI 296 61.1 159 82.2 
 

 

 

MRI 

 

LMCI 193 64.1   
 

 

 

PET 

 

EMCI 

 

58.2  88.9 
 

 

 

PET 

 

LMCI 

 

66   
 

 

 

MRI+PET 

 

EMCI 

 

68  89.6 
 

 

 

MRI+PET 

 

LMCI 

 

71.7   
 

 

 

MRI+PET+NTS 

 

EMCI 

 

84  96.8 
 

 

 

MRI+PET+NTS 

 

LMCI 

 

84.1   

Wang et al (2019) 29 DNN MRI 209 MCI 384 98.42 240 98.83 

Wee et al (2019) 30 CNN MRI 300 LMCI 208 69.3 261 85.8 
 

 

   

EMCI 314 51.8   
 

 

  

242 MCI 415 67.6 355 81 

Lee et al (2020) 31 Radiality DTI 78 MCI 84 70.5 39 93.5 

     EMCI 50 70.5   

     LMCI 34 67.9   

Kam et al (2020) 32 CNN fMRI 48 EMCI 49 76.07   

Fang et al (2020) 33 GDCA MRI+PET 251 EMCI 

 

79.25   

Forouzannezhad et al (2020) 34 GP MRI 248 EMCI 296 75.9 159 83.6 
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MRI 

 

LMCI 193 62.1   
 

 

 

MRI+PET 

 

EMCI 

 

75.9  92.5 
 

 

 

MRI+PET 

 

LMCI 

 

78.1   
 

 

 

MRI+PET+DTI 

 

EMCI 

 

78.8  94.7 
 

 

 

MRI+PET+DTI 

 

LMCI 

 

79.8   
 

 

 

PET 

 

LMCI 

 

76.1  90 

Jiang et al (2020) 35 CNN MRI 50 EMCI 70 89.4   

Kang et al (2020) 36 CNN  DTI 50 EMCI 70 71.7   
 

 CNN  MRI 

 

EMCI 

 

73.3   
 

 

 

DTI+MRI 

 

EMCI 

 

94.2   

Yang et al (2021) 36 SVM fMRI 29 EMCI 29 82.76   
 

 

   

LMCI 18 87.23   

our method  EA + ANN MRI 34 EMCI 36 94.5   

Notes: ↑ table sorted based on the year of publication. Acc: classification accuracy percentage between MCI and HC groups; ANN: artificial 

neural networks; Cat.: category of MCI; Cit.: citation; cMCI: MCI converted to AD; CNN: convolutional neural networks; DNN: deep neural 

network; DTI: diffusion tensor imaging; DWI: diffusion-weighted imaging; EA: evolutionary algorithms; EMCI: early-MCI; GDCA: gaussian 

discriminative component analysis; GP: gaussian process; KNN: K nearest neighbors; LDA: linear discriminative analysis; LLE: locally linear 

embedding; LMCI: late-MCI; NTS: neuropsychological test scores; PET: positron emission therapy; sMCI: stable MCI; SRC: sparse 

representation-based classifier; SVM: support vector machine. 
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