
Reconstruction of a catalogue of genome-scale metabolic models with 

enzymatic constraints using GECKO 2.0 
 

Iván Domenzain1,2, Benjamín Sánchez3,4, Mihail Anton5, Eduard J. Kerkhoven1,2, Aarón 

Millán-Oropeza6, Céline Henry6, Verena Siewers1,2, John P. Morrissey7, Nikolaus 

Sonnenschein3 and Jens Nielsen1,2,8(*) 

 
1 Department of Biology and Biological Engineering, Chalmers University of Technology, SE41296 
Gothenburg, Sweden 
 
2 Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE41296 
Gothenburg, Sweden 
 
3 Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs, Lyngby, 
Denmark  
 
4 Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs, 
Lyngby, Denmark  
 
5 Department of Biology and Biological Engineering, National Bioinformatics Infrastructure Sweden, 
Science for Life Laboratory, Chalmers University of Technology, Kemivägen 10, SE-41258 Gothenburg, 
Sweden. 
 
6 Plateforme d’ analyse protéomique Paris Sud-Ouest (PAPPSO), INRAE, MICALIS Institute, Université 
Paris-Saclay, 78350, Jouy-en-Josas, France. 
 
7 School of Microbiology, Environmental Research Institute and APC Microbiome Ireland, University 
College Cork, T12 K8AF, Cork, Ireland. 
 
8 BioInnovation Institute, Ole Maaløes Vej 3, DK2200 Copenhagen, Denmark 
 
 (*) Corresponding author. 

 

Correspondence: nielsenj@chalmers.se 

 

Abstract 

Genome-scale metabolic models (GEMs) have been widely used for quantitative exploration of the relation 

between genotype and phenotype. Streamlined integration of enzyme constraints and proteomics data into 

GEMs was first enabled by the GECKO method, allowing the study of phenotypes constrained by protein 

limitations. Here, we upgraded the GECKO toolbox in order to enhance models with enzyme and 
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proteomics constraints for any organism with an available GEM reconstruction. With this, enzyme-

constrained models (ecModels) for the budding yeasts Saccharomyces cerevisiae, Yarrowia lipolytica and 

Kluyveromyces marxianus were generated, aiming to study their long-term adaptation to several stress 

factors by incorporation of proteomics data. Predictions revealed that upregulation and high saturation of 

enzymes in amino acid metabolism were found to be common across organisms and conditions, suggesting 

the relevance of metabolic robustness in contrast to optimal protein utilization as a cellular objective for 

microbial growth under stress and nutrient-limited conditions. The functionality of GECKO was further 

developed by the implementation of an automated framework for continuous and version-controlled update 

of ecModels, which was validated by producing additional high-quality ecModels for Escherichia coli and 

Homo sapiens. These efforts aim to facilitate the utilization of ecModels in basic science, metabolic 

engineering and synthetic biology purposes. 

 

Introduction  
Genome-scale metabolic models  (GEMs) have become an established tool for systematic analyses of 

metabolism for a wide variety of organisms1–6. Their myriads of applications span from model-driven 

development of efficient cell factories3,7–9, to their utilization for understanding mechanisms underlying 

complex human diseases10–12. One of the most common simulation techniques for enabling phenotype 

predictions with these models is flux balance analysis (FBA), which assumes that there is balancing of 

fluxes around each metabolite in the metabolic network. This means that fluxes are constrained by 

stoichiometries of the biochemical reactions in the network, and that cells have evolved in order to operate 

their metabolism according to optimality principles13,14. Quantitative determination of biologically 

meaningful  flux distribution profiles is a major challenge for constraint-based methods, as optimal 

phenotypes can be attained by alternate flux distribution profiles15, caused by the presence of network 

redundancies that provide organisms with robustness to environmental and genetic perturbations. This 

limitation is often addressed by incorporation of experimental measurements of exchange fluxes (secretion 

of byproducts and uptake of substrates) as numerical flux constraints for the FBA problem. However, such 

measurements are not readily available for a wide variety of conditions and organisms.  

 

In order to overcome these limitations, the concept of enzymatic limitations on metabolic reactions has 

been explored and incorporated by several constraint-based methods. Some of these have modelled enzyme 

demands of metabolic reactions by constraining metabolic networks with kinetic parameters and 

physiological limitations of cells, such as a crowded intracellular volume16–18, a finite membrane surface 

area for expression of transporter proteins19 and a bounded total protein mass available for metabolic 

enzymes20–25. All of these modelling frameworks have been successful at expanding the range of predictions 
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of classical FBA, providing explanations for overflow metabolism and cellular growth on diverse 

environments for Escherichia coli16–19,21,23,25, Saccharomyces cerevisiae22,25,26, Lactococus lactis27 and even 

human cells20,24. However, these modelling approaches were applied to metabolic networks of extensively 

studied model organisms, which are usually well represented in specialized resources for kinetic parameters 

such as the BRENDA28 and SABIO RK29 databases. Furthermore, collecting the necessary parameters for 

the aforementioned models was mostly done manually; therefore, no generalized model parameterization 

procedure was provided as an integral part of these methods. 

 

Enzyme limitations have also been introduced into models of metabolism by other formalisms, for instance, 

Metabolic and gene Expression models (ME-models), implemented on reconstructions for E. coli30–33, 

Thermotoga maritima34 and Lactococus lactis35; and resource balance analysis models (RBA), on 

reconstructions for E. coli36 and Bacillus subtilis36,37. These formalisms succeeded at merging genome-scale 

metabolic networks together with comprehensive representations of macromolecular expression processes, 

enabling detailed exploration of the constraints that govern cellular growth on diverse environments. 

Despite the great advances for understanding cell physiology, provided by these modelling formalisms, 

accuracy on phenotype predictions is compromised by the large number of parameters that are required 

(rate constants for transcriptional, translational, protein folding and degradation processes), with most of 

these not being readily available in the literature. Moreover, these models encompass processes that differ 

radically in their temporal scales (e.g., protein synthesis vs. metabolic rates) and their mathematical 

representation (presence of non-linear expressions in ME-models), requiring the implementation of more 

elaborate techniques for numerical simulation. 

 

GECKO, a method for enhancement of GEMs with Enzymatic Constraints using Kinetic and Omics data, 

was developed in 2017 and applied to the consensus GEM for S. cerevisiae, Yeast738. This method extends 

the classical FBA approach by incorporating a detailed description of the enzyme demands for the metabolic 

reactions in a network, accounting for all types of enzyme-reaction relations, including isoenzymes, 

promiscuous enzymes and enzymatic complexes. Moreover, GECKO enables direct integration of 

proteomics abundance data, if available, as constraints for individual protein demands, represented as 

enzyme usage pseudo-reactions, whilst all of the unmeasured enzymes in the network are constrained by a 

pool of remaining protein mass. Additionally, this method incorporates a hierarchical and automated 

procedure for retrieval of kinetic parameters from the BRENDA database, which yielded a high coverage 

of kinetic constraints for the S. cerevisiae network. The resulting enzyme-constrained model, ecYeast7, was 

used for successful prediction of the Crabtree effect in wild-type and mutant strains of S. cerevisiae and 

cellular growth on diverse environments and genetic backgrounds, but also provided a simple framework 
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for prediction of protein allocation profiles and study of proteomics data in a metabolic context. 

Furthermore, the model formed the basis for modeling yeast growth at different temperatures39. 

 

Since the first implementation of the GECKO method38, its principles of enzyme constraints have been 

incorporated into GEMs for B. subtilis40, E. coli41, B. coagulans42, Streptomyces coelicolor43 and even for 

diverse human cancer cell-lines2, showing the applicability of the method even for non-model organisms. 

Despite the rapid adoption of the method by the constraint-based modelling community, there is still a need 

for automating the model generation and enabling identification of kinetic parameters for less studied 

organisms. Here we wanted to build GECKO models for several organisms, and we therefore updated the 

GECKO toolbox to its 2.0 version. Among other improvements, we generalized its structure to facilitate its 

applicability to a wide variety of GEMs, and we improved its parameterization procedure to ensure high 

coverage of kinetic constraints, even for poorly studied organisms. Additionally, we incorporated 

simulation utility functions, and developed an automated virtual pipeline for update of enzyme-constrained 

models (ecModels), named ecModels container. This container is directly connected to the original sources 

of version-controlled GEMs and the GECKO toolbox, offering a continuously updated catalogue of diverse 

ecModels. 

 

Results 

Community development of GECKO 

To ensure wide application and enable future development by the research community, we established the 

GECKO toolbox as open-source software, mostly encoded in MATLAB. It integrates modules for 

enhancement of GEMs with kinetic and proteomics constraints, automated retrieval of kinetic parameters 

from the BRENDA database (python module), as well as simulation utilities and export of ecModel files 

compatible with both the COBRA toolbox44 and the COBRApy package45. The development of GECKO 

has been continuously tracked in a public repository (https://github.com/SysBioChalmers/GECKO) since 

2017, providing a platform for open and collaborative development. The generation of output model files 

in .txt and SBML L3V1 FBC246 formats enabled the utilization of ecYeastGEM1 structure as a standard 

test to track the effects of any modifications in the toolbox algorithm through the use of the Git version 

control system, contributing to reproducibility of results and backwards compatibility of code. 

 

Interaction with users of the GECKO toolbox and the ecYeastGEM model has also been facilitated through 

the use of the GECKO repository, allowing users to raise issues related with the programming of the toolbox 

or even about conceptual assumptions of the method, which has guided cumulative enhancements. 

Additionally, technical support for installation and utilization of the toolbox and ecYeastGEM is now 
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provided through an open community chat room (available at: https://gitter.im/SysBioChalmers/GECKO), 

reinforcing transparent and continuous communication between users and developers. 

 

New additions to the GECKO toolbox 

The first implementation of the GECKO method significantly improved phenotype predictions for S. 

cerevisiae’s metabolism under a wide variety of genetic and environmental perturbations38. However, its 

development underscored some issues, in particular that quantitative prediction of the critical dilution rate 

and exchange fluxes at fermentative conditions are highly sensitive to the distribution of incorporated 

kinetic parameters. Although S. cerevisiae is one of the most studied eukaryal organisms, not all reactions 

included in its model have been kinetically characterized. Therefore, a large number of kcat numbers 

measured for other organisms (48.35%), or even non-specific to their reaction mechanism (56.03% of kcat 

values found by introduction of wild cards into E.C. numbers) were needed to be incorporated, in order to 

fill the gaps in the available data for the reconstruction of the first S. cerevisiae ecModel, ecYeast7.  

Moreover, detailed manual curation of kcat numbers was needed for several key enzymes in order to achieve 

biologically meaningful predictions.  

 

As the BRENDA database47 is the main source of kinetic parameters for GECKO, all of the available kcat  

and specific activity entries for non-mutant enzymes were retrieved. In total, 38,280 entries for 4,130 unique 

E.C. numbers were obtained and classified according to biochemical mechanisms, phylogeny of host 

organisms and metabolic context (Supp. file 1), in order to assess significant differences in distributions of 

kinetic parameters. This analysis showed that not all organisms have been equally studied. Whilst entries 

for H. sapiens, E. coli, R. norvegicus and S. cerevisiae account for 24.02% of the total, very few kinetic 

parameters are available for most of the thousands of organisms present in the database, showing a median 

of 2 entries per organism (Fig. 1A, Supp. file 1). The analysis also showed that kinetic activity can differ 

drastically, spanning several orders of magnitude even for families of enzymes with closely related 

biochemical mechanisms (Fig. 1B). Finally, it was also observed that kcat distributions for enzymes in the 

central carbon and energy metabolism differ significantly from those in other metabolic contexts across 

phylogenetic groups of host organisms (life kingdoms, according to the KEGG phylogenetic tree48), even 

without filtering the dataset for entries reported exclusively for natural substrates, as previously done by 

other studies49 (Fig. 1C).  

 

As kcat numbers depend on biochemical mechanisms, metabolic context and phylogeny of host organisms, 

a modified set of hierarchical kcat matching criteria was implemented as part of GECKO 2.0. The modified 

parameterization procedure enables the incorporation of kinetic parameters that have been reported as 
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specific activities in BRENDA when no kcat is found for a given query (as the specific activity of an enzyme 

is defined as its kcat over its molecular weight), adding 8,118 new entries to the catalogue of kinetic 

parameters in the toolbox. A phylogenetic distance-based criterion, based on the phylogenetic tree available 

in the KEGG database48, was introduced for cases in which no organism-specific entries are available for a 

given query in the kinetic parameters dataset. A comparison of the new kcat matching criteria with their 

predecessor set is shown in Supp. file 2. 

 

In order to assess the impact of the modified kcat assignment algorithm on an ecModel, ecYeast7 was 

reconstructed using both the first and the new version of the GECKO toolbox (GECKO 2.0). A 

classification of the matched kcat numbers according to the different levels of the new matching algorithm 

is provided in Fig. 1D. The incorporation of specific activity values in the parameter catalogue increased 

the number of kinetic parameters matched to complete E.C. numbers (no added wild cards) from 1432 to 

2696 (Fig. 1E). Moreover, the implementation of the phylogenetic distance-based criterion yielded a 

distribution of kinetic parameters that showed no significant differences when compared to the values 

reported in BRENDA for all fungi species, in contrast to the kinetic profile matched by the previous 

algorithm (p-values <10-10 and <10-7, when compared to the BRENDA fungi and S. cerevisiae distributions, 

respectively, under a Kolmogorov-Smirnov test) (Fig. 1F). The quality of phenotype predictions for the 

ecYeast7 model enhanced by GECKO2.0 was evaluated by simulation of batch growth in 19 different 

environments, with an average relative error of 29.22% when compared to experimental data (Fig. 1G). 

 

The introduction of manually curated kcat numbers in a metabolic network has been proven to increase the 

quality of phenotype predictions for S. cerevisiae22,25,38; nevertheless, this is an intensive and time 

consuming procedure that is hard to ensure for a large number of models subject to continuous 

modifications. In order to ensure applicability of the GECKO method to any standard GEM, a unified 

procedure for curation of kinetic parameters was developed based on parameter sensitivity analysis. For 

automatically generated ecModels that are not able to reach the provided experimental value for maximum 

batch growth rate, an automatic module performs a series of steps in which the top enzymatic limitation on 

growth rate is identified through the quantification of enzyme control coefficients. For such enzymes, the 

E.C. number is obtained and then its correspondent kcat value is substituted by the highest one available in 

BRENDA for the given enzyme class. This procedure iterates until the specific growth rate predicted by 

the model reaches the provided experimental value. 

 

Finally, as the first version of the toolbox relied on the structure and nomenclature of the model Yeast7, its 

applicability to other reconstructions was not possible in a straightforward way. In order to provide 
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compatibility with any other GEM, based on COBRA44 or RAVEN50 formats, all of the organism-specific 

parameters required by the method (experimental growth rate, total protein content, organism name, names 

and identifiers for some key reactions, etc.) can be provided in a single MATLAB initialization script, 

minimizing the modifications needed for the generation of a new ecModel. 

 

ecModels container: an automatically updated repository 

Several GEMs that have been published are still subject to continuous development and maintenance1–3,5,6, 

this renders GEMs to be dynamic structures that can change rapidly. In order to integrate such continuous 

updates into the enzyme constrained version of a model in an organized way, an automated pipeline named 

ecModels container was developed. 

 

The ecModels container is a continuous integration implementation whose main functionality is to provide 

a catalogue of ecModels for several relevant organisms that are automatically updated every time a 

modification is detected either in the original GEM source repository or in the GECKO toolbox, i.e. new 

releases in their respective repositories. The pipeline generates ecModels in different formats, including the 

standard SBML and MATLAB files, and stores them in a container repository 

(https://github.com/SysBioChalmers/ecModels) in a version controlled way, requiring minimal human 

interaction and maintenance. The GECKO toolbox ensures the creation of functional and calibrated 

ecModels that are compatible with the provided experimental data (maximum batch growth rate, total 

protein content of cells and exchange fluxes at different dilution rates as an optional input). This whole 

computational pipeline is illustrated in Fig. 2. Further description of the ecModels container pipeline 

functioning is included in in the Materials and Methods section. 

 

A catalogue of new ecModels 

Following the aforementioned additions to the GECKO toolbox, that have allowed its generalization, we 

used the toolbox for the reconstruction of four new ecModels from previously existing high-quality 

metabolic network reconstructions: iYali4, for the oleaginous yeast Yarrowia lipolytica5; iSM996, for the 

thermotolerant yeast Kluyveromyces marxianus6; iML1515, for the widely studied bacterium E. coli4; and 

Human1, being the latest and largest network reconstruction available for studying H. sapiens metabolism2. 

For the microbial models, all model parameters were calibrated according to the provided experimental 

data, generated by independent studies4,51–53, yielding functional ecModels ready for simulations. Size 

metrics for these models can be seen in Table 1. 
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These ecModels, together with ecYeastGEM, are hosted in the ecModels container repository for their 

continuous and automated update every time that a version change is detected either in the original model 

source or in the GECKO repository. In the case of microbial species, two different model structures are 

provided: ecModel, which has unbounded individual enzyme usage reactions ready for incorporation of 

proteomics data; and ecModel_batch in which all enzyme usage reactions are connected to a shared protein 

pool. This pool is then constrained by experimental values of total protein content, and calibrated for batch 

simulations using experimental measurements of maximum batch growth rates on minimal glucose media, 

thus providing a functional ecModel structure ready for simulations.  

 

For ecHumanGEM just the unbounded ecModel files are provided, as this is a general network of human 

metabolism, containing all reactions from any kind of human tissue or cell type for which evidence is 

available, and therefore not suitable for numerical simulation. As H. sapiens is the most represented 

organism in the BRENDA database, accounting for 11% of the total number of available kcat values (Supp. 

file 1), kinetic parameters from other organisms were not taken into account for its enhancement with 

enzyme constraints. ecHuman1 provides the research community with an extensive knowledge base that 

represents a complete and direct link between genes, proteins, kinetic parameters, reactions and metabolites 

for human cells in a single model structure, subject to automated continuous update by the ecModels 

container pipeline. 

 

Table 1.- Size metrics summary for the ecModels catalogue. 
Original GEMs 

Organism S. cerevisiae Y. lipolytica K. marxianus E. coli H. sapiens 

Model ID yeastGEM_8.3.3 iYali4 iSM996 iML1515 Human1 
Reactions 3963 1924 1913 2711 13101 

Metabolites 2691 1671 1531 1877 8400 

Genes 1139 847 996 1516 3628 

Enzyme constrained GEMs 

Model ID ecYeastGEM eciYali eciSM996 eciML1515 ecHumanGEM 

Reactions 8028 3881 5334 6084 46259 

Metabolites 4153 1880 2064 2334 12191 

Enzymes 965 647 716 1259 3224 

Enzyme 
coverage 

84.72% 76.39% 71.89% 83.05% 88.86% 

Reactions w/ kcat 3771 1586 2891 2562 27014 

Reactions w/ 
Isoenzymes 

504 205 532 456 3791 
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Promiscuous 
Enzymes 

572 324 469 673 2184 

Enzyme 
complexes 

252 75 27 383 756 

 
 
Visualization of GECKO simulations in the Caffeine platform 

We implemented simulations with ecModels in Caffeine, an open-source software platform for cell factory 

design. Caffeine, publicly available at http://caffeine.dd-decaf.eu, allows user-friendly simulation and 

visualization of flux predictions made by genome-scale metabolic models. Several standard modelling 

methods are already included in the platform, such as 13C fluxomics data integration, and simulation of 

gene deletion and/or overexpression, to interactively explore strain engineering strategies. In order to allow 

for GECKO simulations, we added a new feature to the platform for uploading enzyme-constrained models 

and absolute proteomics data. Additionally, we added a simulation algorithm that recognizes said models, 

and overlays the selected proteomics data on them, leaving out data that makes the model unable to grow 

at a pre-specified growth rate. After these inclusions to the platform, enzyme usage can now be computed 

on the fly and visualized on metabolic maps (Fig. 2B), to identify potential metabolic bottlenecks in a given 

condition. The original proteomics data can be visualized as well, to identify if the specific bottleneck is 

due to a lack of enzyme availability, or instead due to an inefficient kinetic property. This will suggest 

different metabolic engineering strategies to the user: if the problem lies in the intracellular enzyme levels, 

the user can interpret this as a recommendation for overexpressing the corresponding gene, whereas if the 

problem lies in the enzyme efficiency, the user could assess introducing a heterologous enzyme as an 

alternative. 

 

GECKO simulation utilities 

As ecModels are defined in an irreversible format and incorporate additional elements such as enzymes (as 

new pseudo-metabolites) and their usages (represented as pseudo-reactions), they might sometimes not be 

directly compatible with all of the functionalities offered by currently available constraint-based simulation 

software44,45,50,54,55. We therefore added several new features to the GECKO toolbox that allow the 

exploration and exploitation of ecModels. These include utilities for: 1) basic simulation and analysis 

purposes, 2) accessible retrieval of kinetic parameters, 3) automated generation of condition-dependent 

ecModels with proteomic abundance constraints, 4) comparative flux variability analysis between a GEM 

and its ecModel counterpart, and 5) prediction of metabolic engineering targets for enhanced production 

with an implementation of the FSEOF method56 for ecModels. Detailed information about the inputs and 

outputs for each utility can be found on their respective documentation, available at: 
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https://github.com/SysBioChalmers/GECKO/tree/master/geckomat/utilities. All of these utilities were 

developed in MATLAB due to their dependency on some RAVEN toolbox functions50. 

 

Predicting microbial proteome allocation in multiple environments 

In order to test the quality of the phenotype predictions of an ecModel automatically generated by the 

ecModels container pipeline, batch growth under 11 different carbon sources was simulated with 

eciML1515 for E. coli. Figure 3A shows that, for all carbon sources, growth rates were predicted at the 

same order of magnitude as their corresponding experimental measurements, with the most accurate 

predictions obtained for growth on D-glucose, mannose and D-glucosamine. Furthermore, batch growth 

rate and protein allocation predictions, using no exchange flux constraints, were compared between 

eciML1515 and the iJL1678 ME-model32, the latter accounting for both metabolism and macromolecular 

expression processes. The sum squared error (SSE) for batch growth rate predictions across the 11 carbon 

sources using eciML1515 was 0.27, a drastic improvement when compared to the 1.21 SSE of iJL1678 

ME-model predictions32. Figure 3B shows the predicted total proteome needed by cells to sustain the 

provided experimental growth rates for the same 11 environments. Notably eciML1515 predicts values that 

lie within the range of predictions of the iJL1678 ME-model (from the optimal to the generalist case) for 

10 out of the 11 carbon sources (see Materiales and Methods for simulation details). This shows that the 

new version of the GECKO toolbox ensures the generation of functional ecModels that can be readily used 

for simulation of metabolism, due to its systematic parameter flexibilization step which reduces the need 

of extensive manual curation for new ecModels. Furthermore, iML1515 is a model available as a static file 

at the BiGG models repository57; therefore, its integration to the ecModels container for continuous update 

demonstrates the flexibility of our pipeline, regarding compatibility with original GEM sources, which can 

be provided as a link to their git-based repositories or even as static URLs. 

 

Proteomics constraints refine phenotype predictions for multiple organisms and conditions  

The previously mentioned module for integration of proteomics data generates a condition-dependent 

ecModel with proteomics constraints for each condition/replicate in a provided dataset of absolute protein 

abundances [mmol/gDw]. Even though absolute quantification of proteins is becoming more accessible and 

integrated into systems biology studies58–62, a major caveat of using proteomics data as constraints for 

quantitative models is their intrinsic high biological and technical variability63, therefore some of the 

incorporated data constraints need to be loosened in order to obtain functional ecModels. When needed, 

additional condition-dependent exchange fluxes of byproducts can also be used as constraints in order to 

limit the feasible solution space. A detailed description of the proteomics integration algorithm 

implemented in GECKO is given in Supp. file 2. 
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The new proteomics integration module was tested on the three ecModels for budding yeasts available in 

ecModels container (ecYeastGEM, eciYali, eciSM996). We measured absolute protein abundances for S. 

cerevisiae, Y. lipolytica and K. marxianus, grown in chemostats at 0.1 h-1 dilution rate and subject to several 

experimental conditions (high temperature, low pH and osmotic stress with KCl)64, and incorporated these 

data into the ecModels as upper bounds for individual enzyme usage pseudo-reactions. Then, exchange 

fluxes for CO2 and oxygen corresponding to the same chemostat experiments were used as a comparison 

basis to evaluate quality of phenotype predictions. For each organism-condition pair, 3 models were 

generated and compared in terms of predictions: a pure stoichiometric metabolic model, an enzyme-

constrained model with a limited shared protein pool, and an enzyme-constrained model with proteomics 

constraints. It was found that the addition of the enzyme pool constraint enables major reduction of the 

relative error in prediction of gaseous exchange fluxes in some of the studied conditions. Additionally, the 

incorporation of individual protein abundance constraints improves even further the predictive accuracy of 

gaseous exchanges, for 10 out of the 11 evaluated cases (Fig. 4A-C).  

 

The impact of incorporating enzyme and proteomics constraints on intracellular flux predictions was further 

assessed by mapping all condition-dependent flux distributions from the tested ecModels to their 

corresponding reactions in the original GEMs. In general, metabolic flux distributions showed high 

similarity when comparing ecModel to GEM predictions (Fig. S1), as 70-90% of the active fluxes were 

predicted within the interval of 0.5 < fold-change < 2 !𝐹𝐶 = !!
"#$%&"'

!!
()$ % across all conditions (Fig. S2 A-C, 

Supp. file 3). In addition, principal component analysis on absolute enzyme usage profiles predicted by 

ecModels revealed that, at low dilution rates, predictions of enzyme demands are mostly defined by the 

selected set of imposed constraints (shared protein pool vs. proteomics constraints) rather than by 

environmental condition, i.e. exchange fluxes (Fig. S2 D-F). However, more straightfroward comparison 

of the models’ predictions, by pairwise comparison of predicted absolute enzyme usage profiles, showed 

that 60 – 80% of the predicted enzyme usages lie within a range of 0.5 < fold-change < 2, when comparing 

ecModels predictions with and without proteomics constraints, across organisms and conditions (Fig. 4D, 

Fig. S2 G-I and Supp. file 3). It was observed that the incorporation of proteomics constraints induces a 

drastic differential use for a considerable amount of enzymes, as 12-21% of enzyme usages were predicted 

as either enabled or disabled by these constraints across all the simulated conditions, showing slight 

enrichment for enabled alternative isoenzymes for already active reactions (Supp. file 3). This suggests that 

upper bounds on enzyme usages induce differentiated utilization of isoenzymes, reflecting well why 

isoenzymes have been maintained throughout evolution. 
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The explicit inclusion of enzymes into GEMs by the GECKO method enables prediction of enzyme 

demands at the protein, reaction and pathway levels. Total protein burden values predicted by ecModels for 

several relevant metabolic superpathways (central carbon and energy metabolism, amino acid metabolism, 

lipid and fatty acid metabolism, cofactor and vitamin metabolism and nucleotide metabolism, according to 

the KEGG metabolic subsystems48), showed that central carbon and energy metabolism is the most affected 

sector in the ecYeastGEM network by integration of proteomics constraints, as protein burden predictions 

were higher, at least by 20%, for 3 out the 4 simulated conditions when compared with predictions of the 

ecYeastGEM without proteomics data (Fig. 4E).  

 

Relative enzyme usages, estimated as predicted absolute enzyme usage over enzyme abundance for all of 

the measured enzymes in an ecModel & "!
[$!]
', can be understood as the saturation level of enzymes in a given 

condition. In order to analyze the metabolic mechanisms underlying long-term adaptation to stress in 

budding yeasts, relative enzyme usage profiles were computed from all the previous simulations of 

ecModels with proteomics constraints. Enzymes that display fold-changes higher than 1 for both absolute 

abundance and their saturation level, when comparing predicted usage profiles between stress and reference 

conditions, suggest regulatory mechanisms on individual proteins that contribute to cell growth on the 

anlyzed stress condition. Figure 4F shows all of the enzymes that were identified as responsive to 

environmental stress in this study, displaying enrichment for  enzymes involved in biosynthesis of diverse 

amino acids and folate metabolism. 

 

A further mapping of all enzymes in these ecModels to a list of 2,959 single copy protein-coding gene 

orthologs across the three yeast species64 found 310 core proteins across these ecModels. Principal 

component analysis revealed that variance on absolute enzyme usages and abundance profiles for these 

core proteins is mostly explained by differences in the metabolic networks of the different species rather 

than by environmental conditions (Fig. S3 B-C), reinforcing previous results suggesting that, despite being 

phylogenetically related, their long-term stress responses at the molecular level have evolved independently 

after their divergence in evolutionary history64. 

 
 
Exploring the solution space reduction 

A major limitation in the use of GEMs is the high variability of flux distributions for a given cellular 

objective when implementing flux balance analysis, as this requires solving largely underdetermined linear 

systems through optimization algorithms15,65. This limitation has usually been overcome with incorporation 
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of measured exchange fluxes as constraints. However, these data are typically sparse in the literature. 

Previous studies explored the drastic reduction in flux variability ranges of ecModels for S. cerevisiae and 

11 human cell-lines when compared to their original GEMs due to the addition of enzyme constraints1,2,38. 

However, the irreversible format of ecModels (forward and backwards reactions are split in order to account 

for enzyme demands of both directions) hinders their compatibility with the flux variability analysis (FVA) 

functions already available in COBRA44 and RAVEN50 toolboxes. As a solution to this, an FVA module 

was integrated to the utilities repertoire in GECKO, whose applicability has been previously tested on 

studies with ecModels for S. cerevisiae1 and human cell lines2. This module contains the necessary functions 

to perform FVA on any set of reactions of an ecModel, enabling also a direct comparison of flux variability 

ranges between an ecModel and its GEM counterpart in a consistent way (see Supp. file 2).  

 

The FVA utility was applied on three different ecModels of microbial metabolism and their correspondent 

GEMs (iML1515, iYali4 and iSM996). In all cases the FVA comparisons were carried out for both 

chemostat and batch growth conditions in order to span different degrees of constraining of the metabolic 

networks (0.1 h-1 dilution rate and minimal glucose uptake rate fixed for chemostat conditions; biomass 

production fixed to experimental measurements of 𝜇&'( and unconstrained uptake of minimal media 

components, for batch conditions). Cumulative distributions for flux variability ranges for all explored 

ecModels and GEMs are shown in Figure 5, in which it can be seen that median flux variability ranges are 

much reduced for all ecModels and conditions, especially at high growth rates where enzyme constraints 

reduce the variability range 5-6 orders of magnitude when compared to pure GEMs. The cumulative 

distributions also show a major reduction in the amount of totally variable fluxes (reactions that can carry 

any flux between -1000 to 1000 mmol/gDw h), which are an indicator of undesirable futile cycles present 

in the network due to lack of thermodynamic and enzyme cost information66–68. For high growth rates, the 

amount of totally variable fluxes accounts for 3-12% of the active reactions in the analysed GEMs, in 

contrast to their corresponding ecModels in which such extreme variability ranges are completely absent.  

 

Further analysis of the FVA results revealed that a reduction of at least 95% of the variability range was 

achieved for more than 90% of all active fluxes at high growth rates in all ecModel. Interestingly, the 

aforementioned flux variability metrics were overall improved even for the chemostat conditions, despite a 

higher degree of constraining (fixed low growth rate and optimal uptake rate), which restrains these models 

to an energy efficient respiratory mode (Supp. file 4). 
 

Discussion 
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Here we demonstrated how enzyme constrained models for diverse species significantly improve 

simulation performance compared to traditional GEMs. Furthermore, to enable the community to easily 

adapt this modelling approach, we upgraded the GECKO toolbox for enhancement of genome-scale models 

with enzyme and omics constraints to its version 2.0. Major improvements on the kcat matching algorithm 

were incorporated into the toolbox, based on phylogenetic distance between the modeled organism and the 

host organisms for data queries, and an automated curation of kcat numbers for over-constrained models 

were incorporated into the toolbox. Major refactoring of the GECKO toolbox enabled a generalization of 

the method, allowing the creation of high-quality ecModels for any provided functional GEM with minimal 

need for case-specific introduction of new code. Additionally, several utility functions were integrated into 

the toolbox in order to enable basic simulation purposes, accessible retrieval of enzyme parameters, 

integration of proteomics data as constraints, flux variability analysis and prediction of gene targets for 

enhanced production of metabolites. Overall, it was shown that these enhancements to the GECKO toolbox 

improve the incorporation of kinetic parameters into a metabolic model, yielding ecModels with 

biologically meaningful kinetic profiles without compromising accuracy on phenotype predictions. 

 

Two major limitations of the first version of the GECKO toolbox were its specific customization to the S. 

cerevisiae model, Yeast7, and the need of extensive manual curation for generating an ecModel suited for 

FBA simulations; thus, its applicability to other GEMs was not a straightforward procedure. To overcome 

these limitations, we generalized the code with the aim of making GECKO a model-agnostic tool. The 

development of a procedure for automatic curation of kinetic parameters enabled the generation of 

functional ecModels with minimal requirements for experimental data. Recently, ecModels for 11 human 

cancer cell-lines were generated with this automated procedure, using Human1 as a model input and 

RNAseq datasets together with the tINIT algorithm10 to generate cell-line specific networks2. These 

ecModels were used for the prediction of cellular growth and metabolite exchange rates at different levels 

of added constraints, resulting in remarkable improvements in accuracy when compared with predictions 

of their original GEMs. This highlights one of the main advantages of ecModels: their capability of yielding 

biologically meaningful phenotype predictions without an excessive dependency on exchange fluxes as 

constraints. 

 

In order to further showcase the functionality of the GECKO toolbox 2.0, a family of new high-quality 

ecModels were generated for E. coli, Y. lipolytica, K. marxianus and H. sapiens, based on the original 

GEMs iML1515, iYali4, iSM996 and Human1, respectively. Furthermore, we generated a self-hosted 

pipeline for continuous and automated generation and update of ecModels, ecModels container, so that 

each of the currently available ecModels (ecYeastGEM, eciML1515, eciYali, eciSM996 and ecHuman1) 
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are integrated to it, providing a version-controlled and continuously updated repository for high-quality 

ecModels.  

 

Absolute proteomics measurements for the budding yeasts S. cerevisiae, K. marxianus and Y. lipolytica 

grown under multiple environmental conditions, were incorporated as constraints into their ecModels by 

using the proteomics integration module added to the GECKO toolbox. Analysis of metabolic flux 

distributions revealed that net reaction fluxes predicted by GEMs are not significantly affected by the 

incorporation of kinetic and proteomics constraints, however the explicit integration of enzymes into 

ecModels extends the range of predictions of classical FBA and enables computation of enzyme demands 

at the reaction and pathway levels. It was found that incorporation of proteomics constraints does not affect 

enzyme demand predictions significantly for most of the active enzymes at low dilution rates across the 

simulated conditions. However, we observed that a diversified utilization of isoenzymes, enforced by 

proteomics constraints, increases the predicted total protein mass allocated to central carbon and energy 

metabolism, in comparison to optimal enzyme allocation profiles. This result suggests the relevance of 

metabolic robustness in contrast to optimal protein utilization for microbial growth under environmental 

stress and nutrient-limited conditions. 

 

Incorporation of proteomics data allows the use of ecModels as scaffolds for systems-level studies of 

metabolism, providing a tool for uncovering metabolic readjustments induced by genetic and environmental 

perturbations, which might be difficult  to elucidate by purely data-driven approaches, specially at 

conditions of relatively low changes at the transcript69 and protein levels64. For all studied stress conditions 

in this study, we identified upregulated proteins (increased abundance) that are needed to operate at high 

saturation levels in stress conditions, while showing low usage at reference conditions, creating lists of 

potential gene amplification targets for enhancing stress tolerance in three industrially relevant yeast species 

(Supp. file 3). Upregulation and high saturation of enzymes in amino acid and folate metabolism were 

found to be common across the studied organisms and stress conditions (Fig. S3 D and Supp. file 3). These 

results suggests that yeast cells display enzyme expression profiles that provide them with metabolic 

robustness for microbial growth under stress and nutrient-limited conditions, in contrast to an optimal 

protein allocation strategy that prioritizes expression of the most efficient and non-redundant enzymes. 

 

Our results on drastic reduction of median flux variability ranges and the number of totally unbounded 

fluxes for eciYali, eciSM996 and eciML1515, together with previous studies1,2,38, suggest that a major 

reduction of the solution space of metabolic models to a more biologically meaningful subspace is a general 

property of ecModels. However, flux variability is an intrinsic characteristic of metabolism; therefore, 
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metabolic models with highly constrained solution spaces may exclude some biological capabilities of 

organisms, which are not compatible with the set of constraints used for the analysis (exchange fluxes, 

growth rates and even profiles of kinetic parameters, considered as condition-independent in ecModels). 

 
Here, the predictive capabilities of eciML1515 and iJL1678 ME-model (both for E. coli) for cellular growth 

and global protein demands on diverse environments were compared. The major improvement in predicted 

maximum growth rates, together with a comparable performance on quantification of protein demands, 

shown by eciML1515 suggest that, despite its mathematical and conceptual simplicity, the GECKO 

formalism is a suitable framework for quantitative probing of metabolic capabilities, compatible with the 

widely used FBA method and without the need of excessive complexity or computational power. 

Nevertheless, ME-models provide a much wider range of predictions that explore additional processes in 

cell physiology with great detail. Direct comparison between the predictions of these modelling formalisms, 

suggest that ME-models performance can be improved by incorporation of either curated or systematically 

retrieved kinetic parameters that are suitable for the modelled organisms. 

 

Simpler modelling frameworks that account for protein or enzyme constraints in metabolism, such as flux 

balance analysis with molecular crowding (FBAwMC)16,17, metabolic modelling with enzyme kinetics 

(MOMENT)23 and constrained allocation flux balance analysis (CAFBA)21, have also been developed and 

used to explore microbial cellular growth16,17,21 and overflow metabolism16,23. These methods have overcome 

the lack of reported parameters for some specific reactions either by incorporation of proteomics 

measurements and prior flux distributions23, manual curation and sampling procedures16,17 or even by 

lumping protein demands by functionally related proteome groups. In contrast, the new version of the 

GECKO toolbox provides a systematic and robust parameterization procedure, leveraging the vastly 

accumulated knowledge of biochemistry research stored in public databases, ensuring the incorporation of 

biologically meaningful kinetic parameters even for poorly studied reactions and organisms. 

 

The applicability of these other simple modelling formalisms to models for diverse species is limited as 

none of these methods has been provided as part of a generalized model-agnostic software implementation. 

Recently, a simplified variant of the MOMENT method (sMOMENT) was developed and embedded into 

an automated pipeline for generation and calibration of enzyme-constrained models of metabolism 

(AutoPACMEN)70. The pipeline was tested on the generation of an enzyme-constrained version of the 

iJO1366 metabolic reconstruction for E. coli, which also showed consistency with experimental data. This 

work represented a step forward in the field of constrain-based metabolic modelling, as it contributed to 

standardization of model generation and facilitating their utilization and applicability to other cases. 
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However, due to the intrinsic trade-off between model simplicity and descriptive representation, a limitation 

of the sMOMENT method is its simplification of redundancies in metabolism, which just accounts for the 

optimal way of catalysing a given biochemical reaction, discarding the representation of alternative 

isoforms that might be relevant under certain conditions. In GECKO ecModels, all enzymes for which a 

gene-E.C. number relationship exists are included in the model structure. As traditional FBA simulations 

rely on optimality principles one could, in principle, expect the same predicted flux distributions by 

sMOMENT and GECKO ecModels. Nonetheless, the explicit incorporation of all enzymes in a metabolic 

network enables explanation of protein expression profiles that deviate from optimality in order to gain 

robustness to changes in the environment, as it has been recently shown by the integration of a regulatory 

nutrient-signalling Boolean network together with an ecModel for S. cerevisiae’s central carbon 

metabolism71. 

 

In conclusion, GECKO2.0 together with the development of the automated pipeline ecModels container 

facilitates the generation, standardization, utilization, exchange and community development of ecModels 

through a transparent version-controlled environment. This tool provides a dynamic, and potentially 

increasing, catalogue of updated ecModels trying to close the gap between model developers and final users 

and reduce the time-consuming tasks of model maintenance. We are confident that this will enable wide 

use of ecModels in basic science for obtaining novel insight into the function of metabolism as well as in 

synthetic biology and metabolic engineering for design of strains with improved functionalities, e.g., for 

high-level production of valuable chemicals. 

 

Material and Methods 
 

Automation pipeline and version-controlled hosting of the ecModels container 

The ecModels repository is used to version-control the pipeline code and the resulting models. The pipeline 

is restricted to 2 short Python files, whose role is to decide when models need to be updated based on a 

configuration file config.ini, and to consequently invoke the use of GECKO for each model. Updates are 

deemed necessary when either the underlying dependencies (i.e., GECKO, RAVEN and COBRA 

toolboxes, the Gurobi solver, and libSMBL) or the source GEMs are independently updated to a new 

version (release) in their respective repositories.  

 

The pipeline is designed be automatic and to not require supervision. It was developed to work with both 

version-controlled GEMs and GEMs downloadable from a URL, updating the version in the configuration 

after a new ecModel is obtained. For easy review, the pipeline log is publicly available under the Actions 
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tab of the GitHub repository. The computation is performed through a self-hosted GitHub runner, further 

leveraging the transparent nature of the GitHub platform and the git version-control system. The resulting 

ecModel and updated configuration are committed to the repository, with the changes being made available 

for review through a pull request. Additionally, the GECKO output is also replicated in the pull request 

body. The ecModels container thus continues the transparency and reproducibility of the source models. 

 

Quantification of absolute protein concentrations for S. cerevisiae, Y. lipolytica and K. marxianus 

Total protein extraction for the strains Saccharomyces cerevisiae CEN.PK113-7D (standard, low pH, high 

temperature, osmotic stress), Kluyveromyces marxianus CBS6556 (standard, low pH, high temperature, 

osmotic stress) and Yarrowia lipolytica W29 (standard, low pH, high temperature) was conducted as 

described previously (Supp. file 2). Three reference samples (hereafter, ‘bulk’ samples), one per strain, 

were constructed by pooling 5 µg of each experimental sample. Aliquots of 15 µg of total protein extract 

from each sample (3 strains x 4 conditions x 3 replicates) and the three bulks were separated on one-

dimensional SDS-PAGE short-migration gels (1x1 cm lanes, Invitrogen, NP321BOX). Yeast proteins 

digestion was performed on excised bands from gel gradient and digested peptides of UPS2 (Sigma) were 

used as external standards for absolute protein quantification (more details in Supp. file 2). Four μl of the 

different peptide mixtures (800 ng for yeast peptides and 949 ng for bulks) were analyzed using an Orbitrap 

Fusion™ Lumos™ Tribrid™ mass spectrometer (Thermo Fisher Scientific). 

Protein identification was performed using the open-source search engine X!Tandem pipeline 3.4.472. Data 

filtering was set to peptide E-value < 0.01 and protein log(E-value) < –3. Relative quantification of protein 

abundances was carried out using the Normalized Spectral Abundance Factor (NSAF)73 and the NSAF 

values obtained from UPS2 proteins in bulk samples were used to determine the suitable regression curves 

that allowed the conversion from relative protein abundance into absolute terms. MS data is available online 

on public databases via the PRIDE repository74 with the dataset identifier PXD012836. 

Simulation of condition-dependent flux distributions 

Simulation of cellular phenotypes for conditions of environmental stress at low dilution rates with GEMs 

were performed by first setting bounds on measured glucose uptake and byproduct secretion rates according 

to experimental data from previous studies on chemostats64. Then the biomass production rate was 

constrained (both upper and lower bounds) with the experimental dilution rate (0.1 h-1). Maximization of 

the non-growth associated maintenance pseudo-reaction was set as an objective function for the 

parsimonious FBA problem as a representation of the additional energy demands for regulation of cellular 

growth at non-optimal conditions. The same procedure was followed for simulations with ecModels 
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constrained by a total protein pool. For the case of ecModels with proteomics constraints, the same set of 

constraints was used but the objective function was set as minimization of the total usage of unmeasured 

proteins, assuming that the regulatory machinery for stress tolerance is represented by the condition-specific 

protein expression profile. 

 

Prediction of microbial batch growth rates 

Batch cellular growth was simulated by allowing unconstrained uptake of all nutrients present in minimal 

mineral media, enabling a specific carbon source uptake reaction for each case while blocking the rest of 

the uptake reactions and allowing unconstrained secretion rates for all exchangeable metabolites. 

Maximization of the biomass production rate was used as an objective function for the resulting FBA 

problem. For prediction of total protein demands on unlimited nutrient conditions, media constraints were 

set as expressed above and experimental batch growth rate values were fixed as both lower and upper 

bounds for the biomass production pseudo-reaction. The total protein pool exchange pseudo-reaction was 

then unconstrained and set as an objective function to minimize, assuming that when exposed to unlimited 

availability of nutrients the total mass of protein available for catalyzing metabolic reactions becomes the 

limiting resource for cells. The solveLP function, available in the RAVEN toolbox, was used for solving 

all FBA problems in this study. 

 

Code availability 

The source code of the updated GECKO toolbox is available at: 

https://github.com/SysBioChalmers/GECKO. The code for ecModels container and the whole catalogue 

of updated ecModel files can be accessed at: https://github.com/SysBioChalmers/ecModels. All custom 

scripts for simulations included in this study can be found at: 

https://github.com/SysBioChalmers/GECKO2_simulations. All of these repositories are public and open to 

collaborative continuous development. 
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Figure 1. kcat distributions in BRENDA and ecYeast7. A) Number of kcat entries in BRENDA per organism. 

B) kcat distributions for closely related enzyme families. Sample size and median values (in s-1) are shown 

after each family identifier. C) kcat distributions for enzymes in BRENDA by metabolic context and life 

kingdoms. Median values are indicated by red dots in each distribution, statistical significance (under a 

Kolmogorov-Smirnov test) is indicated by red stars for each pair of distributions for a given kingdom. CEM 

– central carbon and energy metabolism; ALM – Amino acid and lipid metabolism; ISM – Intermediate 

and secondary metabolism. D) Number of kcat matches in ecYeast7 per assignment category (GECKO 2.0). 

E) Comparison of the number of kcat matches for E.C. numbers with 0, 1, 2 and 3 introduced wild-cards by 

GECKO 2.0 and GECKO kcat matching algorithms. F) Cumulative kcat distributions for: all S. cerevisiae 

entries in BRENDA, all entries for fungi in BRENDA, ecYeast7 enhanced by GECKO and ecYeast7 

enhanced by GECKO 2.0. Colored points and vertical dashed lines indicate the value for the median value 

for each distribution. Statistical significance under a Kolmogorov-Smirnov test of the matched kcat 

distributions when compared to all entries for S. cerevisiae and fungi, is shown with red circles and stars, 

respectively. p-values below 1x10-2 are indicated with red.  G) Prediction of batch maximum growth rates 

on diverse media with ecYeast7 enhanced by GECKO 2.0. Glu – glucose, Fru – fructose, Suc – sucrose, 

Raf – raffinose, Mal – maltose, Gal – galactose, Tre – trehalose, Gly – glycerol, Ace – acetate, Eth – ethanol. 
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Figure 2. Extending utilization of ecModels. A) ecModels container: Integrated pipeline for continuous 
and automated update of ecModels. B) Implementation of GECKO simulations in the Caffeine platform 
(https://caffeine.dd-decaf.eu/) for visualization of enzyme usage. The color of the arrows corresponds to 
the value of the corresponding fluxes. Genes or reactions connected to enzymes with a usage above 90% 
are highlighted with a glow around the corresponding text or arrow, respectively. The chosen usage 
threshold to highlight can be tuned with the slider on the right. 
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Figure 3. Comparison of predictive capabilities between eciML1515 and ME-iJL1678 for E. coli. A) 

Maximum batch growth rate predictions on minimal media with diverse carbon sources. Squared-sum 

errors when compared to experimental values are shown for both eciML1515 and ME-iJL1678. B) 

Prediction of total protein content in the cell by eciML1515 and ME-iJL1678 using the optimal and 

generalist approaches. 
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Figure 4 Evaluation of proteomics-constrained ecModels. Comparison of median relative error in 

prediction of exchange fluxes for O2 and CO2 by GEMs, ecModels and proteomics-constrained ecModels 

across diverse conditions (chemostat cultures at 0.1 h-1 dilution rate) for A) S. cerevisiae B) K. marxianus 

C) Y. lipolytica. D) Comparison of absolute enzyme usage profiles [mmol/gDw] predicted by ecYeastGEM 

(ecM) and ecYeastGEM with proteomics constraints (ecP) for several experimental conditions. The region 

between the two dashed grey lines indicates enzyme usages predicted in the interval 0.5 ≤ 𝐸)"*+/𝐸)"*, ≤

2, the region between the two dashed black lines indicates enzyme usages predicted in the interval 0.1 ≤

𝐸)"*+/𝐸)"*, ≤ 10 when comparing the two ecModels. E) Protein burden for different superpathways 

predicted by ecYeastGEM (ecM) and ecYeastGEM with proteomics constraints (ecP). F) Highly saturated 

enzymes at different stress conditions for S. cerevisiae, K. marxianus and Y. lipolytica predicted by their 

corresponding ecModels constrained with proteomics data. Yellow cells indicate condition-responsive 

enzymes (𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒	𝑢𝑠𝑎𝑔𝑒	 ≥ 0.95). Red asterisks indicate enzymes conserved as single copy orthologs 

across the three yeast species.  Std – Reference condition, HiT – High temperature condition, LpH – Low 

pH condition, Osm – Osmotic stress condition, AA – amino acid metabolism, NUC – nucleotide 
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metabolism, CEM - central carbon and energy metabolism, CofVit – cofactor and vitamin metabolism, Lip 

– lipid and fatty acid metabolism. 

 
 

 
Figure 5.- Cumulative distributions of flux variability ranges for iSM996, iYali4 and iML1515 compared 

to their respective enzyme-constrained versions at low and high growth rates. 
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Figure S1. Cumulative distributions of metabolic fluxes. Flux distributions of ecModels were mapped to 

their corresponding reactions in the original GEMs and plotted together as cumulative distributions for all 

organisms and conditions. A-D) Cumulative distributions for S. cerevisiae models; E-H) Cumulative 

distributions for K. marxianus models; I-K) Cumulative distributions for Y. lipolytica models. Sample size 

and median flux values, in mmol/gDwh, are shown within parenthesis for all distributions in all the plots. 
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Statistical significance under a two-sample Kolmogorov-Smirnov test between flux distributions for 

ecModels and their corresponding GEMs are shown as * (0.01 <= p-value < 0.05) and ** (p-value<0.01). 

sce – S. cerevisiae, kma – K. marxianus, yli – Y. lipolytica, std – Reference condition, HiT – High 

temperature condition, LpH – Low pH condition, Osm – Osmotic stress condition, GEM – Genome-scale 

metabolic model, ecM – ecModel with total protein pool constraint – ecP – ecModel with proteomics 

constraints.  
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Figure S2. Comparison of predicted metabolic fluxes and enzyme usage distributions. Pairwise comparison 

of metabolic fluxes predicted by GEMs, ecModels and proteomics-constrained ecModels for A) S. 

cerevisiae, B) K. marxianus and C) Y. lipolytica. Principal component analysis on enzyme usage 

distributions predicted by ecModels and proteomics-constrained ecModels for D) S. cerevisiae, E) K. 
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marxianus and F) Y. lipolytica subject to different environmental conditions. Pairwise comparison of 

enzyme usage profiles in mmol/gDw predicted by ecModels and ecModels with proteomics constraints for 

G) S. cerevisiae H) K. marxianus  I) Y. lipolytica. Grey dashed lines indicate predictions in the interval 

0.5 ≤ 𝑓𝑜𝑙𝑑	𝑐ℎ𝑎𝑛𝑔𝑒 ≤ 2, whilst black dashed lines delimit the region of predictions within 0.1 ≤

𝑓𝑜𝑙𝑑	𝑐ℎ𝑎𝑛𝑔𝑒 ≤ 10,  when comparing GEMs to ecModels (A-C) and ecModels to ecModels with 

proteomics data (G-I). Std – Reference condition, HiT – High temperatura condition, LpH – Low pH 

condition, Osm – Osmotic stress condition, GEM – Genome-scale metabolic model, ecM – ecModel with 

total protein pool constraint – ecP – ecModel with proteomics constraints.  
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Figure S3. Evolutionary conserved enzymes across S. cerevisiae, K. marxianus and Y. lipolytica.  A) 

Conservation of protein-coding genes amongst the three budding yeasts. Overlaps indicate number of genes 

conserved as single copy orthologs between yeast species. The uniprot codes for the 2,959 conserved 

protein-coding genes amongst the three species were mapped to their corresponding ecModels 

(ecYeastGEM, eciSM996 and eciYali), 310 enzymes were found as single copy orthologs across the three 

ecModels. B) Principal component analysis on absolute abundances for the 310 core enzymes across the 

three yeast species for several experimental conditions. C) Principal component analysis on absolute 

enzyme usages predicted for the 310 core enzymes by ecYeastGEM, eciSM996 and eciYali for several 

experimental conditions. D) Venn diagram for all core enzymes predicted as highly saturated 

(𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒	𝑢𝑠𝑎𝑔𝑒	 ≥ 0.95) in at least one environmental condition across the three yeast species. Std – 

Reference condition, HiT – High temperature condition, LpH – Low pH condition, Osm – Osmotic stress 

condition, Sce – S. cerevisiae, Kmx – K. marxianus, Yli – Y. lipolytica. 
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Supplementary methods 
 

Improved kcat matching algorithm 

The kcat  matching algorithm in the GECKO toolbox queries kinetic parameters from BRENDA, the largest 

database available on enzymatic information1. However, one of the most important limitations to consider 

is that such parameters are only available for <10% of the known biochemical reactions2. The turnover 

number assignment to each of the enzymatic reactions present in a GEM is based on a flexible algorithm 

that allows the incorporation of kinetic parameters even when values for the specific organism and natural 

substrate of the enzyme are not available. However, as overestimation of microbial growth rates under 

environmental and genetic perturbations remains one of the main challenges for GEM development, 

biological relevance of the imposed kinetic constraints plays a crucial role for improving predictive 

accuracy3. In this regard, a global analysis for the reported kcat values on BRENDA (Supp. file 1) pointed 

out the following potential issues. 

 

1. The availability of kinetic parameters is highly heterogeneous, i.e. not all organisms have been 

studied to the same extent.  

2. kcat value distributions showed to be significantly different amongst kingdoms of life, therefore the 

catalytic activity of enzymes might be phylogenetically constrained. 

3. kcat value distributions are highly dependent on the metabolic context. For all kingdoms of life, there 

are important differences on the distributions for enzymes belonging to different metabolic pathways 

groups, being central carbon and energy metabolism enzymes the fastest group (on average) when 

compared to those involved in amino acid, fatty acid and nucleotide metabolism and secondary and 

intermediate metabolism. 

In order to address the aforementioned limitations, the GECKO kcat matching algorithm was modified 

aiming to provide a more accurate parameterization of models.  A comparison between the introduced and 

previous hierarchical algorithms is shown in Table S1. 

Table S1: kcat matching algorithms comparison. 

Original kcat matching criteria New criteria 
1. As a first option, it will try to match the E.C. 

number, the organism and the corresponding 
substrate to some kcat annotation in the BRENDA 
database.   

1. Same as original. 

2. If no match is found, it will try to match the E.C. 
number and the substrate, but with any organism 
available. 

2. If no match is found, it will try to match the E.C. 
number and the substrate, but for the 
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phylogenetically closest organism with available 
values.   

3. If no match is found, it will try to match the E.C. 
number and the organism, but with any substrate 
available. 

3. Same as original. 

4. If still no match is found, it will try to match the 
E.C. number for any organism, and any substrate 
available. 

4. If no match is found, it will try to match the E.C. 
number and the organism but looking in specific 
activity values instead of kcat (S.A.*Mweight = kcat). 

5. If still no match is found, then it will introduce one 
wildcard to the E.C. number and attempt all 
previous 4 steps again.  

5. If still no match is found, it will try to match a kcat 
value for the E.C. number, any substrate but for the 
phylogenetically closest organism with available 
values.   

 6. If still no match is found, it will try to match a specific 
activity value for the E.C. number, any substrate but 
for the phylogenetically closest organism available. 

 7. Finally, if still no match is found, then it will 
introduce one wildcard (WC) to the E.C. number and 
attempt all previous 6 steps again. 

 

Estimation of phylogenetic distance between pairs of organisms 

The phylogenetic distance between organisms is measured as the number of nodes of separation between 

two organisms in the KEGG taxonomical tree (incorporated as a MATLAB workspace file into the 

toolbox), this new feature follows from the assumption that kinetic parameters on enzymes have been finely 

tuned by evolution and are phylogenetically related4. The incorporation of specific activity values increases 

the parameter coverage and avoids the assignment of a high number of wild cards, making the assignments 

as close as possible to the original metabolic function of the specific enzyme class. 

 

Iterative curation of limiting kcat numbers based on enzyme control coefficients 

Once kinetic parameters and protein pool bounds have been incorporated into the ecModel it is very likely 

that overconstraining arises due to the intrinsic uncertainty of the incorporated kcat values. For such cases, 

the module kcat_sensitivity_analysis flexibilizes the coefficients with a higher effect on the simulated 

objective function value based on enzyme control coefficients given by 

𝐸𝐶𝐶!" =
𝑘#$%
!"

𝑣&'(

∆𝑣&'(
∆𝑘#$%

!"  

 
in which 𝑘*'-

).  represents the kcat parameter of the enzyme i in reaction j; 𝑣/0. is the original value in the 
objective function; ∆𝑘*'-

).  is an induced perturbation in the kcat equivalent to 10-fold increase of its initial 
value; ∆𝑣/0. is the change in the objective function after perturbing 𝑘123

). .  
 

The ECCs are ranked in a decreasing way and the enzyme with the coefficient is then selected for a 10-fold 

kcat  increase, based on the assumption that kcat parameters may span orders of magnitude across organisms 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 5, 2021. ; https://doi.org/10.1101/2021.03.05.433259doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.05.433259
http://creativecommons.org/licenses/by/4.0/


and substrates even for the same enzyme class. This procedure iterates until the ecModel is able to reach to 

provided experimental growth rate in the getModelParameters.m function. Information regarding the 

flexibilized kcat values, their respective proteins and reactions, ECCs, flexibilized and original kcat 

s is saved as a text file in the GECKO/model folder of the toolbox under the name kcat_modifications.txt. 

 

Incorporation of proteomics constraints 

The integrate_proteomics module in GECKO enables the generation of condition dependent models with 

proteomics constraints for any given dataset of absolute protein abundances [mmol/ gDw] with m replicates 

for n conditions. For each experimental condition, the abundance values are filtered, excluding proteins 

that are not present in at least 2/3 of the total number of condition replicates and also noisy measurements 

(proteins with relative standard deviation higher than 1 across replicates). Median values and standard 

deviations of abundance are calculated for each protein across replicates, then upper bounds are imposed 

on their corresponding enzyme usage pseudoreactions as follows: 

𝑢𝑏"! =	 [𝐸)] + 1.96 ∗ 𝛿 

Where [𝐸)] represents the abundance of the protein i in mmol/gDw and 𝛿 the standard deviation, the 

addition of 1.96 ∗ 𝜎 accounts for a confidence interval of 0.95 in the protein abundance measurement. The 

experimental value for cellular growth rate at which the proteomics samples were obtained is then fixed as 

lower bound for the biomass pseudoreaction and measured fluxes on glucose uptake rate and, optionally, 

byproducts secretion rates are set as upper bounds for their respective exchange reactions (adding a 

numerical tolerance of 5%). The remaining total protein pool is then constrained by 

𝑢𝑏+*%%' =	N𝑃-/-'4 −Q𝑀5! ∗ [𝐸)]
)

S ∗ 𝜎 ∗ 𝑓 

where 𝑃-/-'4 is the measured total protein content in the cell in gprot/gDw; 𝑀5!is the molecular weight of 

the measured protein i; 𝜎 represents an average saturation factor for the unmeasured enzymes, assumed as 

0.55,6; 𝑓 accounts for the fraction that the unmeasured protein sector represents out of the total proteome in 

the cell, this value is calculated by using a paxDB proteome abundance file for the organism of interest as 

a reference, if no paxDB file is provided then a value of 0.5 is assumed. 

Proteomics abundances are corrected for the oxidative phosphorylation complexes, trying to avoid 

overconstraining of potentially erroneously measured subunits that might limit the whole pathway. This 

correction is limited to just this pathway as it is desirable to modify the original dataset the least possible 
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and abundance changes in OxPhos subunits are key to meet the phenotype energy requirements. Medium 

constraints are set by allowing free uptake of all compounds available in the culture medium and closing 

the rest of the uptake reactions. Additionally, all the upper bounds for production reactions (secretion of 

metabolites) are set to 1000 mmol/gDw h. Using an ecModel_batch with the same constraints setup, 

minimal enzyme requirements for the proteins present in the filtered dataset are retrieved from a 

parsimonious FBA solution vector. Enzyme abundances that are lower than the minimum requirements 

calculated by the FBA solution are corrected in the dataset. 

A proteomics constrained ecModel_prot is obtained by the function constrainEnzymes.m. If the model is 

overconstrained after imposing all the afore mentioned constraints, then the function 

flexibilizeProteins.m flexibilizes the top-limiting abundances (based on shadow prices for the measured 

proteins, given by: 𝑠ℎ𝑎𝑑𝑜𝑤	𝑝𝑟𝑖𝑐𝑒𝑠 = 	 6!+!%
670"!

) until the model is able to grow at the provided experimental 

growth rate. After this, an optimal enzyme usage profile compatible with the provided constraints is 

obtained and optimal levels are set as upper bounds for the flexibilized protein usages. 

 

The total flexibilized mass of protein is drawn from the remaining protein pool (upper bound 

for protein_pool_exchange pseudoreaction) for consistency with mass conservation. Non-growth 

associated ATP maintenance is fitted according to condition specific experimental data if available 

(measurements on exchange fluxes of oxygen and CO2 from the same samples as the proteomics dataset). 

In the case of chemostat samples such conditions are set by first fixing the growth rate to the experimental 

value, minimizing the carbon source uptake, fixing its optimal value and then setting the total unmeasured 

enzymes usage as a new objective to minimize. Each condition-specific model is saved 

in GECKO/models/prot_constrained. 

 

Comparative flux variability analysis 

The function comparativeFVA.m in the FVA utitilities module provides a fair comparison of flux 

variability range distributions between a given GEM and its ecModel pair for glucose limited conditions 

(low dilution rates) and protein limiting regime (batch growth). For the chemostat case, a dilution rate of 

0.1 h-1 was set as both lower and upper bound for the biomass pseudoreaction (+/- a tolerance value of 

0.01%). Then the glucose uptake rate was set as an objective to minimize and its optimal value was then 

also fixed, using the same tolerance. Additional culture medium constraints were imposed (upper bound 

for exchange reactions of medium components were set to 1000 mmol/gDw h). All applied constraints were 

also applied to the original GEM. For the protein-limiting case, biomass production is maximized with the 

ecModel and then the optimal value is used to set a lower bound on the same reaction, in order to compare 
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with the original GEM, the same optimal growth rate is fixed as both lower and upper bounds for the 

biomass pseudoreaction. A parsimonious flux distribution in which the total protein usage is minimized in 

the ecModel subject to all of the previous constraints is then obtained. For every reaction that is able to 

carry a non-zero flux in the original GEM (assessed by the RAVEN toolbox function haveFlux.m) both 

minimization and maximization are performed for the original GEM. For the ecModel, such optimizations 

are performed on the governing pseudoreaction representing the same original reaction flux (i.e. arm 

reactions when isoenzymes are present), this is done for both the forward reaction and its reversible 

counterpart (if present). In order to avoid the introduction of artificial variability, the forward reaction is 

blocked when the backwards is optimized, and the same is applied to the opposite direction. For each 

reaction a flux variability range is given by 

𝐹𝑉) = 𝑣)&'( − 𝑣)&)8 

For the ecModel these ranges are given by 

𝐹𝑉) = W𝑣)&'( − 𝑣)&)8X − W𝑣),:$;&'( − 𝑣),:$;&)8 X 
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